
WELCOME!
(download slides and .py files from

the class site to follow along)
6.100L Lecture 1

Ana Bell

1

TODAY

 Course info
 What is computation
 Python basics

 Mathematical operations
 Python variables and types

 NOTE: slides and code files up before each lecture
 Highly encourage you to download them before class
 Take notes and run code files when I do
 Do the in-class “You try it” breaks
 Class will not be recorded
 Class will be live-Zoomed for those sick/quarantine

6.100L Lecture 1
2

WHY COME TO CLASS?

 You get out of this course what you put into it
 Lectures

 Intuition for concept
 Teach you the concept
 Ask me questions!
 Examples of concept
 Opportunity to

practice practice practice
 Repeat

6.100L Lecture 1
3

PRACTICE

February 3, 2016 6.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

PSETS

EXAMS

MANDATORY
FINGER

EXERCISES

OPTIONAL
(practice)

OFFICE
HOURS

PIAZZA

LECTURES

RECITATION

KNOWLEDGE
OF CONCEPTS

6.100L Lecture 1
4

TOPICS

 Solving problems using computation
 Python programming language
 Organizing modular programs
 Some simple but important algorithms
 Algorithmic complexity

6.100L Lecture 1
5

LET’S GOOOOO!

6

TYPES of KNOWLEDGE

 Declarative knowledge is statements of fact
 Imperative knowledge is a recipe or “how-to”

 Programming is about writing recipes to generate facts

6.100L Lecture 1
7

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

6.100L Lecture 1
8

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

6.100L Lecture 1
9

NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

6.100L Lecture 1
10

WE HAVE an ALGORITHM

1) Sequence of simple steps
2) Flow of control process that specifies when each step is
executed
3) A means of determining when to stop

6.100L Lecture 1
11

ALGORITHMS are RECIPES /
RECIPES are ALGORITHMS

 Bake cake from a box
 1) Mix dry ingredients
 2) Add eggs and milk
 3) Pour mixture in a pan
 4) Bake at 350F for 5 minutes
 5) Stick a toothpick in the cake

 6a) If toothpick does not come out clean, repeat step 4 and 5
 6b) Otherwise, take pan out of the oven

 7) Eat

6.100L Lecture 1
12

COMPUTERS are MACHINES that
EXECUTE ALGORITHMS

 Two things computers do:
 Performs simple operations

100s of billions per second!
 Remembers results
100s of gigabytes of storage!

 What kinds of calculations?
 Built-in to the machine, e.g., +
 Ones that you define as the programmer

 The BIG IDEA here?

6.100L Lecture 1
13

A COMPUTER WILL ONLY DO
WHAT YOU TELL IT TO DO

6.100L Lecture 1
14

COMPUTERS are MACHINES that
EXECUTE ALGORITHMS

 Fixed program computer
 Fixed set of algorithms
 What we had until 1940’s

 Stored program computer
 Machine stores and executes instructions

 Key insight: Programs are no different from other kinds of data

6.100L Lecture 1
15

STORED PROGRAM COMPUTER

 Sequence of instructions stored inside computer
 Built from predefined set of primitive instructions

1) Arithmetic and logical
2) Simple tests
3) Moving data

 Special program (interpreter) executes each instruction in
order
 Use tests to change flow of control through sequence
 Stops when it runs out of instructions or executes a halt instruction

6.100L Lecture 1
16

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

17

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

18

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

19

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

20

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

21

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

22

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

23

6.100L Lecture 1

MEMORY

CONTROL
UNIT

ARITHMETIC
LOGIC UNIT

INPUT OUTPUT

3456 3
3457 4
3458 7
3459 True
3460
3461 False

7889 5
7890 2
7891 7
7892
7893
7894

Add 3456 3457

Add 7889 7890
Store 3458

Store 7891
Compare 3458 7891

Print

True

24

BASIC PRIMITIVES

 Turing showed that you can compute anything with a very
simple machine with only 6 primitives: left, right, print, scan,
erase, no op

 Real programming languages have
 More convenient set of primitives
 Ways to combine primitives to create new primitives

 Anything computable in one language is computable in any
other programming language

6.100L Lecture 1

© source unknown. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

25

ASPECTS of LANGUAGES

 Primitive constructs
 English: words
 Programming language: numbers, strings, simple operators

6.100L Lecture 1
26

ASPECTS of LANGUAGES

 Syntax
 English: "cat dog boy"  not syntactically valid

"cat hugs boy" syntactically valid
 Programming language: "hi"5 not syntactically valid

"hi"*5 syntactically valid

6.100L Lecture 1
27

ASPECTS of LANGUAGES

 Static semantics: which syntactically valid strings have meaning
 English: "I are hungry" syntactically valid

but static semantic error
 PL: "hi"+5 syntactically valid

but static semantic error

6.100L Lecture 1
28

ASPECTS of LANGUAGES

 Semantics: the meaning associated with a syntactically correct
string of symbols with no static semantic errors
 English: can have many meanings "The chicken is

ready to eat."

