
14.31/14.310 Lecture 9 
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	Probability---moments of a distribution 
Ok, back to probability now. 
Where were we? Ah, yes, talking about moments of 

distributions, expectation, in particular. 

2



	Probability---moments of a distribution 
What if, instead of wanting to know a certain feature of the 

distribution of X, say expectation, we are interested, 
instead in that feature of the distribution of Y = g(X).   
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	Probability---moments of a distribution 
What if, instead of wanting to know a certain feature of the 

distribution of X, say expectation, we are interested, 
instead in that feature of the distribution of Y = g(X).   

Well, we can obviously figure out how Y is distributed---we 
know how to do that---and then use that distribution to 
compute, say, E(Y). 
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Probability---moments of a distribution 
What if, instead of wanting to know a certain feature of the 

distribution of X, say expectation, we are interested, 
instead in that feature of the distribution of Y = g(X). 

Well, we can obviously figure out how Y is distributed---we 
know how to do that---and then use that distribution to 
compute, say, E(Y). 

There may be an easier way---it can be shown that 
 E(Y) = E(g(X)) = ∫yfY(y)dy = ∫g(x)fX(x)dx 
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	Probability---St. Petersburg paradox 
Classic example/paradox in probability theory, but one where 

economists come out looking particularly good. 
This example was first discussed by 18th Century Swiss 

mathematician Nicolaus Bernoulli and published in the St. 
Petersburg Academy proceedings in 1738. 

Image is in the public domain. 
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Probability---St. Petersburg paradox 
Classic example/paradox in probability theory, but one where 

economists come out looking particularly good. 
This example was first discussed by 18th Century Swiss 

mathematician Nicolaus Bernoulli and published in the St. 
Petersburg Academy proceedings in 1738. 

Here’s the game: I flip a fair coin until it comes up heads. 
If the number of flips necessary is X, I pay you 2X 

dollars. How much would you be willing to pay me to play 
this game? 
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Probability---St. Petersburg paradox 
Classic example/paradox in probability theory, but one where 

economists come out looking particularly good. 
This example was first discussed by 18th Century Swiss 

mathematician Nicolaus Bernoulli and published in the St. 
Petersburg Academy proceedings in 1738. 

What’s this distribution? 
Here’s the game: I flip a fair coin until it comes up heads. 

If the number of flips necessary is X, I pay you 2X 

dollars. How much would you be willing to pay me to play 
this game? 
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	Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
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	Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
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Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
Then Y = winnings = 2X 
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Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
Then Y = winnings = 2X 

E(Y) = ΣyyfY(y) = Σxr(x)fX(x) 
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Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
Then Y = winnings = 2X 

E(Y) = ΣyyfY(y) = Σxr(x)fX(x) 
= Σ 2x(1/2)x 

x 
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Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
Then Y = winnings = 2X 

E(Y) = ΣyyfY(y) = Σxr(x)fX(x) 
= Σ 2x(1/2)x 

x 
= Σx1 = 
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Probability---St. Petersburg paradox 
You should be willing to pay your expected winnings, right? 
So let’s calculate them: 
Let X = number of flips required. 
(Note that X ~ G(.5) so can look up that E(X) = 2.)  
Then Y = winnings = 2X 

E(Y) = ΣyyfY(y) = Σxr(x)fX(x) 
= Σx 

= Σx1 = 
2x(1/2)x 

?! 
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Probability---St. Petersburg paradox 
No one would be willing to pay me an infinite amount to play 

this game. 
I would guess that I wouldn’t have any takers at $20, and 

that’s a lot less than infinity. 
That’s the paradox, but is it really? 
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Probability---St. Petersburg paradox 
No one would be willing to pay me an infinite amount to play 

this game. 
I would guess that I wouldn’t have any takers at $20, and 

that’s a lot less than infinity. 
That’s the paradox, but is it really? 
Economists know that people have diminishing marginal utility 

of money. In other words, their valuation of additional 
money decreases as the amount of money they have 
increases. 

