MORE PYTHON CLASS
METRHODS

(download slides and .py files to follow along)

6.100L Lecture 18
Ana Bell

IMPLEMENTING USING
THE CLASS vs THE CLASS

= Write code from two different perspectives

Implementing a new Using the new object type in
object type with a class code

= Define the class * Create instances of the

= Define data attributes object type

(WHAT IS the object)

= Define methods
(HOW TO use the object)

* Do operations with them

Class abstractly captures Instances have specific

common properties and values for attributes
behaviors

2
6.100L Lecture 18

RECALL THE COORDINATE CLASS

= Class definition tells Python the blueprint for a type Coordinate

class Coordinate (object):
""" A coordinate made up of an x and y value """
def init (self, x, y):
""" Sets the x and y values """
self.x = X
self.y =y
def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x diff sgq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sqg + y diff sqg)**0.5

3
6.100L Lecture 18

ADDING METHODS TO THE
COORDINATE CLASS

" Methods are functions that only work with objects of this type

class Coordinate (object):
""" A coordinate made up of an x and y value """
def init (self, x, y):
""" Sets the x and y values """
self.x = X
self.y =y
def distance(self, other):
""" Returns euclidean dist between two Coord obj """
x diff sgq = (self.x-other.x)**2
y diff sq = (self.y-other.y)**2
return (x diff sg + y diff sq)**0.5
def to origin(self):
""" 3lways sets self.x and self.y to 0,0 """
self.x = 0
self.y = 0

4
6.100L Lecture 18

MAKING COORDINATE INSTANCES

= Creating instances makes actual Coordinate objects in memory

" The objects can be manipulated
= Use dot notation to call methods and access data attributes
o"?’

\ ¢ D
NG
(X° aa e

a“

c = Coordinatel|(3,4) qda
origin = Coordinate (0, 0)

print (f"c's x 1s {c.x} and origin's x 1is {origin.x}")

print (c.distance (origin)) Wﬁwﬁ'
e“““a
c.to origin() 66@@‘(64‘90'
print (c.x, c.y) X0 '6*30
W et

6.100L Lecture 18

CLASS DEFINITION

OF AN OBJECT TYPE vs

" Class name is the type

class Coordinate (object)

= Class is defined generically

m Use self to refertosome
instance while defining the
class

(self.x — self.y)**2

» selfisaparameterto
methods in class definition

» Class defines data and
methods common across all
instances

6

INSTANCE
OF A CLASS

" Instance is one specific object

coord = Coordinate (1, 2)

= Data attribute values vary
between instances
Coordinate (1, 2)
Coordinate (3, 4)

- c1 and c2 have different data

attribute values c1.x and c2.x
because they are different objects

cl =

c2 =

= Instance has the structure of
the class

6.100L Lecture 18

USING CLASSES TO BUILD OTHER
CLASSES

= Example: use Coordinates to build Circles

" Our implementation will use 2 data attributes
= Coordinate object representing the center
" int object representing the radius

Center
coordinate

7
6.100L Lecture 18

CIRCLE CLASS:
DEFINITION and INSTANCES

Co
2
A\ o€ A2\ O
class Circle(object): ﬁ\\\\\ \N\\\
def init (self,|center) | radius):
self.center |= center
self.radius |= radius
o)
X
* (\0“\6\(\6
e e’
X0 «\e o .
o)

center| = Coordinate (2, 2)

my circle = Circle (center|, 2)

8
6.100L Lecture 18

YOU TRY IT!