 Programs have only one meaning
 But the meaning may not be what programmer intended

6.100L Lecture 1
29

WHERE THINGS GO WRONG

 Syntactic errors
 Common and easily caught

 Static semantic errors
 Some languages check for these before running

program
 Can cause unpredictable behavior

 No linguistic errors, but different meaning
than what programmer intended
 Program crashes, stops running
 Program runs forever
 Program gives an answer, but it’s wrong!

6.100L Lecture 1
30

PYTHON PROGRAMS

 A program is a sequence of definitions and commands
 Definitions evaluated
 Commands executed by Python interpreter in a shell

 Commands (statements) instruct interpreter to do something
 Can be typed directly in a shell or stored in a file that is read

into the shell and evaluated
 Problem Set 0 will introduce you to these in Anaconda

6.100L Lecture 1
31

PROGRAMMING ENVIRONMENT:
ANACONDA

6.100L Lecture 1

Code Editor
Shell / Console

32

OBJECTS

 Programs manipulate data objects
 Objects have a type that defines the kinds of things programs

can do to them
 30

 Is a number
 We can add/sub/mult/div/exp/etc

 'Ana'
 Is a sequence of characters (aka a string)
 We can grab substrings, but we can’t divide it by a number

6.100L Lecture 1
33

OBJECTS

 Scalar (cannot be subdivided)
 Numbers: 8.3, 2
 Truth value: True, False

 Non-scalar (have internal structure that can be accessed)
 Lists
 Dictionaries
 Sequence of characters: "abc"

6.100L Lecture 1
34

SCALAR OBJECTS

 int – represent integers, ex. 5, -100
 float – represent real numbers, ex. 3.27, 2.0
 bool – represent Boolean values True and False
 NoneType – special and has one value, None
 Can use type() to see the type of an object

>>> type(5)
int
>>> type(3.0)
float

6.100L Lecture 1
35

6.100L Lecture 1

int
0, 1, 2, …
300, 301 …

-1, -2, -3, …
-400, -401, …

float
0.0, …, 0.21, …
1.0, …, 3.14, …

-1.22, …, -500.0 , …

bool
True
False

NoneType
None

36

YOU TRY IT!
 In your console, find the type of:

 1234
 8.99
 9.0
 True
 False

6.100L Lecture 1
37

TYPE CONVERSIONS (CASTING)

 Can convert object of one type to another
 float(3) casts the int 3 to float 3.0
 int(3.9) casts (note the truncation!) the float 3.9 to int 3

 Some operations perform implicit casts
 round(3.9)returns the int 4

6.100L Lecture 1
38

YOU TRY IT!
 In your console, find the type of:

 float(123)
 round(7.9)
 float(round(7.2))
 int(7.2)
 int(7.9)

6.100L Lecture 1
39

EXPRESSIONS

 Combine objects and operators to form expressions
 3+2
 5/3

 An expression has a value, which has a type
 3+2 has value 5 and type int
 5/3 has value 1.666667 and type float

 Python evaluates expressions and stores the value. It doesn’t
store expressions!

 Syntax for a simple expression
<object> <operator> <object>

6.100L Lecture 1
40

BIG IDEA

Replace complex
expressions by ONE value
Work systematically to evaluate the expression.

6.100L Lecture 1
41

EXAMPLES

 >>> 3+2

 5

 >>> (4+2)*6-1

 35

 >>> type((4+2)*6-1)

 int

 >>> float((4+2)*6-1)

 35.0

6.100L Lecture 1
42

YOU TRY IT!
 In your console, find the values of the following expressions:

 (13-4) / (12*12)
 type(4*3)
 type(4.0*3)
 int(1/2)

6.100L Lecture 1
43

OPERATORS on int and float

 i+j  the sum
 i-j  the difference
 i*j  the product
 i/j  division

 i//j floor division
 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.100L Lecture 1

if both are ints, result is int
if either or both are floats, result is float

result is always a float

What is type of output?

44

SIMPLE OPERATIONS

 Parentheses tell Python to do these operations first
 Like math!

 Operator precedence without parentheses

**

* / % executed left to right, as appear in expression

+ – executed left to right, as appear in expression

6.100L Lecture 1
45

SO MANY OBJECTS, what to do
with them?!

6.100L Lecture 1

2

-0.3

17

True

0.001

123 False

100.4

x =

b =

a =

flag =

go =

temp =

n =
small =

46

VARIABLES

 Computer science variables are different than math variables
 Math variables

 Abstract
 Can represent many values

 CS variables
 Is bound to one single value at a given time
 Can be bound to an expression

(but expressions evaluate to one value!)

