
LIST ACCESS, HASHING, 
SIMULATIONS,
& WRAP-UP!

(download slides and .py files to follow along)

6.100L Lecture 26
Ana Bell
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TODAY

 A bit about lists
 Hashing
 Simulations
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LISTS
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COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)
• delete θ(n)
• copy θ(n)
• reverse θ(n)
• iteration θ(n)
• in list θ(n)
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CONSTANT TIME LIST ACCESS

 If list is all ints, list of length L
 Set aside 4*len(L) bytes
 Store values directly
 Consecutive set of memory locations

 List name points to first memory location
 To access ith element

 Add 32*i to first location
 Access that location in memory
 Constant time complexity

…
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actual value

1234 5295
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CONSTANT TIME LIST ACCESS

 If list is heterogeneous
 Can’t store values directly (don’t all fit in 32 bits)
 Use indirection to reference other objects
 Store pointers to values (not value itself)
 Still use consecutive set of memory locations 
 Still set aside 4*len(L) bytes
 Still add 32*i to first location and +1 to access that location in memory
 Still constant time complexity
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…

value stored is pointer to 
actual object in memory5295pointer to a list
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 Just use a list of pairs: key, value
[['Ana', True], ['John', False], ['Eric', False], ['Sam', False]]

 What is time complexity to index into this naïve dictionary?
 We don’t know the order of entries
 Have to do linear search to find entry

NAÏVE IMPLEMENTATION OF dict
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COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)
• delete θ(n)
• copy θ(n)
• reverse θ(n)
• iteration θ(n)
• in list θ(n)

 Dictionaries: n is len(d)
 worst case (very rare)

• length θ(n)
• access θ(n)
• store θ(n)
• delete θ(n)
• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in               θ(1) 
• iteration θ(n)
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HASHING
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DICTIONARY IMPLEMENTATION

 Uses a hash table
 How it does it

 Convert key to an integer – use a hash function
 Use that integer as the index into a list

 This is constant time
 Find value associated with key

 This is constant time

 Dictionary lookup is constant time complexity
 If hash function is fast enough
 If indexing into list is constant
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 Just to reveal what’s under the hood, a function hash()

QUERYING THE HASH FUNCTION
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HASH TABLE

 How big should a hash table be?
 To avoid many keys hashing to the same

value, have each key hash to a separate value
 If hashing strings:

 Represent each character with binary code
 Concatenate bits together, and convert to an

integer
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NAMES TO INDICES

 E.g., 'Ana Bell'
= 01000001 01101110 01100001 00100000 01000010 01100101 01101100 01101100 

= 4,714,812,651,084,278,892

 Advantage: unique names mapped to unique indices
 Disadvantage: VERY space inefficient
 Consider a table containing MIT’s ~4,000 undergraduates

 Assume longest name is 20 characters
 Each character 8 bits, so 160 bits per name
 How many entries will table have?
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2160 1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976
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A BETTER IDEA: ALLOW COLLISIONS
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Hash table (like a list)

0
1
2
3

Ana: C

Eric: A

John: B

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a hash

table with 16 entries)

4
5
6
7
8
9

10
11
12
13
14
15

Eve: B

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Eve B
5 + 22 + 5 = 32
32%16 = 0
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PROPERTIES OF A GOOD HASH 
FUNCTION

 Maps domain of interest to integers between
0 and size of hash table
 The hash value is fully determined by value being hashed

(nothing random)
 The hash function uses the entire input to be hashed

 Fewer collisions

 Distribution of values is uniform, i.e., equally likely to land
on any entry in hash table
 Side Reminder: keys in a dictionary must be hashable

 aka immutable
 They always hash to the same value
 What happens if they are not hashable?
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A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Hash table (like a list)

0
1
2
3

Ana: C

Eric: A

John: B
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Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

4
5
6
7
8
9

10
11
12
13
14
15

[K, a, t, e] B
11 + 1 + 20 + 5 = 37
37%16 = 5

[K,a,t,e]: B

Eve B
5 + 22 + 5 = 32
32%16 = 0

Eve: B
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Hash table (like a list)

0
1
2
3

Ana: C

Eric: A
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Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

Kate changes her name to Cate. Same 
person, different name. Look up her 
grade? 4

5
6
7
8
9

10
11
12
13
14
15

[C, a, t, e]
3 + 1 + 20 + 5 = 29
29%16 = 13

[K,a,t,e]: B

 ??? Not here!

John: B

Eve: B
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COMPLEXITY OF SOME PYTHON OPERATIONS

 Dictionaries: n is len(d)
 worst case (very rare)

• length θ(n)
• access θ(n)
• store θ(n)
• delete θ(n)
• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in    θ(1) 
• iteration θ(n)
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SIMULATIONS
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TOPIC USEFUL FOR MANY 
DOMAINS

 Computationally describe the world using randomness
 One very important topic relevant to many fields of study

 Risk modeling and analysis
 Reduce complex models

 Idea:
 Observe an event and want to calculate something about it
 Using computation, design an experiment of that event
 Repeat the experiment K many times (make a simulation)
 Keep track of the outcome of your event
 After K repetitions, report the value of interest
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ROLLING A DICE

 Observe an event and want to calculate something about it
 Roll a dice, what’s the prob to get a ::? How about a .?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one
 random.choice(['.',':',':.','::','::.',':::'] )