=" Add code to the init method to check that the type of center is
a Coordinate obj and the type of radius is an int. If either are
not these types, raise a ValueError.

def 1init (self, center, radius):
self.center = center

self.radius = radius

CIRCLE CLASS:

DEFINITION and INSTANCES

class Circle(object):

def (self,

init

self.center

self.radius

center,
center

radius

radius) :

self],

def is inside

point

"nww Returns True

wiwew

1f point 1s 1in self, False otherwise

return| point|.distance|(lself.center]|) < self.radius

- ~ate 00IEC . te objec

coordind ethod ca\\edO Coordma"
Coordinate
center = Coordinate (2, 2) ftype(jﬁﬂ
. o)
my circle = Circle(center, 2) nN\Norsvmﬂ\Obl
. d that©
p = Coordinate(1l,1) Metho
print (my circlellis inside (@))Coord'\nate ob}ect
10

Circle object

6.100L Lecture 18

YOU TRY IT!

= Are these two methods in the Circle class functionally equivalent?

class Circle (object):

def 1init (self, center, radius):
self.center = center
self.radius = radius

def is insidel (self, point):
return |pointl.distance (jself.center) < self.radius

def 1s insideZ(self, point):
return [self.center|.distance (point) < self.radius

11

EXAMPLE:
FRACTIONS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, subtract
* |nvert the fraction

= Let’s write it together!

12
6.100L Lecture 18

NEED TO CREATE INSTANCES

class SimpleFraction (object):

def init (self, n, d):

self.num = n

self.denom = d

13
6.100L Lecture 18

MULTIPLY FRACTIONS

class SimpleFraction (object):

have
def init (self, n, d): t\\e\leach
— — ects S
self.num = n \eﬂac’{\oﬂ
mp
self.denom = d S* aum .
def times (self],| oth): *de™
top = self.num*oth.num
bottom = self.denom*oth.denom dot‘ﬂemat
10
return top/bottom mofdef‘om

pCces® e

14
6.100L Lecture 18

ADD FRACTIONS

class SimpleFraction (object):

def init (self, n, d):

self.num = n
self.denom = d
def plus(self, oth):
top = self.num*oth.denom + self.denom*oth.num
bottom = self.denom*oth.denom

return top/bottom

15
6.100L Lecture 18

LET'S TRY IT OUT

f1l = SimpleFraction (3, 4)
f2 = SimpleFraction (1, 4)

print (f1.num) m—) 3

print (£1.denom) m—) 4

print (fl.plus(£2))) 1.0
(

print (fl.times (f2)) =) 0.1875

16
6.100L Lecture 18

YOU TRY IT!

= Add two methods to invert fraction object according to the specs below:
class SimpleFraction (object) :
""" A number represented as a fraction """
def init (self, num, denom) :
self.num = num
self.denom = denom
def get inverse(self):
""" Returns a float representing 1/self """
pass
def invert(self):

mwww

Sets self's num to denom and vice versa.
Returns None. """

pass

Example:

fl = SimpleFraction(3,4)

print (fl.get inverse()) # prints 1.33333333 (note this one returns value)
fl.invert () # acts on data attributes internally, no return

print (f1.num, fl.denom) # prints 4 3

17

LET'S TRY IT OUT WITH MORE
THINGS

f1l = SimpleFraction (3, 4)
f2 = SimpleFraction (1, 4)

asa
print (£1.num) m— 3 h t’\fWe\Nan’ttO\‘eep
\Wha
print (£1.denom) m—) 4 fract'\on?
. have
print (fl.plus(f2))) 10 at'\f\Ne\Namm ld
And Wha ok as we W
print (fl.times (f2)) === 0.1875 orint and * WO
print (f1) <__main__.SimpleFraction object at 0x00000234A8C41DF0>

print (f1 * £2) Error!

