
LIST ACCESS, HASHING,
SIMULATIONS,
& WRAP-UP!

(download slides and .py files to follow along)

6.100L Lecture 26
Ana Bell

1

TODAY

 A bit about lists
 Hashing
 Simulations

6.100L Lecture 26
2

LISTS

6.100L Lecture 26
3

COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)
• delete θ(n)
• copy θ(n)
• reverse θ(n)
• iteration θ(n)
• in list θ(n)

6.100L Lecture 26
4

CONSTANT TIME LIST ACCESS

 If list is all ints, list of length L
 Set aside 4*len(L) bytes
 Store values directly
 Consecutive set of memory locations

 List name points to first memory location
 To access ith element

 Add 32*i to first location
 Access that location in memory
 Constant time complexity

…

6.100L Lecture 26

actual value

1234 5295

5

CONSTANT TIME LIST ACCESS

 If list is heterogeneous
 Can’t store values directly (don’t all fit in 32 bits)
 Use indirection to reference other objects
 Store pointers to values (not value itself)
 Still use consecutive set of memory locations
 Still set aside 4*len(L) bytes
 Still add 32*i to first location and +1 to access that location in memory
 Still constant time complexity

6.100L Lecture 26

…

value stored is pointer to
actual object in memory5295pointer to a list

6

 Just use a list of pairs: key, value
[['Ana', True], ['John', False], ['Eric', False], ['Sam', False]]

 What is time complexity to index into this naïve dictionary?
 We don’t know the order of entries
 Have to do linear search to find entry

NAÏVE IMPLEMENTATION OF dict

6.100L Lecture 26
7

COMPLEXITY OF SOME PYTHON OPERATIONS

▪ Lists: n is len(L)
• access θ(1)
• store θ(1)
• length θ(1)
• append θ(1)
• == θ(n)
• delete θ(n)
• copy θ(n)
• reverse θ(n)
• iteration θ(n)
• in list θ(n)

 Dictionaries: n is len(d)
 worst case (very rare)

• length θ(n)
• access θ(n)
• store θ(n)
• delete θ(n)
• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in θ(1)
• iteration θ(n)

6.100L Lecture 26
8

HASHING

6.100L Lecture 26
9

DICTIONARY IMPLEMENTATION

 Uses a hash table
 How it does it

 Convert key to an integer – use a hash function
 Use that integer as the index into a list

 This is constant time
 Find value associated with key

 This is constant time

 Dictionary lookup is constant time complexity
 If hash function is fast enough
 If indexing into list is constant

6.100L Lecture 26
10

 Just to reveal what’s under the hood, a function hash()

QUERYING THE HASH FUNCTION

6.100L Lecture 26
11

HASH TABLE

 How big should a hash table be?
 To avoid many keys hashing to the same

value, have each key hash to a separate value
 If hashing strings:

 Represent each character with binary code
 Concatenate bits together, and convert to an

integer

6.100L Lecture 26
12

NAMES TO INDICES

 E.g., 'Ana Bell'
= 01000001 01101110 01100001 00100000 01000010 01100101 01101100 01101100

= 4,714,812,651,084,278,892

 Advantage: unique names mapped to unique indices
 Disadvantage: VERY space inefficient
 Consider a table containing MIT’s ~4,000 undergraduates

 Assume longest name is 20 characters
 Each character 8 bits, so 160 bits per name
 How many entries will table have?

6.100L Lecture 26

2160 1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976

13

A BETTER IDEA: ALLOW COLLISIONS

6.100L Lecture 26
14

Hash table (like a list)

0
1
2
3

Ana: C

Eric: A

John: B

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a hash

table with 16 entries)

4
5
6
7
8
9

10
11
12
13
14
15

Eve: B

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Eve B
5 + 22 + 5 = 32
32%16 = 0

15

PROPERTIES OF A GOOD HASH
FUNCTION

 Maps domain of interest to integers between
0 and size of hash table
 The hash value is fully determined by value being hashed

(nothing random)
 The hash function uses the entire input to be hashed

 Fewer collisions

 Distribution of values is uniform, i.e., equally likely to land
on any entry in hash table
 Side Reminder: keys in a dictionary must be hashable

 aka immutable
 They always hash to the same value
 What happens if they are not hashable?