 Repeat the experiment K many times (simulate it!)
 Randomly choose a die face from a list repeatedly, 10000 times
 How? Wrap the simulation in a loop!
for i in range(10000):
roll=random.choice(['.',':',':.','::','::.',':::'])

 Keep track of the outcome of your event
 Count how many times out of 10000 the roll equaled ::

 After K repetitions, report the value of interest
 Divide the count by 10000
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THE SIMULATION CODE
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def prob_dice(side):
dice = ['.',':',':.','::','::.',':::']
Nsims = 10000
count = 0
for i in range(Nsims):

roll = random.choice(dice)
if roll == side:

count += 1
print(count/Nsims)

prob_dice('.')
prob_dice('::')
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THAT’S AN EASY SIMULATION

 We can compute the probability of a die roll mathematically
 Why bother with the code?
 Because we can answer variations of that original question

and we can ask harder questions!
 Small tweaks in code
 Easy to change the code
 Fast to run
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NEW QUESTION
NOT AS EASY MATHEMATICALLY

 Observe an event and want to calculate something about it
 Roll a dice 7 times, what’s the prob to get a :: at least 3 times out of 7

rolls?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one 7 times in a

row
 Face counter increments when you choose :: (keep track of this number)

 Repeat the experiment K many times (simulate it!)
 Repeat the prev step 10000 times.
 How? Wrap the simulation in a loop!

 Keep track of the outcome of your event
 Count how many times out of 10000 the :: face counter >= 3

 After K repetitions, report the value of interest
 Divide the outcome count by 10000
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EASY TWEAK TO 
EXISTING CODE
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def prob_dice_atleast(Nrolls, n_at_least):
dice = ['.',':',':.','::','::.',':::']
Nsims = 10000
how_many_matched = []
for i in range(Nsims):

matched = 0
for i in range(Nrolls):

roll = random.choice(dice)
if roll == '::':

matched += 1
how_many_matched.append(matched)

count = 0
for i in how_many_matched:

if i >= n_at_least:
count += 1

print(count/len(how_many_matched))

prob_dice_atleast(7, 3) 
prob_dice_atleast(1, 1)
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REAL WORLD QUESTION
VERY COMMON EXAMPLE OF HOW 
USEFUL SIMULATIONS CAN BE

 Water runs through a faucet somewhere
between  1 gallons per minute and
3 gallons per minute
 What’s the time it takes to fill a 600 gallon pool?

 Intuition?
 It’s not 300 minutes (600/2)
 It’s not 400 minutes (600/1 + 600/3)/2

 In code:
 Grab a bunch of random values between 1 and 3
 Simulate the time it takes to fill a 600 gallon pool with each

randomly chose value
 Print the average time it takes to fill the pool over all these

randomly chosen values
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def fill_pool(size):
flow_rate = []
fill_time = []
Npoints = 10000
for i in range(Npoints):

r = 1+2*random.random()
flow_rate.append(r)
fill_time.append(size/r)

print('avg flow_rate:', sum(flow_rate)/len(flow_rate))
print('avg fill_time', sum(fill_time)/len(fill_time))
plt.figure()    
plt.scatter(range(Npoints),flow_rate,s=1)
plt.figure()    
plt.scatter(range(Npoints),fill_time,s=1)

fill_pool(600)
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PLOTTING RANDOM FILL RATES AND 
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate Time to fill using formula 
pool_size/rate
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PLOTTING RANDOM FILL RATES AND 
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate (sorted) Time to fill (sorted) using formula 
pool_size/rate
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RESULTS

 avg flow_rate: 1.992586945871106 approx. 2 gal/min
(avg random values between 1 and 3)

 avg fill_time: 330.6879477596955 approx. 331 min
(not what we expected!)

 Not 300 and not 400
 There is an inverse relationship for fill time vs fill rate

 Mathematically you’d have to do an integral
 Computationally you just write a few lines of code!
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WRAP-UP of 6.100L
THANK YOU FOR BEING IN THIS CLASS!
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 Python syntax
 Flow of control

 Loops, branching, exceptions

 Data structures
 Tuples, lists, dictionaries

 Organization, decomposition, abstraction
 Functions
 Classes

 Algorithms
 Binary/bisection

 Computational complexity
 Big Theta notation
 Searching and sorting

WHAT DID YOU LEARN?
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YOUR EXPERIENCE

 Were you a “natural”?
 Did you join the class late?
 Did you work hard?

 Look back at the first pset
it will seem so easy!
 You learned a LOT no matter what!
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WHAT’S NEXT

 6.100B overview of interesting topics
in CS and data science (Python)
 Optimization problems
 Simulations
 Experimental data
 Machine learning
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WHAT’S NEXT

 6.101 fundamentals of
programming (Python)
 Implementing efficient algorithms
 Debugging
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WHAT’S NEXT

 6.102 software construction
(TypeScript)
 Writing code that is safe from bugs,

easy to understand, ready for change
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WHAT’S NEXT

 Other classes
(ML, algorithms, etc.)
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IT’S EASY TO FORGET WITHOUT PRACTICE!
HAPPY CODING!
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MIT OpenCourseWare 
https://ocw.mit.edu 

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 
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