18
6.100L Lecture 18

SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

" + -, =5, <,>, len(), print, and many others are
shorthand notations

= Behind the scenes, these get replaced by a method!

https://docs.python.org/3/reference/datamodel.html#basic-customization

= Can override these to work with your class

19
6.100L Lecture 18

https://docs.python.org/3/reference/datamodel.html#basic-customization

SPECIAL OPERATORS IMPLEMENTED
WITH DUNDER METHODS

= Define them with double underscores before/after
~_add (self, other) > self + other
__sub (self, other) = self - other
__mul (self, other) -> self * other
truediv (self, other) > self / other

eq (self, other) - self == other
1t (self, other) - self < other

~_len (self) - len (self)

__str (self) -> print (self)

__float (self) -> float(self) i.e cast
POW > self**other

... and others

PRINTING OUR OWN
DATA TYPES

PRINT REPRESENTATION OF AN
OBJECT

>>> ¢ = Coordinate(3,4)
>>> print (c)
< main .Coordinate object at 0x7fa918510488>

= Uninformative print representation by default
" Definea str method for a class

" Python callsthe str = method when used with
print on your class object

= You choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (c)
<3,4>

22

DEFINING YOUR OWN PRINT
METHOD

class Coordinate (object) :
def 1init (self, xval, yval):
self.x = xval
self.y = yval
def distance(self, other):
x diff sqg = (self.x-other.x)**2
y diff sgq = (self.y-other.y)**2
return (x diff sgq + y diff sq)**0.5
def str (self) :

return|"<"+str(self.x)+","+str(self.y)+">"

6@3& X
A\ e(:\a\ N ((\\)S “3
Y o)
e’&\\ e
o A0S

6.100L Lecture 18

WRAPPING YOUR HEAD AROUND
TYPES AND CLASSES

((\e&‘(\o d\(\a_e

= Can ask for the type of an object instance & SC,OO(

>>> ¢ = Coordinate(3,4) O;\x\\e - ' 30\36

>>> print (c) o &Cﬁ

<3,4> vet £ O .\ec,

’ . o

>>> print (type (c)) evWe X

<class main .Coordinate> a\) &gﬁ &dd@p

. : S O o
» This makes sense since ,(\axe‘c’ o0

>>> print (Coordinate) coO o 365'\53

<class main .Coordinate> s _ éﬁd\

>>> print (type (Coordinate)) Qdﬁéﬁ\

<type 'type'> s

" Use isinstance () tocheckifanobjectisa Coordinate
>>> print (isinstance(c, Coordinate))
True

24
6.100L Lecture 18

EXAMPLE: FRACTIONS WITH
DUNDER METHODS

= Create a new type to represent a number as a fraction

" Internal representation is two integers
* Numerator
* Denominator

= Interface a.k.a. methods a.k.a how to interact with
Fraction objects

* Add, sub, mult, div to work with +, -, *, /
* Print representation, convert to a float
* |nvert the fraction

= Let’s write it together!

25
6.100L Lecture 18

CREATE & PRINT INSTANCES

class Fraction (object) :

def init (self, n, d):

self.num = n
self.denom = d

def str (self) :

return [str(self.num)|+ "/" +|str(self.denom)

26
6.100L Lecture 18

LET'S TRY IT OUT

f1l = Fraction (3, 4)
f2 = Fraction(1l, 4)
f3 = Fraction (5, 1)

print (£1)) 3/4
print (£2)) 1/4
print (£3)) 5/1

Ok, but looks weird!

27
6.100L Lecture 18

YOU TRY IT!

=" Modify the str method to represent the Fraction as just the
numerator, when the denominator is 1. Otherwise its
representation is the numerator then a / then the denominator.

class Fraction (object) :
def init (self, num, denom):
self.num = num
self.denom = denom
def str (self) :

return str(self.num) + "/" 4+ str(self.denom)

Example:

a = Fraction(1l,4)

b = Fraction(3,1)

print (a) # prints 1/4
print (b) # prints 3

28

IMPLEMENTING
+-*/
float()

COMPARING METHOD vs.
DUNDER METHOD

class SimpleFraction (object) : class Fraction (object):
def init (self, n, d): def init (self, n, d):
self.num = n self.num = n
self.denom = d self.denom = d
def (self, oth) : def [_mul_}self, other) :
top = self.num*oth.num top = self.num*other.num
bottom = self.denom*oth.denom bottom = self.denom*other.denom
return[top/bottom] return[Fraction(top, bottomﬂ
non .
(. e
TS s . note: We . o aneW
Wwhen W cetur? flod ceturn ction
gs\0M 30 ins
*pre

