MORE PYTHON CLASS
METRHODS

(download slides and .py files to follow along)
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IMPLEMENTING USING
THE CLASS vs  THE CLASS

= Write code from two different perspectives

Implementing a new Using the new object type in
object type with a class code

= Define the class * Create instances of the

= Define data attributes object type

(WHAT IS the object)

= Define methods
(HOW TO use the object)

* Do operations with them

Class abstractly captures Instances have specific

common properties and values for attributes
behaviors
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RECALL THE COORDINATE CLASS

= Class definition tells Python the blueprint for a type Coordinate

class Coordinate (object):
""" A coordinate made up of an x and y value """
def init (self, x, y):
""" Sets the x and y values """
self.x = X
self.y =y
def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x diff sgq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sqg + y diff sqg)**0.5
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ADDING METHODS TO THE
COORDINATE CLASS

" Methods are functions that only work with objects of this type

class Coordinate (object):
""" A coordinate made up of an x and y value """
def init (self, x, y):
""" Sets the x and y values """
self.x = X
self.y =y
def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x diff sgq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sg + y diff sq)**0.5
def to origin(self):
""" 3lways sets self.x and self.y to 0,0 """
self.x = 0
self.y = 0
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MAKING COORDINATE INSTANCES

= Creating instances makes actual Coordinate objects in memory

" The objects can be manipulated
= Use dot notation to call methods and access data attributes
o"?’

\ ¢ D
NG
(X° aa e

a“

c = Coordinatel|(3,4) qda
origin = Coordinate (0, 0)

print (f"c's x 1s {c.x} and origin's x 1is {origin.x}")

print (c.distance (origin)) Wﬁwﬁ'
e“““a
c.to origin() 66@@‘(64‘90'
print (c.x, c.y) X0 '6*30
W et
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CLASS DEFINITION

OF AN OBJECT TYPE vs

" Class name is the type

class Coordinate (object)

= Class is defined generically

m Use self to refertosome
instance while defining the
class

(self.x — self.y)**2

» selfisaparameterto
methods in class definition

» Class defines data and
methods common across all
instances

6

INSTANCE
OF A CLASS

" Instance is one specific object

coord = Coordinate (1, 2)

= Data attribute values vary
between instances
Coordinate (1, 2)
Coordinate (3, 4)

- c1 and c2 have different data

attribute values c1.x and c2.x
because they are different objects

cl =

c2 =

= Instance has the structure of
the class
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USING CLASSES TO BUILD OTHER
CLASSES

= Example: use Coordinates to build Circles

" Our implementation will use 2 data attributes
= Coordinate object representing the center
" int object representing the radius

Center
coordinate
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CIRCLE CLASS:
DEFINITION and INSTANCES

Co
2
A\ o€ A2\ O
class Circle(object): ﬁ\\\\\ \N\\\
def init (self,|center) | radius):
self.center |= center
self.radius |= radius
o)
X
* (\0“\6\(\6
e e’
X0 «\e o .
o)

center| = Coordinate (2, 2)

my circle = Circle (center|, 2)
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YOU TRY IT!

=" Add code to the init method to check that the type of center is
a Coordinate obj and the type of radius is an int. If either are
not these types, raise a ValueError.

def 1init (self, center, radius):
self.center = center

self.radius = radius



CIRCLE CLASS:

DEFINITION and INSTANCES

class Circle(object):

def (self,

init

self.center

self.radius

center,
center

radius

radius) :

self],

def is inside

point

"nww Returns True

wiwew

1f point 1s 1in self, False otherwise

return| point|.distance|(lself.center]|) < self.radius

- ~ate 00IEC . te objec

coordind ethod ca\\edO Coordma"
Coordinate
center = Coordinate (2, 2) ftype(jﬁﬂ
. o)
my circle = Circle(center, 2) nN\Norsvmﬂ\Obl
. d that©
p = Coordinate(1l,1) Metho
print (my circlellis inside (@) )Coord'\nate ob}ect
10

Circle object
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YOU TRY IT!