6.100L Lecture 1

a + 2 = b - 1

a = b + 1

x * x = y

m = 10
F = m*9.98

47

BINDING VARIABLES to VALUES

 In CS, the equal sign is an assignment
 One value to one variable name
 Equal sign is not equality, not “solve for x”

 An assignment binds a value to a name

 Step 1: Compute the value on the right hand side (the VALUE)
 Value stored in computer memory

 Step 2: Store it (bind it) to the left hand side (the VARIABLE)
 Retrieve value associated with name by invoking the name

(typing it out)

6.100L Lecture 1

pi = 355/113

48

YOU TRY IT!
 Which of these are allowed in Python? Type them in the

console to check.
 x = 6
 6 = x
 x*y = 3+4
 xy = 3+4

6.100L Lecture 1
49

ABSTRACTING EXPRESSIONS

 Why give names to values of expressions?
 To reuse names instead of values
 Makes code easier to read and modify

 Choose variable names wisely
 Code needs to read
 Today, tomorrow, next year
 By you and others
 You’ll be fine if you stick to letters,

underscores, don’t start with a number

6.100L Lecture 1

#Compute approximate value for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

50

WHAT IS BEST CODE STYLE?

6.100L Lecture 1

#do calculations
a = 355/113 *(2.2**2)
c = 355/113 *(2.2*2)

#calculate area and circumference of a circle
#using an approximation for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

p = 355/113
r = 2.2
#multiply p with r squared
a = p*(r**2)
#multiply p with r times 2
c = p*(r*2)

51

CHANGE BINDINGS

 Can re-bind variable names using new
assignment statements
 Previous value may still stored in memory but

lost the handle for it
 Value for area does not change until you tell the

computer to do the calculation again

6.100L Lecture 1

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2
area = pi*(radius**2)

radius = radius+1

52

BIG IDEA
Lines are evaluated one
after the other
No skipping around, yet.
We’ll see how lines can be skipped/repeated later.

6.100L Lecture 1
53

YOU TRY IT!
 These 3 lines are executed in order. What are the values of
meters and feet variables at each line in the code?

meters = 100

feet = 3.2808 * meters

meters = 200

6.100L Lecture 1

ANSWER:

Let’s use PythonTutor to figure out what is going on
 Follow along with this Python Tutor LINK

Where did we tell Python to (re)calculate feet?

54

http://pythontutor.com/visualize.html#code=meters%20%3D%20100%0Afeet%20%3D%203.2808%20*%20meters%0Ameters%20%3D%20200%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!
 Swap values of x and y without binding the numbers directly.

Debug (aka fix) this code.

x = 1
y = 2

y = x
x = y

 Python Tutor to the rescue?

6.100L Lecture 1

ANSWER:

x

y

1

2

x

y

temp

1

2

55

https://pythontutor.com/render.html#code=x%20%3D%201%0Ay%20%3D%202%0A%0Ay%20%3D%20x%0Ax%20%3D%20y&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

SUMMARY

 Objects
 Objects in memory have types.
 Types tell Python what operations you can do with the objects.
 Expressions evaluate to one value and involve objects and operations.
 Variables bind names to objects.
 = sign is an assignment, for ex. var = type(5*4)

 Programs
 Programs only do what you tell them to do.
 Lines of code are executed in order.
 Good variable names and comments help you read code later.

6.100L Lecture 1
56

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

57

https://ocw.mit.edu
https://ocw.mit.edu/terms

	WELCOME!�(download slides and .py files from �the class site to follow along)
	TODAY
	WHY COME TO CLASS?
	Slide Number 12
	TOPICS
	LET’S GOOOOO!�
	TYPES of KNOWLEDGE
	NUMERICAL EXAMPLE
	NUMERICAL EXAMPLE
	NUMERICAL EXAMPLE
	WE HAVE an ALGORITHM
	ALGORITHMS are RECIPES /�RECIPES are ALGORITHMS
	COMPUTERS are MACHINES that EXECUTE ALGORITHMS
	A COMPUTER WILL ONLY DO WHAT YOU TELL IT TO DO
	COMPUTERS are MACHINES that EXECUTE ALGORITHMS
	STORED PROGRAM COMPUTER
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	BASIC PRIMITIVES
	ASPECTS of LANGUAGES
	ASPECTS of LANGUAGES
	ASPECTS of LANGUAGES
	ASPECTS of LANGUAGES
	WHERE THINGS GO WRONG
	PYTHON PROGRAMS
	PROGRAMMING ENVIRONMENT: ANACONDA
	OBJECTS
	OBJECTS
	SCALAR OBJECTS
	Slide Number 45
	Slide Number 46
	TYPE CONVERSIONS (CASTING)
	Slide Number 49
	EXPRESSIONS
	Replace complex expressions by ONE value
	EXAMPLES
	Slide Number 54
	OPERATORS on int and float
	SIMPLE OPERATIONS
	SO MANY OBJECTS, what to do with them?!
	VARIABLES
	BINDING VARIABLES to VALUES
	Slide Number 60
	ABSTRACTING EXPRESSIONS
	WHAT IS BEST CODE STYLE?
	CHANGE BINDINGS
	Lines are evaluated one after the other�
	Slide Number 66
	Slide Number 67
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