6.100L Lecture 18

LETS TRY IT OUT

a = Fraction (1, 4)

b = Fraction(3,4)

print (a) m—) 1/4 mu\/m ccenes:
— . e S
c=a*b be‘(\\“:\em g re™
. n\s
[print (c) } m—) 3/16 T;ract'\oﬂ\g'l&
a
gr 1O

31
6.100L Lecture 18

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmrafisher.weebly.com%2Fthe-learning-never-stops%2Ffractions-and-decimals&psig=AOvVaw0d3o0Oh_emlhOIugEHd-Xs&ust=1632233956886000&source=images&cd=vfe&ved=0CAkQjRxqFwoTCND1kcDfjfMCFQAAAAAdAAAAABAh

CLASSES CAN HIDE DETAILS

\)
4 c\ea’”
. nice an
" These are all equivalent Smr’t“?“‘dk aod, P2
et ds!
[print(a -0] Call 'O d\“‘ie(nd (methods
+1 QU
[print (a. mul (b))] SW\e\;\n’&\’\
. sin V@
[print (Fraction. mul (a, b))] assmg\n \
- i €\as cal %eﬂe‘a\
EXO\\C\,\; Yo 4 t\l\ n
£of ALY

" Every operation in Python
comes back to a method call

= The first instance makes clear
the operation, without worrying
about the internal details!
Abstraction at work

32
6.100L Lecture 18

BIG IDEA

Special operations we've
been using are just
methods behind the

SCENeESs.

Things like:

print, len

+, *; w) /1 <, 2, <=, >=, =5 1=
[]

and many others!

CAN KEEP BOTH OPTIONS BY ADDING
A METHOD TO CASTTOA float

class Fraction (object) :
def init (self, n, d):

self.num = n

self.denom = d

def float (self): t&ﬁs
R — a float s\ dwec’c\\l
return[self.num/self.denom } Jne dm9
o
c=a%*b (ac’{\O“\?”l\

for ¥
print (c) m=p(3/16 | R
print (float (c)) mm) 0.1875

34
6.100L Lecture 18

LETS TRY IT OUT SOME MORE

a = Fraction (1, 4)

b = Fraction (2, 3)

c =a*b

print (c) m—) /12

=" Not quite what we might expect? It’s not reduced.

= Can we fix this?

35
6.100L Lecture 18

ADD A METHOD

class Fraction (object) :

......... _‘\nd‘-\'\e . “
def reduce (self) : won 10 divisO
FuﬂC‘-\ mOn
def gcd(n, d): t co™
great®
while d != 0:
(d, n) = (n%d, d)
return n
1f self.denom == 0:
return None e“md
elif self.denom == 1: .‘n§d€“@v“
return self.num call it
else:
greatest common divisor = |gcd(self.num, self.denom)
top = int(self.num/greatest common divisor)
bottom = int(self.denom/greatest_common_divisor)
return|Fraction (top, bottom) b-\ectback
FraC’f‘ono
c = a*b S{\\\\Nan’ta
print (c) m—) /12

print (c.reduce())) 1/6 %

6.100L Lecture 18

WE HAVE SOME IMPROVEMENTS TO MAKE

class Fraction (object) :
def reduce (self):
def gcd(n, d):

while d !'= 0:
(d, n) = (n3d, d) .
- re turn n B < his 3 good \der;c’l\'a Fract\qn SO
if self.denom == 0: « does etu or““ﬂupw
lrituriszne can NO \Oﬂgerr\:’c\rad_\onS
etun sesfomum | WSO
else:
greatest common divisor = gcd(self.num, self.denom)
top = inE(self.Hum/greatest common divisor)
bottom = int(self.denom/gregtest_cgmmon_divisor)

return Fraction(top, bottom)