6.100L Lecture 26
16

A n a

E r i c

J o h n

C

A

B

1 + 14 + 1 = 16
16%16 = 0

5 + 18 + 9 + 3 = 35
35%16 = 3

10 + 15 + 8 + 14 = 47
47%16 = 15

Hash table (like a list)

0
1
2
3

Ana: C

Eric: A

John: B

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

4
5
6
7
8
9

10
11
12
13
14
15

[K, a, t, e] B
11 + 1 + 20 + 5 = 37
37%16 = 5

[K,a,t,e]: B

Eve B
5 + 22 + 5 = 32
32%16 = 0

Eve: B

17

Hash table (like a list)

0
1
2
3

Ana: C

Eric: A

6.100L Lecture 26

Hash function:
1) Sum the letters
2) Take mod 16 (to fit in a memory

block with 16 entries)

Kate changes her name to Cate. Same
person, different name. Look up her
grade? 4

5
6
7
8
9

10
11
12
13
14
15

[C, a, t, e]
3 + 1 + 20 + 5 = 29
29%16 = 13

[K,a,t,e]: B

 ??? Not here!

John: B

Eve: B

18

COMPLEXITY OF SOME PYTHON OPERATIONS

 Dictionaries: n is len(d)
 worst case (very rare)

• length θ(n)
• access θ(n)
• store θ(n)
• delete θ(n)
• iteration θ(n)

 average case
• access θ(1)
• store θ(1)
• delete θ(1)
• in θ(1)
• iteration θ(n)

6.100L Lecture 26
19

SIMULATIONS

6.100L Lecture 26
20

TOPIC USEFUL FOR MANY
DOMAINS

 Computationally describe the world using randomness
 One very important topic relevant to many fields of study

 Risk modeling and analysis
 Reduce complex models

 Idea:
 Observe an event and want to calculate something about it
 Using computation, design an experiment of that event
 Repeat the experiment K many times (make a simulation)
 Keep track of the outcome of your event
 After K repetitions, report the value of interest

6.100L Lecture 26
21

ROLLING A DICE

 Observe an event and want to calculate something about it
 Roll a dice, what’s the prob to get a ::? How about a .?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one
 random.choice(['.',':',':.','::','::.',':::'])

 Repeat the experiment K many times (simulate it!)
 Randomly choose a die face from a list repeatedly, 10000 times
 How? Wrap the simulation in a loop!
for i in range(10000):
roll=random.choice(['.',':',':.','::','::.',':::'])

 Keep track of the outcome of your event
 Count how many times out of 10000 the roll equaled ::

 After K repetitions, report the value of interest
 Divide the count by 10000

6.100L Lecture 26
22

THE SIMULATION CODE

6.100L Lecture 26

def prob_dice(side):
dice = ['.',':',':.','::','::.',':::']
Nsims = 10000
count = 0
for i in range(Nsims):

roll = random.choice(dice)
if roll == side:

count += 1
print(count/Nsims)

prob_dice('.')
prob_dice('::')

23

THAT’S AN EASY SIMULATION

 We can compute the probability of a die roll mathematically
 Why bother with the code?
 Because we can answer variations of that original question

and we can ask harder questions!
 Small tweaks in code
 Easy to change the code
 Fast to run

6.100L Lecture 26
24

NEW QUESTION
NOT AS EASY MATHEMATICALLY

 Observe an event and want to calculate something about it
 Roll a dice 7 times, what’s the prob to get a :: at least 3 times out of 7

rolls?

 Using computation, design an experiment of that event
 Make a list representing die faces and randomly choose one 7 times in a

row
 Face counter increments when you choose :: (keep track of this number)

 Repeat the experiment K many times (simulate it!)
 Repeat the prev step 10000 times.
 How? Wrap the simulation in a loop!

 Keep track of the outcome of your event
 Count how many times out of 10000 the :: face counter >= 3

 After K repetitions, report the value of interest
 Divide the outcome count by 10000

6.100L Lecture 26
25

EASY TWEAK TO
EXISTING CODE

6.100L Lecture 26

def prob_dice_atleast(Nrolls, n_at_least):
dice = ['.',':',':.','::','::.',':::']
Nsims = 10000
how_many_matched = []
for i in range(Nsims):

matched = 0
for i in range(Nrolls):

roll = random.choice(dice)
if roll == '::':

matched += 1
how_many_matched.append(matched)

count = 0
for i in how_many_matched:

if i >= n_at_least:
count += 1

print(count/len(how_many_matched))

prob_dice_atleast(7, 3)
prob_dice_atleast(1, 1)

26

REAL WORLD QUESTION
VERY COMMON EXAMPLE OF HOW
USEFUL SIMULATIONS CAN BE

 Water runs through a faucet somewhere
between 1 gallons per minute and
3 gallons per minute
 What’s the time it takes to fill a 600 gallon pool?

