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Probubility——-moments of a distribution

Ok, back fo probab'\li’fﬁ now,

Where were we? Al yes, ’ralk'mﬁ abovt moments 0{:
distributions, ex?ec’fa’ﬁow, " ?ar’ﬁcvlar.
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nstead in That wcea’fwe of the distribviion of Y = 3()().
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Probubility——-moments of a distribution

What if, instead of wanti ing To kow a certain feature of the
d\s’ﬂr\b\/’ﬂom X Sy ex ectation, we are nterested
nstead in That wcea’fwe of the distribviion of Y = 3()().

Well, we can obviously J{\ﬁwe ot how Y is distributed-—we
know how Yo do that=—-and then vee that distribution to
compufe, S0, ECY).

Tere oy De an easier wa\j’"i’f can be shown That

ECY) = B40K)) = Jublddy = J4G)lcdx
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Classic example/ paradox in probubility theory, but one where
economists come vt looking particularly ﬂood

Tlis example was first discussed by 8™ CKV\‘T\Nﬂ Swiss
mathematician Nicolavs Bernodli and ?vbl'\s\ned n the St
Pe’ferisﬁ Acadzva ?roceedmﬁs n 1738,
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Classic example/ paradox in probubility theory, but one where
economists come vt looking particularly ﬁood

Tlis example was first discussed by 8™ CeV\’f\)\rﬂ Swiss
mathematician Nicolavs Bernodli and ?vblis\ned n the St

Pc‘:’f ershurg Acadzvv% proceedings i 1738, Wikt distribution?
Here's the qame: | ﬂ\? a fair con vntil it comes vp heads.

£ the vumber of {lips necessary is K | paY yov 2K

dollars. How much wauld, you be willing Yo pay me Yo play

s qame?
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You shovd be will'w\ﬂ Yo Py Your exyec’fed w'ww\mﬂs, riﬁh’f?
Do let's calevlate them:
Let X = vumber of wcli?s required,
(Note that X ~ GL.5) <0 can look vp Tt EQX) = 2.)
Then Y = wivings = 2K
EY) = zg‘ﬁw"ﬁ) = Z.J()O%&X)
- 7.24/2)"
"2l 2
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No one would e w'\ll'mﬁ To pay me an infivite amowt fo Plo%
This qame.

| would qess That | wolldnt have any ¥ akers ot 320 and
that's a lof less than '\V\{'\V\'\’rﬂ.

That's the paradox, Bt is i reall\ﬁ?

Economists know that people have dimi\r\is‘/\inﬁ may gival v’ﬁli’fﬁ
of money. I ofher words, Their valuation of additional
money decreases as the amot of money ’dne“ have

NCreases.

So let Z = valvaion of winnings = lOﬁOO - log(?_x)
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So let Z = valvaion of winvings = lOﬁOO - log(?_x)
Then, B(Z) = 2| Oﬂ(?_")(l /2

= log(2) 2 /2y

= 2\0ﬁ<.2> ¢ 00

So this is only & paradox wiless yov know a litle bit of
eConomics.
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. E@) = a a constant
2. EY) =aE(X) + b Y=aX )
3 E(Y) - EOG) + B + .+ EX)
Y=K+X + .. +K
Realln, what if the X aren’t

independent?  Yes, really, they
dont have Yo be independent.
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. E@) = a a constant

2. EYV)=EX) +p Y=aX +}

3, B(Y) = EQOK) + EQK) + .+ EQK),
Y=X+X +. .. X

. BECY) = aEOQ) + o BOC) + .+ a FOK) + b,
Y=o +taK ... +aX +b

5. EQKY) = EQQEY) if XY independent
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In addition Yo dzscr'\bmﬁ fhe location, or center, of a
distribvkion of a vandom variable, we often would like Yo
describe how spread ot it is.  Theres a moment bor Tt

VAriance.

Var(X) = B((X- }02] We often devote Var(X)

with 02 (Greek “si ﬁma" sqva\red)

Note that variance is an

expectation, 0 many o\C s properties
will £ollow from ta
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Probabili’fg”’g\ro?er’ﬁes of variance

I, VarlX) >= 0
2. Varla) = O, a constant
3. VarlY) = aNarlX), Y=aX + b

n other words, shift a distribution
and i¥s variance doesnt c‘/\aV\ﬁe.
Shrink. or spread, ot a distribution
and it variance d/\a\nﬁes b\j the
square of the multiplicative fackor.
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|, VarlX) >= 0

2. Varla) = O, a constant

3. VarlY) = aNarlX), Y=aX + b

b, NarlY) = VarlK) + VarlK) + .+ VardX),
Y=K+K+. . .+ K ..., K, Wndependent

5. VarlY) = aNVar0X) +. . .+ 2 NarlX),
Y=aX+taX +. . . +aX *bh X ..., K, independent

6. Var(X) = EQKZ) - (EQQO)T2

This last ?voper’rﬁ can ?rovidz a hawdn
wau Yo comyv’fe VAYIance.