So let Z = valuation of winnings = log(Y) = log(2X) 
17



	

  
    

Probability---St. Petersburg paradox 
So let Z = valuation of winnings = log(Y) = log(2X) 
Then, E(Z) = Σ log(2x)(1/2)x 

x 
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Probability---St. Petersburg paradox 
So let Z = valuation of winnings = log(Y) = log(2X) 
Then, E(Z) = Σ log(2x)(1/2)x 

x 

= log(2) Σ x(1/2)x 
x 
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Probability---St. Petersburg paradox 
So let Z = valuation of winnings = log(Y) = log(2X) 
Then, E(Z) = Σ log(2x)(1/2)x 

x 

= log(2) Σ x(1/2)x 
x 

= 2log(2) < 
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Probability---St. Petersburg paradox 
So let Z = valuation of winnings = log(Y) = log(2X) 
Then, E(Z) = Σ log(2x)(1/2)x 

x 

= log(2) Σ x(1/2)x 
x 

= 2log(2) < 

So this is only a paradox unless you know a little bit of 
economics. 
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Probability---properties of expectation 
1. E(a) = a, a constant 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
3. E(Y) = E(X1) + E(X2) + . . . + E(X ),n 

Y = X1 + X2 + . . . + Xn 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
3. E(Y) = E(X1) + E(X2) + . . . + E(X ),n 

Y = X1 + X2 + . . . + Xn 

Really, what if the X’s aren’t 
independent? 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
3. E(Y) = E(X1) + E(X2) + . . . + E(X ),n 

Y = X1 + X2 + . . . + Xn 

Really, what if the X’s aren’t 
independent? Yes, really, they 
don’t have to be independent. 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
3. E(Y) = E(X1) + E(X2) + . . . + E(X ),n 

Y = X1 + X2 + . . . + Xn 

4. E(Y) = a1E(X1) + a2E(X2) + . . + a E(X ) + b, n n 
Y = a1X1 + a2X2 + . . . + anXn + b 
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Probability---properties of expectation 
1. E(a) = a, a constant 
2. E(Y) = aE(X) + b, Y = aX + b 
3. E(Y) = E(X1) + E(X2) + . . . + E(X ),n 

Y = X1 + X2 + . . . + Xn 

4. E(Y) = a1E(X1) + a2E(X2) + . . + a E(X ) + b, n n 
Y = a1X1 + a2X2 + . . . + anXn + b 

5. E(XY) = E(X)E(Y) if X,Y independent 
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	Probability---another moment: variance 
In addition to describing the location, or center, of a 

distribution of a random variable, we often would like to 
describe how spread out it is. There’s a moment for that, 
variance.   

Var(X) = E[(X-µ)2] 
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Probability---another moment: variance 
In addition to describing the location, or center, of a 

distribution of a random variable, we often would like to 
describe how spread out it is. There’s a moment for that, 
variance.   

We often denote Var(X)  Var(X) = E[(X-µ)2] with σ2 (Greek “sigma” squared) 
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Probability---another moment: variance 
In addition to describing the location, or center, of a 

distribution of a random variable, we often would like to 
describe how spread out it is. There’s a moment for that, 
variance.   

We often denote Var(X)  Var(X) = E[(X-µ)2] with σ2 (Greek “sigma” squared) 

Note that variance is an  
expectation, so many of its properties 
will follow from that. 
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Probability---properties of variance 
1. Var(X) >= 0 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 

In other words, shift a distribution 
and its variance doesn’t change. 
Shrink or spread out a distribution 
and its variance changes by the 
square of the multiplicative factor. 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
4. Var(Y) = Var(X1) + Var(X2) + . . . + Var(X ),n 

Y = X1 + X2 + . . . + X , X1, . . . , X  independentn n 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
4. Var(Y) = Var(X1) + Var(X2) + . . . + Var(X ),n 

Y = X1 + X2 + . . . + X , X1, . . . , X  independentn n 

Ah, here we actually need independence. 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
4. Var(Y) = Var(X1) + Var(X2) + . . . + Var(X ),n 