= Are these two methods in the Circle class functionally equivalent?

class Circle (object):

def  1init (self, center, radius):
self.center = center
self.radius = radius

def is insidel (self, point):
return |pointl.distance (jself.center) < self.radius

def 1s insideZ(self, point):
return [self.center|.distance (point) < self.radius
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EXAMPLE:
FRACTIONS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, subtract
* |nvert the fraction

= Let’s write it together!
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NEED TO CREATE INSTANCES

class SimpleFraction (object):

def init (self, n, d):

self.num = n

self.denom = d
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MULTIPLY FRACTIONS

class SimpleFraction (object):

have
def init (self, n, d): t\\e\leach
— — ects S
self.num = n \eﬂac’{\oﬂ
mp
self.denom = d S* aum .
def times (self],| oth): *de™
top = self.num*oth.num
bottom = self.denom*oth.denom dot‘ﬂemat
10
return top/bottom mofdef‘om

pCces® e
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ADD FRACTIONS

class SimpleFraction (object):

def init (self, n, d):

self.num = n
self.denom = d
def plus(self, oth):
top = self.num*oth.denom + self.denom*oth.num
bottom = self.denom*oth.denom

return top/bottom
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LET'S TRY IT OUT

f1l = SimpleFraction (3, 4)
f2 = SimpleFraction (1, 4)

print (f1.num) m—) 3

print (£1.denom) m—) 4

print (fl.plus(£2)) ) 1.0
(

print (fl.times (f2)) =) 0.1875
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YOU TRY IT!

= Add two methods to invert fraction object according to the specs below:
class SimpleFraction (object) :
""" A number represented as a fraction """
def init (self, num, denom) :
self.num = num
self.denom = denom
def get inverse(self):
""" Returns a float representing 1/self """
pass
def invert(self):

mwww

Sets self's num to denom and vice versa.
Returns None. """

pass

# Example:

fl = SimpleFraction(3,4)

print (fl.get inverse()) # prints 1.33333333 (note this one returns value)
fl.invert () # acts on data attributes internally, no return

print (f1.num, fl.denom) # prints 4 3
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LET'S TRY IT OUT WITH MORE
THINGS

f1l = SimpleFraction (3, 4)
f2 = SimpleFraction (1, 4)

asa
print (£1.num) m— 3 h t’\fWe\Nan’ttO\‘eep
\Wha
print (£1.denom) m—) 4 fract'\on?
. have
print (fl.plus(f2)) ) 10 at'\f\Ne\Namm ld
And Wha ok as we W
print (fl.times (f2)) === 0.1875 orint and * WO
print (f1) <__main__.SimpleFraction object at 0x00000234A8C41DF0>

print (f1 * £2) Error!
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SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

" + -, =5, <,>, len(), print, and many others are
shorthand notations

= Behind the scenes, these get replaced by a method!

https://docs.python.org/3/reference/datamodel.html#basic-customization

= Can override these to work with your class

19
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https://docs.python.org/3/reference/datamodel.html#basic-customization

SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

= Define them with double underscores before/after
~_add  (self, other) > self + other
__sub  (self, other) = self - other
__mul (self, other) -> self * other
truediv  (self, other) > self / other

eq (self, other) - self == other
1t (self, other) - self < other

~_len (self) - len (self)

__str  (self) -> print (self)

__float (self) -> float(self) i.e cast
POW > self**other

... and others



PRINTING OUR OWN
DATA TYPES



PRINT REPRESENTATION OF AN
OBJECT

>>> ¢ = Coordinate(3,4)
>>> print (c)
< main .Coordinate object at 0x7fa918510488>

