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TODAY

 Course info
 What is computation
 Python basics

 Mathematical operations
 Python variables and types

 NOTE: slides and code files up before each lecture
 Highly encourage you to download them before class
 Take notes and run code files when I do
 Do the in-class “You try it” breaks
 Class will not be recorded
 Class will be live-Zoomed for those sick/quarantine
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WHY COME TO CLASS?

 You get out of this course what you put into it
 Lectures

 Intuition for concept
 Teach you the concept
 Ask me questions!
 Examples of concept
 Opportunity to

practice practice practice
 Repeat
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TOPICS

 Solving problems using computation
 Python programming language
 Organizing modular programs
 Some simple but important algorithms
 Algorithmic complexity
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LET’S GOOOOO!
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TYPES of KNOWLEDGE

 Declarative knowledge is statements of fact
 Imperative knowledge is a recipe or “how-to”

 Programming is about writing recipes to generate facts
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NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

6.100L Lecture 1
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NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035
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NUMERICAL EXAMPLE

 Square root of a number x is y such that y*y = x
 Start with a guess, g

1) If g*g is close enough to x, stop and say g is the answer
2) Otherwise make a new guess by averaging g and x/g
3) Using the new guess, repeat process until close enough

 Let’s try it for x = 16 and an initial guess of 3
g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002
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WE HAVE an ALGORITHM

1) Sequence of simple steps
2) Flow of control process that specifies when each step is
executed
3) A means of determining when to stop
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ALGORITHMS are RECIPES /
RECIPES are ALGORITHMS

 Bake cake from a box
 1) Mix dry ingredients
 2) Add eggs and milk
 3) Pour mixture in a pan
 4) Bake at 350F for 5 minutes
 5) Stick a toothpick in the cake

 6a) If toothpick does not come out clean, repeat step 4 and 5
 6b) Otherwise, take pan out of the oven

 7) Eat
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COMPUTERS are MACHINES that 
EXECUTE ALGORITHMS

 Two things computers do:
 Performs simple operations

100s of billions per second!
 Remembers results
100s of gigabytes of storage!

 What kinds of calculations?
 Built-in to the machine, e.g., +
 Ones that you define as the programmer

 The BIG IDEA here?
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A COMPUTER WILL ONLY DO 
WHAT YOU TELL IT TO DO
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COMPUTERS are MACHINES that 
EXECUTE ALGORITHMS

 Fixed program computer
 Fixed set of algorithms
 What we had until 1940’s

 Stored program computer
 Machine stores and executes instructions

 Key insight: Programs are no different from other kinds of data
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STORED PROGRAM COMPUTER

 Sequence of instructions stored inside computer
 Built from predefined set of primitive instructions

1) Arithmetic and logical
2) Simple tests
3) Moving data

 Special program (interpreter) executes each instruction in
order
 Use tests to change flow of control through sequence
 Stops when it runs out of instructions or executes a halt instruction
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BASIC PRIMITIVES

 Turing showed that you can compute anything with a very
simple machine with only 6 primitives: left, right, print, scan,
erase, no op

 Real programming languages have
 More convenient set of primitives
 Ways to combine primitives to create new primitives

 Anything computable in one language is computable in any
other programming language

6.100L Lecture 1

© source unknown. All rights reserved. This 
content is excluded from our Creative Commons 
license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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ASPECTS of LANGUAGES

 Primitive constructs
 English: words
 Programming language: numbers, strings, simple operators
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26



ASPECTS of LANGUAGES

 Syntax
 English: "cat dog boy"     not syntactically valid

"cat hugs boy" syntactically valid
 Programming language: "hi"5 not syntactically valid

"hi"*5 syntactically valid
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ASPECTS of LANGUAGES

 Static semantics: which syntactically valid strings have meaning
 English: "I are hungry" syntactically valid

but static semantic error
 PL: "hi"+5 syntactically valid

but static semantic error

6.100L Lecture 1
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ASPECTS of LANGUAGES

 Semantics: the meaning associated with a syntactically correct
string of symbols with no static semantic errors
 English: can have many meanings "The chicken is

ready to eat."

 Programs have only one meaning
 But the meaning may not be what programmer intended

6.100L Lecture 1
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WHERE THINGS GO WRONG

 Syntactic errors
 Common and easily caught

 Static semantic errors
 Some languages check for these before running

program
 Can cause unpredictable behavior

 No linguistic errors, but different meaning
than what programmer intended
 Program crashes, stops running
 Program runs forever
 Program gives an answer,  but it’s wrong!
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PYTHON PROGRAMS

 A program is a sequence of definitions and commands
 Definitions evaluated
 Commands executed by Python interpreter in a shell

 Commands (statements) instruct interpreter to do something
 Can be typed directly in a shell or stored in a file that is read

into the shell and evaluated
 Problem Set 0 will introduce you to these in Anaconda
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PROGRAMMING ENVIRONMENT: 
ANACONDA

6.100L Lecture 1

Code Editor
Shell / Console
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OBJECTS

 Programs manipulate data objects
 Objects have a type that defines the kinds of things programs

can do to them
 30

 Is a number
 We can add/sub/mult/div/exp/etc

 'Ana'
 Is a sequence of characters (aka a string)
 We can grab substrings, but we can’t divide it by a number

6.100L Lecture 1
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OBJECTS

 Scalar (cannot be subdivided)
 Numbers: 8.3, 2
 Truth value: True, False

 Non-scalar (have internal structure that can be accessed)
 Lists
 Dictionaries
 Sequence of characters: "abc"

6.100L Lecture 1
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SCALAR OBJECTS

 int – represent integers, ex. 5, -100
 float – represent real numbers, ex. 3.27, 2.0
 bool – represent Boolean values True and False
 NoneType – special and has one value, None
 Can use type() to see the type of an object