Y = X1 + X2 + . . . + X , X1, . . . , X  independentn n 

5. Var(Y) = a12Var(X1) +. . . + a 2Var(X ),n n 
Y = a1X1 + a2X2 + . . . + a X  + b, X1, . . . , X  independentn n n 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
4. Var(Y) = Var(X1) + Var(X2) + . . . + Var(X ),n 

Y = X1 + X2 + . . . + X , X1, . . . , X  independentn n 

5. Var(Y) = a12Var(X1) +. . . + a 2Var(X ),n n 
Y = a1X1 + a2X2 + . . . + a X  + b, X1, . . . , X  independentn n n 

6. Var(X) = E(X2) - [E(X)]2 
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Probability---properties of variance 
1. Var(X) >= 0 
2. Var(a) = 0, a constant 
3. Var(Y) = a2Var(X), Y = aX + b 
4. Var(Y) = Var(X1) + Var(X2) + . . . + Var(X ),n 

Y = X1 + X2 + . . . + X , X1, . . . , X  independentn n 

5. Var(Y) = a12Var(X1) +. . . + a 2Var(X ),n n 
Y = a1X1 + a2X2 + . . . + a X  + b, X1, . . . , X  independentn n n 

6. Var(X) = E(X2) - [E(X)]2 
This last property can provide a handy 
way to compute variance. 40



	

 
     

Probability---standard deviation 
Often it’s convenient for the measure of dispersion to have 

the same units as the random variable. For this reason, 
we define standard deviation. 

SD(X) = σ = 

41



 	Probability---variance of a function 
Since variance is an expectation, we can apply the results of 

expectation of a function of a random variable to get 
variance of a function of a random variable. 

So if Y = r(X),   
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Probability---conditional expectation 
A conditional expectation is the expectation of a conditional 

distribution. In other words, 
E(Y|X) = ∫yfY|X(y|x)dy 

Note that E(Y|X) is a function of X, and, therefore, a 
random variable. E(Y|X=x) is just a number.  
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	Probability---conditional expectation 
A conditional expectation is the expectation of a conditional 

distribution. In other words, 
 E(Y|X) = ∫yfY|X(y|x)dy 

Note that E(Y|X) is a function of X, and, therefore, a 
random variable. E(Y|X=x) is just a number. 

Thm  E(E(Y|X)) = E(Y)  “Law of Iterated Expectations” 
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Probability---conditional variance 
The definition of conditional variance follows from that of 

variance and conditional expectation. 
Thm Var(E(Y|X)) + E(Var(Y|X)) = Var(Y) 

“Law of Total Variance” 
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Probability---two laws 

“Law of Iterated Expectations” 
E(E(Y|X)) = E(Y) 

“Law of Total Variance” 
Var(E(Y|X)) + E(Var(Y|X)) = Var(Y) 
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Probability---two laws 

“Law of Iterated Expectations” 
E(E(Y|X)) = E(Y) 

“Law of Total Variance” 
Var(E(Y|X)) + E(Var(Y|X)) = Var(Y) 

May seem a little mysterious, not clear how they’re useful. 
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	Probability---example 
A former student of mine started an innovation incubator in 

NYC. Suppose he’s been doing this for a few years and 
has kept track of the number of patents produced every 
year in his incubator. He knows that E(N) = 2 and 
Var(N) = 2. 
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	Probability---example 
A former student of mine started an innovation incubator in 

NYC. Suppose he’s been doing this for a few years and 
has kept track of the number of patents produced every 
year in his incubator. He knows that E(N) = 2 and 
Var(N) = 2. 

Let’s also suppose that each patent is a commercial success 
with probability .2, and we can assume independence. 
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	Probability---example 
A former student of mine started an innovation incubator in 

NYC. Suppose he’s been doing this for a few years and 
has kept track of the number of patents produced every 
year in his incubator. He knows that E(N) = 2 and 
Var(N) = 2. 

Let’s also suppose that each patent is a commercial success 
with probability .2, and we can assume independence. 