= Uninformative print representation by default
" Definea str method for a class

" Python callsthe  str = method when used with
print on your class object

= You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (c)
<3,4>
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DEFINING YOUR OWN PRINT
METHOD

class Coordinate (object) :
def  1init (self, xval, yval):
self.x = xval
self.y = yval
def distance(self, other):
x diff sqg = (self.x-other.x)**2
y diff sgq = (self.y-other.y)**2
return (x diff sgq + y diff sq)**0.5
def str (self) :

return|"<"+str(self.x)+","+str(self.y)+">"

6@3& X
A\ e(:\a\ N ((\\)S “3
Y o )
e’&\\ e
o A0S
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WRAPPING YOUR HEAD AROUND
TYPES AND CLASSES

((\e&‘(\o d\(\a\_e

= Can ask for the type of an object instance & SC,OO(

>>> ¢ = Coordinate(3,4) O;\x\\e - ' 30\36

>>> print (c) o &Cﬁ

<3,4> vet £ O .\ec,

’ . o

>>> print (type (c)) evWe X

<class  main .Coordinate> a\) &gﬁ &dd@p

. : S O o
» This makes sense since ,(\axe‘c’ o0

>>> print (Coordinate) coO o 365'\53

<class main .Coordinate> s _ éﬁd\

>>> print (type (Coordinate)) Qdﬁéﬁ\

<type 'type'> s

" Use isinstance () tocheckifanobjectisa Coordinate
>>> print (isinstance(c, Coordinate))
True
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EXAMPLE: FRACTIONS WITH
DUNDER METHODS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, sub, mult, div to work with +, -, *, /
* Print representation, convert to a float
* |nvert the fraction

= Let’s write it together!
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CREATE & PRINT INSTANCES

class Fraction (object) :

def init (self, n, d):

self.num = n
self.denom = d

def str (self) :

return [str(self.num)|+ "/" +|str(self.denom)

26
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LET'S TRY IT OUT

f1l = Fraction (3, 4)
f2 = Fraction(1l, 4)
f3 = Fraction (5, 1)

print (£1) ) 3/4
print (£2) ) 1/4
print (£3) ) 5/1

Ok, but looks weird!
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YOU TRY IT!

=" Modify the str method to represent the Fraction as just the
numerator, when the denominator is 1. Otherwise its
representation is the numerator then a / then the denominator.

class Fraction (object) :
def init (self, num, denom):
self.num = num
self.denom = denom
def str (self) :

return str(self.num) + "/" 4+ str(self.denom)

# Example:

a = Fraction(1l,4)

b = Fraction(3,1)

print (a) # prints 1/4
print (b) # prints 3
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IMPLEMENTING
+-*/
float()



COMPARING METHOD vs.
DUNDER METHOD

class SimpleFraction (object) : class Fraction (object):
def  init (self, n, d): def  init (self, n, d):
self.num = n self.num = n
self.denom = d self.denom = d
def (self, oth) : def [_mul_}self, other) :
top = self.num*oth.num top = self.num*other.num
bottom = self.denom*oth.denom bottom = self.denom*other.denom
return[top/bottom] return[Fraction(top, bottomﬂ
non .
( . e
TS s . note: We . o aneW
Wwhen W cetur? flod ceturn ction
gs\0M 30 ins
*pre
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LETS TRY IT OUT

a = Fraction (1, 4)

b = Fraction(3,4)

print (a) m—) 1/4 mu\/m ccenes:
— . e S
c=a*b be‘(\\“:\em g re™
. n\s
[ print (c) } m—) 3/16 T;ract'\oﬂ\g'l&
a
gr 1O
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CLASSES CAN HIDE DETAILS

\)
4 c\ea’”
. nice an
" These are all equivalent Smr’t“?“‘dk aod, P2
et ds!
[print(a -0 ] Call 'O d\“‘ie(nd (methods
+1 QU
[print (a. mul (b)) ] SW\e\;\n’&\’\
. sin V@
[print (Fraction. mul (a, b)) ] assmg\n \
- i €\as cal %eﬂe‘a\
EXO\\C\,\; Yo 4 t\l\ n
£of ALY

" Every operation in Python
comes back to a method call

= The first instance makes clear
the operation, without worrying
about the internal details!
Abstraction at work
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BIG IDEA

Special operations we've
been using are just
methods behind the

SCENeESs.