P\robabili’rﬁ”’s’ramdmrd deviation

O\C’fevx s convenient \[ov the measure o\C dispersion Yo have
the same wits as the vandom variable. For This reason,

we defive standard deviation.

SDXX) = o - \(—\f;b@ ~ {2



Probability=—-variance of a function

dince variance is an expectafion, we can aﬂ;lﬂ fhe rests of
expectation o\[ 0 {:W\c’rion 0{: a vandom variable o 4t
variance of a fction of a vandom variadle.

So if Y = {X),
Var (Y) < E0) - EQ)? = E(r0df) -E(r®)

2
= Srool_(x(x) dx -U Y‘(X)‘EX(X)AX
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A conditional expectation is the expecttion of a conditional
distribvtion.  [n other words,

EVX) = | mcm(tﬁb()dﬂ

Note far ECYIX) i a fwnction of X, and, therefore, a
random variable.  ECYIK=x) is \'\vs’f a vwmber,
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A conditional expectation is the expecttion of a conditional
distribvtion.  [n other words,

EYX) = | mcm(tﬁb()dﬂ

Note far ECYIX) i a fwnction of X, and, therefore, a
random variable.  ECYIK=x) is \'\vs’f a vwmber,

Thm EEMMX)) = ECY) “Law o Iterated Expectati ons



Probabilit !3’”covwli’ﬁ onal variance

The definition of conditional variance tdllows $rom that of
variance and conditional expectation.

Thm  Var(ECYIX)) + ECVar(YIX)) = VarlY)
"Law of Total Variance”




Probabilit !j’”’fwo laws

"Law of Iterated Expectations”
E(ECVIX)) = ECY)

"Law o} Total Variance”
Var(ECYIX)) + E(Var(YIK)) = VarlY)



Probabilit !j’”’fwo laws

"Law of [terated Expectations”
E(ECVIX)) = ECY)

"Law of Total Variance”
Var(ECYIX)) + E(Var(YIK)) = VarlY)

Mag seem a little mysteriovs, vot clear thow ’ﬂ/\eﬂ'\re vsedul.
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A Lormer student of mive started an innovation inevbator in
NYC. Suppose he's been doing this For o few years and
has kept track of the vumber of patents produced every
year n his incbator. He knows that EQN) = 2 and
Var(N) = 2.
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Suwose there are 5 patents this year. What is the
probubilit Y Yt 3 are commercial svecesses?

SIN=n ~ B(n,.2),
s0 P(S=3N=5) = 5!/(3'21).2%- 22
= .05
vaose There are 5 patents this wear. What is the

expected vumber of commercial successes?

E(SN-=5) - np £5x.2 = |

How do we et this?
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Suppose there are 5 patents this year. What is the
probubility that 3 are commercia SVCLesses
SIN=n ~ B(n.2),
s0 P(S=3N=5) = 5!/(3'21).2%- 22
= .05
Svypose There are 5 patents ths year. What is the

expected vumber of commercial successes?

E(SN-=5) - np £ 5x.2 = |

How do we 4t this? Compute the expectation
of a Bernoli vandom variable and add it up

n Yivwee
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What is the (mconditional ) expected vumber of commercia
SUCCesses?

E(S) = EESINY) = EQNp) = 2EQN) = 4
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What is the (nconditional) variance of vumber of commercia
sveeesses?  Can vse the Law of Total Variance.
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What is the (nconditional) variance of vumber of commercia
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What is the (nconditional) variance of vumber of commercia
SUCCesses?

VarlS) = VarlECSND)) + ENVar(SND))
= Var(Np) + E(Npll-p))



Probabilit !j’”examyle

What is the (nconditional) variance of vumber of commercia
SUCCesses?

Var(S) = Var(ECSIND)) + ECVarlSIND)
= \/our(N?) + E(N?(I "7))
= 2Nar(N) + 20-2)EN) = 4



Probabilit 3’”covauri ance and. correlation

We vow lhave moments To describe the location, or center, 01[

& distribution of a random variable and, how spread. vt that
distribution 1. We are often interested in the relafionship
between random variables, and we have a moment of ot
distributions Yo describe one aspect of that relationslip,

COVAYIANCL.