 Intuition?
 It’s not 300 minutes (600/2)
 It’s not 400 minutes (600/1 + 600/3)/2

 In code:
 Grab a bunch of random values between 1 and 3
 Simulate the time it takes to fill a 600 gallon pool with each

randomly chose value
 Print the average time it takes to fill the pool over all these

randomly chosen values

6.100L Lecture 26
27

6.100L Lecture 26

def fill_pool(size):
flow_rate = []
fill_time = []
Npoints = 10000
for i in range(Npoints):

r = 1+2*random.random()
flow_rate.append(r)
fill_time.append(size/r)

print('avg flow_rate:', sum(flow_rate)/len(flow_rate))
print('avg fill_time', sum(fill_time)/len(fill_time))
plt.figure()
plt.scatter(range(Npoints),flow_rate,s=1)
plt.figure()
plt.scatter(range(Npoints),fill_time,s=1)

fill_pool(600)
28

PLOTTING RANDOM FILL RATES AND
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate Time to fill using formula
pool_size/rate

6.100L Lecture 26
29

PLOTTING RANDOM FILL RATES AND
CORRESPONDING TIME IT TAKES TO FILL

Random values for fill rate (sorted) Time to fill (sorted) using formula
pool_size/rate

6.100L Lecture 26
30

RESULTS

 avg flow_rate: 1.992586945871106 approx. 2 gal/min
(avg random values between 1 and 3)

 avg fill_time: 330.6879477596955 approx. 331 min
(not what we expected!)

 Not 300 and not 400
 There is an inverse relationship for fill time vs fill rate

 Mathematically you’d have to do an integral
 Computationally you just write a few lines of code!

6.100L Lecture 26
31

WRAP-UP of 6.100L
THANK YOU FOR BEING IN THIS CLASS!

6.100L Lecture 26
32

 Python syntax
 Flow of control

 Loops, branching, exceptions

 Data structures
 Tuples, lists, dictionaries

 Organization, decomposition, abstraction
 Functions
 Classes

 Algorithms
 Binary/bisection

 Computational complexity
 Big Theta notation
 Searching and sorting

WHAT DID YOU LEARN?

6.100L Lecture 26
33

YOUR EXPERIENCE

 Were you a “natural”?
 Did you join the class late?
 Did you work hard?

 Look back at the first pset
it will seem so easy!
 You learned a LOT no matter what!

6.100L Lecture 26
34

WHAT’S NEXT

 6.100B overview of interesting topics
in CS and data science (Python)
 Optimization problems
 Simulations
 Experimental data
 Machine learning

35

WHAT’S NEXT

 6.101 fundamentals of
programming (Python)
 Implementing efficient algorithms
 Debugging

6.100L Lecture 26
36

WHAT’S NEXT

 6.102 software construction
(TypeScript)
 Writing code that is safe from bugs,

easy to understand, ready for change

6.100L Lecture 26
37

WHAT’S NEXT

 Other classes
(ML, algorithms, etc.)

6.100L Lecture 26
38

IT’S EASY TO FORGET WITHOUT PRACTICE!
HAPPY CODING!

6.100L Lecture 26
39

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

40

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LIST ACCESS, HASHING, SIMULATIONS,�& WRAP-UP!�(download slides and .py files to follow along)
	TODAY
	LISTS
	COMPLEXITY OF SOME PYTHON OPERATIONS
	CONSTANT TIME LIST ACCESS
	CONSTANT TIME LIST ACCESS
	NAÏVE IMPLEMENTATION OF dict
	COMPLEXITY OF SOME PYTHON OPERATIONS
	HASHING
	DICTIONARY IMPLEMENTATION
	QUERYING THE HASH FUNCTION
	HASH TABLE
	NAMES TO INDICES
	A BETTER IDEA: ALLOW COLLISIONS
	Slide Number 16
	PROPERTIES OF A GOOD HASH FUNCTION
	Slide Number 18
	Slide Number 19
	COMPLEXITY OF SOME PYTHON OPERATIONS
	SIMULATIONS
	TOPIC USEFUL FOR MANY DOMAINS
	ROLLING A DICE
	THE SIMULATION CODE
	THAT’S AN EASY SIMULATION
	NEW QUESTION�NOT AS EASY MATHEMATICALLY
	EASY TWEAK TO �EXISTING CODE
	REAL WORLD QUESTION�VERY COMMON EXAMPLE OF HOW USEFUL SIMULATIONS CAN BE
	Slide Number 29
	PLOTTING RANDOM FILL RATES AND CORRESPONDING TIME IT TAKES TO FILL
	PLOTTING RANDOM FILL RATES AND CORRESPONDING TIME IT TAKES TO FILL
	RESULTS
	WRAP-UP of 6.100L
	WHAT DID YOU LEARN?
	YOUR EXPERIENCE
	WHAT’S NEXT
	WHAT’S NEXT
	WHAT’S NEXT
	WHAT’S NEXT
	IT’S EASY TO FORGET WITHOUT PRACTICE!�HAPPY CODING!
	cover-slides.pdf
	cover_h.pdf
	Blank Page