Things like:

print, len

+, *; w) /1 <, 2, <=, >=, =5 1=
[]

and many others!



CAN KEEP BOTH OPTIONS BY ADDING
A METHOD TO CASTTOA float

class Fraction (object) :
def  init (self, n, d):

self.num = n

self.denom = d

def float (self): t&ﬁs
R — a float s\ dwec’c\\l
return[self.num/self.denom } Jne dm9
o
c=a%*b (ac’{\O“\?”l\

for ¥
print (c) m=p(3/16 | R
print (float (c)) mm) 0.1875
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LETS TRY IT OUT SOME MORE

a = Fraction (1, 4)

b = Fraction (2, 3)

c =a*b

print (c) m—) /12

=" Not quite what we might expect? It’s not reduced.

= Can we fix this?

35
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ADD A METHOD

class Fraction (object) :

......... _‘\nd‘-\'\e . “
def reduce (self) : won 10 divisO
FuﬂC‘-\ mOn
def gcd(n, d): t co™
great®
while d != 0:
(d, n) = (n%d, d)
return n
1f self.denom == 0:
return None e“md
elif self.denom == 1: .‘n§d€“@v“
return self.num call it
else:
greatest common divisor = |gcd(self.num, self.denom)
top = int(self.num/greatest common divisor)
bottom = int(self.denom/greatest_common_divisor)
return|Fraction (top, bottom) b-\ectback
FraC’f‘ono
c = a*b S{\\\\Nan’ta
print (c) m—) /12

print (c.reduce()) ) 1/6 %
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WE HAVE SOME IMPROVEMENTS TO MAKE

class Fraction (object) :
def reduce (self):
def gcd(n, d):

while d !'= 0:
(d, n) = (n3d, d) .
- re turn n B < his 3 good \der;c’l\'a Fract\qn SO
if self.denom == 0: « does etu or““ﬂupw
lrituriszne can NO \Oﬂgerr\:’c\rad_\onS
etun sesfomum | WSO
else:
greatest common divisor = gcd(self.num, self.denom)
top = inE(self.Hum/greatest common divisor)
bottom = int(self.denom/gregtest_cgmmon_divisor)

return Fraction(top, bottom)
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CHECK THE TYPES, THEY'RE DIFFERENT

a = Fraction(4,1)

b = Fraction(3,9)

ar = a.reduce () —) /4
br = b.reduce () —) 1/3

print (ar, type(ar)) mm) 4 <class 'int'>
print (br, type (br)) mmmm) 1/3 <class' _main__.Fraction'>

c = ar * br 1y an
v mu\‘\p\\’ e
E(YO F‘aC‘ d o X F‘_ac‘:\Oﬂ
Wt W gefine i a0 el
We € xon W
frac

onWy 2@ 38
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YOU TRY IT!

* Modify the code to return a Fraction object when denominator
is1

class Fraction (object):
def reduce(self):

def gcd(n, d):

while d != O0:

(d, n) = (
return n

1f self.denom ==

return None

elif self.denom ==

return self.num

else:
greatest common divisor = gcd(self.num, self.denom)
top = int(self.num/greatest common divisor)
bottom =

int (self.denom/greatest common divisor)
return Fraction (top, bottom)

# Example:
fl = Fraction(5,1)
print (f1.reduce ()) # prints %/l not 5



WHY OOP and BUNDLING THE
DATA IN THIS WAY?

» Code is organized and modular
" Code is easy to maintain

" |[t’s easy to build upon objects to make more complex objects

= Decomposition and abstraction at work with Python classes
= Bundling data and behaviors means you can use objects consistently

= Dunder methods are abstracted by common operations, but they’re
just methods behind the scenes!

40
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