ColX\Y) = BLOK- XY -4y )]
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Probabilitu-——-covariance and correlation
1

We now lave moments Yo describe the location, or center, 01[
& distribution of a random variable and, how spread. vt that
distribution 1. We are often interested in the relafionship
between random variables, and we have a moment of ot

distributions Yo describe one aspect of that relationslip,
COVArIQNCe.

COV(X,Y) = EKX.}()O(Y.,'(Y)]
And we have a standardized version, corvelation.

P(X,Y) = E[(X'ﬂx)(Y’ﬂy>]/ W;Y (xX) \f\/—&r (Y)




Probabilitu-——-covariance and correlation
1

pOXY) = BLOK g KYp)]/ WV ) YVar (Y)

We say that KsY are “?os'\’ﬁvel\j corvelated” i p> 0.
We S fhat KgY ave V\eﬁa’ﬁvelﬂ corvelated” it p<O.
We say fhat XsY ave “wncorrelated” it p=0.
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|, CodX K) = VarlX)

2. CodXY) = ColY,X)

3. CodXY) = EXXY) - ECKELY)

£ KY indep > CodXY) = O

5. ColaX+b,cY+d) = acColXY)
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Probabilit y~=~properfies of covariance

|, CodX K) = VarlX)

2. CodXY) = ColY,X)

3. CodXY) = EXXY) - ECKELY)

£ KY indep > CodXY) = O

5. ColaX+b,cY+d) = acColXY)

6. Var(X+Y) = Var(X) + Var(Y) + 2CodXY)

[
8.

P(X,Y)l ¢ |
P(X,Y)l -1 Y=aX+h a #0
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We have two vandom variables, XsY.
EX = }4)(, \/our)( = 0_)(2

EY = ﬂy, \/arY =0 YZ

PXY = COV(,X,Y>/ (O‘XO‘ Y>



Probubilit Y70 preview of reqression

We have two vandom variables, XsY.
EX = }4)(, \/our)( = UXZ

EY = ﬂy, \/arY =0 YZ

PXY = COV(,X,Y>/ (O‘XO‘ Y>

We know that, \\[ Pxy = | then Y =a + bX b >0, and if
Pry =4 then Y=a+bX b<O.
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We have two vandom variables, XsY.
EX = }4)(, \IQYX = UXZ

EY = ﬂy, \/arY = 0_%

PXY = COV(X,Y)/ (,0-)(0_ Y>

We know that, \\C Pxy = | then Y =a + bX b >0, and if
()XY='ITWV\Y a * PK, b <O.

£ lFXYl < |, then we can write Y = oL + BX + V.

\/ is avother random variable,

but what can we say abovt it%
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What we can sy abovt V depends on how we defive oL % p.

Let % = P)(YO. Y/ Oy

Let A = }'(Y - H’(X

Then, V= Y = ot - BX lus the wcollowmﬁ properties:
E(V) = 0 and ColX V) = 0. (You can show this easily
sing properfies 01[ expectation, variance, and covariance
that weve seen.)

We then call ok 4 b “reqression coeficients,” and think ot
oAt @X as the part of Y “ex?la'meol 173" K and V as

the vnex?lameol" part.



Probubility=—-inequalities

Two inequalities involving moments of distributions and fai
probubilities often come in handy

Markov Inequality

X 15 a random variable that is alwaws V\oer\eﬁa’ﬁve.

Then wfor wny ¥ > 0, POXO=1) <= EOXO)/A.
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Two inequalities involving moments of distributions and fai
probubilities often come in handy

Markov Iweztvali’rﬂ
K is a vandom variable that is alwaus non-vegative.

Then wfor wny ¥ > 0, POXO=1) <= EOXO)/A.

4\ S E(X)/t N

§>

7

€ e
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Chebﬂshev lweztvali’fﬂ

X is a vandom variable for which VarlX) exists.  Then
bor any 150, PUKEQROL = 1) <= NarK)/A2.



onbabili’fﬁ”"matvali’ﬁes

Cheb\ﬁshev lwectvali’ﬂj

X is a vandom variable for which VarlX) exists.  Then
bor any 10, PUK-EQ) >= 1) <= Var(K)/12.

£ X
. < Vo ( )/ch ¢ Nar ),
/
i 7/ IR
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