>>> type(5)
int
>>> type(3.0)
float

6.100L Lecture 1
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int
0, 1, 2, … 
300, 301 …

-1, -2, -3, …
-400, -401, …

float
0.0, …, 0.21, … 
1.0, …, 3.14, …

-1.22, …, -500.0 , …

bool
True
False

NoneType
None
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YOU TRY IT!
 In your console, find the type of:

 1234
 8.99
 9.0
 True
 False

6.100L Lecture 1
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TYPE CONVERSIONS (CASTING)

 Can convert object of one type to another
 float(3) casts the int 3 to float 3.0
 int(3.9) casts (note the truncation!) the float 3.9 to int 3

 Some operations perform implicit casts
 round(3.9)returns the int 4

6.100L Lecture 1
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YOU TRY IT!
 In your console, find the type of:

 float(123)
 round(7.9)
 float(round(7.2))
 int(7.2)
 int(7.9)

6.100L Lecture 1
39



EXPRESSIONS

 Combine objects and operators to form expressions
 3+2
 5/3

 An expression has a value, which has a type
 3+2 has value 5 and type int
 5/3 has value 1.666667 and type float

 Python evaluates expressions and stores the value. It doesn’t
store expressions!

 Syntax for a simple expression
<object> <operator> <object>

6.100L Lecture 1
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BIG  IDEA

Replace complex 
expressions by ONE value
Work systematically to evaluate the expression.
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EXAMPLES

 >>> 3+2

 5

 >>> (4+2)*6-1

 35

 >>> type((4+2)*6-1)

 int

 >>> float((4+2)*6-1)

 35.0

6.100L Lecture 1
42



YOU TRY IT!
 In your console, find the values of the following expressions:

 (13-4) / (12*12)
 type(4*3)
 type(4.0*3)
 int(1/2)

6.100L Lecture 1
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OPERATORS on int and float

 i+j  the sum
 i-j  the difference
 i*j  the product
 i/j  division

 i//j floor division
 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.100L Lecture 1

if both are ints, result is int
if either or both are floats, result is float

result is always a float

What is type of output?
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SIMPLE OPERATIONS

 Parentheses tell Python to do these operations first 
 Like math!

 Operator precedence without parentheses

**

* / % executed left to right, as appear in expression

+ – executed left to right, as appear in expression
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SO MANY OBJECTS, what to do 
with them?!

6.100L Lecture 1

2

-0.3

17

True

0.001

123 False

100.4

x =

b = 

a = 

flag = 

go = 

temp = 

n = 
small = 
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VARIABLES

 Computer science variables are different than math variables
 Math variables

 Abstract
 Can represent many values

 CS variables
 Is bound to one single value at a given time
 Can be bound to an expression

(but expressions evaluate to one value!)
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a + 2 = b - 1

a = b + 1

x * x = y

m = 10
F = m*9.98
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BINDING VARIABLES to VALUES

 In CS, the equal sign is an assignment
 One value to one variable name
 Equal sign is not equality, not “solve for x”

 An assignment binds a value to a name

 Step 1: Compute the value on the right hand side (the VALUE)
 Value stored in computer memory

 Step 2: Store it (bind it) to the left hand side (the VARIABLE)
 Retrieve value associated with name by invoking the name

(typing it out)

6.100L Lecture 1

pi = 355/113
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YOU TRY IT!
 Which of these are allowed in Python? Type them in the

console to check.
 x = 6
 6 = x
 x*y = 3+4
 xy = 3+4
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ABSTRACTING EXPRESSIONS

 Why give names to values of expressions?
 To reuse names instead of values
 Makes code easier to read and modify

 Choose variable names wisely
 Code needs to read
 Today, tomorrow, next year
 By you and others
 You’ll be fine if you stick to letters,

underscores, don’t start with a number

6.100L Lecture 1

#Compute approximate value for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)
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WHAT IS BEST CODE STYLE?

6.100L Lecture 1

#do calculations
a = 355/113 *(2.2**2)
c = 355/113 *(2.2*2)

#calculate area and circumference of a circle 
#using an approximation for pi
pi = 355/113
radius = 2.2
area = pi*(radius**2)
circumference = pi*(radius*2)

p = 355/113
r = 2.2
#multiply p with r squared
a = p*(r**2)
#multiply p with r times 2
c = p*(r*2)
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CHANGE BINDINGS

 Can re-bind variable names using new
assignment statements
 Previous value may still stored in memory but

lost the handle for it
 Value for area does not change until you tell the

computer to do the calculation again
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pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2
area = pi*(radius**2)

radius = radius+1
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BIG  IDEA
Lines are evaluated one 
after the other
No skipping around, yet.
We’ll see how lines can be skipped/repeated later.
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YOU TRY IT!
 These 3 lines are executed in order. What are the values of
meters and feet variables at each line in the code?

meters = 100

feet = 3.2808 * meters

meters = 200

6.100L Lecture 1

ANSWER:

Let’s use PythonTutor to figure out what is going on
 Follow along with this Python Tutor LINK

Where did we tell Python to (re)calculate feet?
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YOU TRY IT!
 Swap values of x and y without binding the numbers directly.

Debug (aka fix) this code.

x = 1
y = 2

y = x
x = y

 Python Tutor to the rescue?

6.100L Lecture 1

ANSWER:

x

y

1

2

x

y

temp

1

2
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SUMMARY

 Objects
 Objects in memory have types.
 Types tell Python what operations you can do with the objects.
 Expressions evaluate to one value and involve objects and operations.
 Variables bind names to objects.
 = sign is an assignment, for ex. var = type(5*4)

 Programs
 Programs only do what you tell them to do.
 Lines of code are executed in order.
 Good variable names and comments help you read code later.
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