37
6.100L Lecture 18

CHECK THE TYPES, THEY'RE DIFFERENT

a = Fraction(4,1)

b = Fraction(3,9)

ar = a.reduce () —) /4
br = b.reduce () —) 1/3

print (ar, type(ar)) mm) 4 <class 'int'>
print (br, type (br)) mmmm) 1/3 <class' _main__.Fraction'>

c = ar * br 1y an
v mu\‘\p\\’ e
E(YO F‘aC‘ d o X F‘_ac‘:\Oﬂ
Wt W gefine i a0 el
We € xon W
frac

onWy 2@ 38
6.100L Lecture 18

YOU TRY IT!

* Modify the code to return a Fraction object when denominator
is1

class Fraction (object):
def reduce(self):

def gcd(n, d):

while d != O0:

(d, n) = (
return n

1f self.denom ==

return None

elif self.denom ==

return self.num

else:
greatest common divisor = gcd(self.num, self.denom)
top = int(self.num/greatest common divisor)
bottom =

int (self.denom/greatest common divisor)
return Fraction (top, bottom)

Example:
fl = Fraction(5,1)
print (f1.reduce ()) # prints %/l not 5

WHY OOP and BUNDLING THE
DATA IN THIS WAY?

» Code is organized and modular
" Code is easy to maintain

" |[t’s easy to build upon objects to make more complex objects

= Decomposition and abstraction at work with Python classes
= Bundling data and behaviors means you can use objects consistently

= Dunder methods are abstracted by common operations, but they’re
just methods behind the scenes!

40
6.100L Lecture 18

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

41

https://ocw.mit.edu
https://ocw.mit.edu/terms

	MORE PYTHON CLASS METHODS�(download slides and .py files to follow along)
	IMPLEMENTING 	 		USING�THE CLASS 	vs 	THE CLASS
	RECALL THE COORDINATE CLASS
	ADDING METHODS TO THE COORDINATE CLASS
	MAKING COORDINATE INSTANCES
	CLASS DEFINITION 	INSTANCE �OF AN OBJECT TYPE 	vs 	OF A CLASS
	USING CLASSES TO BUILD OTHER CLASSES
	CIRCLE CLASS:�DEFINITION and INSTANCES
	Slide Number 9
	CIRCLE CLASS:�DEFINITION and INSTANCES
	Slide Number 12
	EXAMPLE: �FRACTIONS
	NEED TO CREATE INSTANCES
	MULTIPLY FRACTIONS
	ADD FRACTIONS
	LET’S TRY IT OUT
	Slide Number 18
	LET’S TRY IT OUT WITH MORE THINGS
	SPECIAL OPERATORS IMPLEMENTED WITH DUNDER METHODS
	SPECIAL OPERATORS IMPLEMENTED WITH DUNDER METHODS
	PRINTING OUR OWN DATA TYPES
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	WRAPPING YOUR HEAD AROUND TYPES AND CLASSES
	EXAMPLE: FRACTIONS WITH DUNDER METHODS
	CREATE & PRINT INSTANCES
	LET’S TRY IT OUT
	Slide Number 30
	IMPLEMENTING�+ - * /�float()
	COMPARING METHOD vs. DUNDER METHOD
	LETS TRY IT OUT
	CLASSES CAN HIDE DETAILS
	Special operations we’ve been using are just methods behind the scenes.
	CAN KEEP BOTH OPTIONS BY ADDING A METHOD TO CAST TO A float
	LETS TRY IT OUT SOME MORE
	ADD A METHOD
	WE HAVE SOME IMPROVEMENTS TO MAKE
	CHECK THE TYPES, THEY’RE DIFFERENT
	Slide Number 42
	WHY OOP and BUNDLING THE DATA IN THIS WAY?
	cover-slides.pdf
	cover_h.pdf
	Blank Page