Suppose there are 5 patents this year. What is the 
probability that 3 are commercial successes? 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 

= .05 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 

= .05 
Suppose there are 5 patents this year. What is the 

expected number of commercial successes? 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 

= .05 
Suppose there are 5 patents this year. What is the 

expected number of commercial successes? 
E(S|N=5) = np = 5x.2 = 1 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 

= .05 
Suppose there are 5 patents this year. What is the 

expected number of commercial successes? 
E(S|N=5) = np = 5x.2 = 1 

How do we get this? 
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Probability---example 
Suppose there are 5 patents this year. What is the 

probability that 3 are commercial successes? 
S|N=n ~ B(n,.2),  

so P(S=3|N=5) = 5!/(3!2!).23(1-.2)2 

= .05 
Suppose there are 5 patents this year. What is the 

expected number of commercial successes? 
E(S|N=5) = np = 5x.2 = 1 

How do we get this? Compute the expectation 
of a Bernoulli random variable and add it up 
n times. 56



	

 

Probability---example 
What is the (unconditional) expected number of commercial 

successes? 
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	Probability---example 
What is the (unconditional) expected number of commercial 

successes? Can use the Law of Iterated Expectations. 
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Probability---example 
What is the (unconditional) expected number of commercial 

successes? 
E(S) = E(E(S|N)) = E(Np) = .2E(N) = .4 
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Probability---example 
What is the (unconditional) variance of number of commercial 

successes? 
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	Probability---example 
What is the (unconditional) variance of number of commercial 

successes? Can use the Law of Total Variance. 
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Probability---example 
What is the (unconditional) variance of number of commercial 

successes? 
Var(S) = Var(E(S|N)) + E(Var(S|N))  
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Probability---example 
What is the (unconditional) variance of number of commercial 

successes? 
Var(S) = Var(E(S|N)) + E(Var(S|N))  

= Var(Np) + E(Np(1-p)) 
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Probability---example 
What is the (unconditional) variance of number of commercial 

successes? 
Var(S) = Var(E(S|N)) + E(Var(S|N))  

= Var(Np) + E(Np(1-p)) 
= .22Var(N) + .2(1-.2)E(N) = .4 
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	Probability---covariance and correlation 
We now have moments to describe the location, or center, of 

a distribution of a random variable and how spread out that 
distribution is. We are often interested in the relationship 
between random variables, and we have a moment of joint 
distributions to describe one aspect of that relationship, 
covariance. 

Cov(X,Y) = E[(X-µX)(Y-µY)] 
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	Probability---covariance and correlation 
We now have moments to describe the location, or center, of 

a distribution of a random variable and how spread out that 
distribution is. We are often interested in the relationship 
between random variables, and we have a moment of joint 
distributions to describe one aspect of that relationship, 
covariance. 

Cov(X,Y) = E[(X-µX)(Y-µY)] We often denote 
Cov(X,Y) with σXY 
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Probability---covariance and correlation 
We now have moments to describe the location, or center, of 

a distribution of a random variable and how spread out that 
distribution is. We are often interested in the relationship 
between random variables, and we have a moment of joint 
distributions to describe one aspect of that relationship, 
covariance. 

Cov(X,Y) = E[(X-µX)(Y-µY)] 
And we have a standardized version, correlation. 
ρ(X,Y) = E[(X-µX)(Y-µY)]/ 

67



	
 

 

 
 

Probability---covariance and correlation 

ρ(X,Y) = E[(X-µX)(Y-µY)]/ 

We say that X&Y are “positively correlated” if ρ > 0. 
We say that X&Y are “negatively correlated” if ρ < 0. 
We say that X&Y are “uncorrelated” if ρ = 0. 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
4. X,Y indep Cov(X,Y) = 0 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
4. X,Y indep Cov(X,Y) = 0 
5. Cov(aX+b,cY+d) = acCov(X,Y) 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
4. X,Y indep Cov(X,Y) = 0 
5. Cov(aX+b,cY+d) = acCov(X,Y) 
6. Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
4. X,Y indep Cov(X,Y) = 0 
5. Cov(aX+b,cY+d) = acCov(X,Y) 
6. Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) 
7. |ρ(X,Y)| <= 1 
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Probability---properties of covariance 
1. Cov(X,X) = Var(X) 
2. Cov(X,Y) = Cov(Y,X) 
3. Cov(X,Y) = E(XY) - E(X)E(Y) 
4. X,Y indep Cov(X,Y) = 0 
5. Cov(aX+b,cY+d) = acCov(X,Y) 
6. Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) 
7. |ρ(X,Y)| <= 1 
8. |ρ(X,Y)| = 1 iff Y = aX + b, a 0 
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Probability---a preview of regression 
We have two random variables, X&Y. 
EX = µX, VarX = σX

2 

EY = µY, VarY = σY
2 

ρXY = Cov(X,Y)/(σXσY) 
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Probability---a preview of regression 
We have two random variables, X&Y. 
EX = µX, VarX = σX

2 

EY = µY, VarY = σY
2 

ρXY = Cov(X,Y)/(σXσY) 

We know that, if ρXY = 1 then Y = a + bX, b > 0, and if 
ρXY = -1 then Y = a + bX, b < 0. 
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Probability---a preview of regression 
We have two random variables, X&Y. 
EX = µX, VarX = σX

2 

EY = µY, VarY = σY
2 

ρXY = Cov(X,Y)/(σXσY) 

We know that, if ρXY = 1 then Y = a + bX, b > 0, and if 
ρXY = -1 then Y = a + bX, b < 0. 

If |ρXY | < 1, then we can write Y = α + βX + U. 
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Probability---a preview of regression 
We have two random variables, X&Y. 
EX = µX, VarX = σX

2 

EY = µY, VarY = σY
2 

ρXY = Cov(X,Y)/(σXσY) 

We know that, if ρXY = 1 then Y = a + bX, b > 0, and if 
ρXY = -1 then Y = a + bX, b < 0. 

If |ρXY | < 1, then we can write Y = α + βX + U. 
U is another random variable, 
but what can we say about it? 80



  
 

Probability---a preview of regression 
What we can say about U depends on how we define α & β. 
Let β = ρXYσY/σX 

Let α = µY - βµX 
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Probability---a preview of regression 
What we can say about U depends on how we define α & β. 
Let β = ρXYσY/σX 

Let α = µY - βµX 

Then, U = Y � α - βX has the following properties:   
E(U) = 0 and Cov(X,U) = 0.  (You can show this easily 
using properties of expectation, variance, and covariance 
that we’ve seen.) 

82



	

  
 

 
 

   

Probability---a preview of regression 
What we can say about U depends on how we define α & β. 
Let β = ρXYσY/σX 

Let α = µY - βµX 

Then, U = Y � α - βX has the following properties:   
E(U) = 0 and Cov(X,U) = 0.  (You can show this easily 
using properties of expectation, variance, and covariance 
that we’ve seen.) 

We then call α & β “regression coefficients,” and think of 
α + βX as the part of Y “explained by” X and U as 
the “unexplained” part. 
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Probability---inequalities 
Two inequalities involving moments of distributions and tail 

probabilities often come in handy: 
Markov Inequality 

 X is a random variable that is always non-negative. 
Then for any t > 0, P(X>=t) <= E(X)/t. 
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Probability---inequalities 
Two inequalities involving moments of distributions and tail 

probabilities often come in handy: 
Markov Inequality 

 X is a random variable that is always non-negative. 
Then for any t > 0, P(X>=t) <= E(X)/t. 
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Probability---inequalities 
Chebyshev Inequality

 X is a random variable for which Var(X) exists.  Then 
for any t>0, P(|X-E(X)| >= t) <= Var(X)/t2. 

86



 
Probability---inequalities 
Chebyshev Inequality

 X is a random variable for which Var(X) exists.  Then 
for any t>0, P(|X-E(X)| >= t) <= Var(X)/t2. 
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