Class 6b in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Normal distributions

X has normal distribution, standard deviation σ.

(a) $P(-\sigma<X-\mu<\sigma)$ is approximately
(i) 0.025
(ii) 0.16
(iii) 0.68
(iv) 0.84
(v) 0.95
(b) $P(X>\mu+2 \sigma)$ is approximately
$\begin{array}{lllll}\text { (i) } 0.025 & \text { (ii) } 0.16 & \text { (iii) } 0.68 & \text { (iv) } 0.84 & \text { (v) } 0.95\end{array}$
Solution: (a) Correct answer is (iii). The rule of thumb says the probability that X is within one standard deviation of the mean is 0.68 .
(b) Correct answer is (i). This question for the probability in the right tail, beyond 2 standard deviations above the mean. The rule of thumb is that about 95% of the probability is within 2σ of the mean. So about 5% is outside of that. Since this is split symmetrically between two tails, the probability in the right tail is approximately 0.025 .

Board questions

Problem 1. Standardization

Suppose X is a random variable with mean μ and standard deviation σ. Let Z be the standardization of X.
(a) Give the formula for Z in terms of X, μ and σ.
(b) Use the algebraic properties of mean and variance to show Z has mean 0 and standard deviation 1.
Solution: (a) $Z=\frac{X-\mu}{\sigma}$.
(b) The problem asks us to verify that $E[Z]=0$ and $\operatorname{Var}(Z)=1$.

We use the properties

$$
\begin{aligned}
E[a X+b] & =a E[X]+b=a \mu+b \\
\operatorname{Var}(a X+b) & =a^{2} \operatorname{Var}(X)=a^{2} \sigma^{2} .
\end{aligned}
$$

In the following, don't forget that $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

$$
\begin{aligned}
E[Z] & =E\left[\frac{X-\mu}{\sigma}\right]=\frac{1}{\sigma} E[X-\mu]=\frac{1}{\sigma}(E[X]-\mu)=0 . \\
\operatorname{Var}(Z) & =\operatorname{Var}\left(\frac{X-\mu}{\sigma}\right)=\frac{1}{\sigma^{2}} \operatorname{Var}(X-\mu)=\frac{1}{\sigma^{2}} \operatorname{Var}(X)=\frac{1}{\sigma^{2}} \cdot \sigma^{2}=1 .
\end{aligned}
$$

Problem 2. CLT

(a) Carefully write the statement of the central limit theorem.
(b) To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports the team of Alessandre, Gabriel, Sarah and So Hee, 25\% support Jen and 25\% support Jerry.
A poll asks 400 random people who they support. What is the probability that at least 55% of those polled prefer the team?
(c) What is the probability that less than 20\% of those polled prefer Jen?

Solution: (b) Let \bar{X} be the fraction polled who support the team. So \bar{X} is the average of 400 Bernoulli(0.5) random variables. That is, let $X_{i}=1$ if the ith person polled prefers the team and 0 if not, so $\bar{X}=$ average of the X_{i}.
The question asks for the probability $\bar{X}>0.55$.
Each X_{i} has $\mu=0.5$ and $\sigma^{2}=0.25$. So, $E[\bar{X}]=0.5$ and $\sigma_{\bar{X}}^{2}=0.25 / 400$ or $\sigma_{\bar{X}}=$ $1 / 40=0.025$.
Because \bar{X} is the average of 400 Bernoulli(0.5) variables, the CLT says it is approximately normal and standardizing gives

$$
\frac{\bar{X}-0.5}{0.025} \approx Z
$$

So,

$$
P(\bar{X}>0.55) \approx P(Z>2) \approx 0.025 .
$$

(c) Let \bar{J} be the fraction polled who support Jen. The question asks for the probability that $\bar{J}<0.2$.
Similar to part (b), \bar{J} is the average of $400 \operatorname{Bernoulli}(0.25)$ random variables. So,
$E[\bar{J}]=0.25$ and $\sigma_{S}^{2}=(0.25)(0.75) / 400 \Rightarrow \sigma_{S}=\sqrt{3} / 80$.
So, $\frac{\bar{J}-0.25}{\sqrt{3} / 80} \approx Z$. Thus,

$$
P(\bar{J}<0.2) \approx P(Z<-4 / \sqrt{3})=\operatorname{pnorm}(-4 / \operatorname{sqrt}(3), 0,1) \approx 0.0105
$$

Problem 3. Sampling from the standard normal distribution
How would you approximate a single random sample from a standard normal distribution using 9 rolls of a ten-sided die?
Note: $\mu=5.5$ and $\sigma^{2}=8.25$ for a single roll of a 10 -sided die.
Hint: CLT is about averages.

Solution: The average of 9 rolls is a sample from the average of 9 independent random variables. The CLT says this average is approximately normal with $\mu=5.5$ and $\sigma=$ $\sqrt{8.25 / 9}=0.957$
If \bar{x} is the average of 9 rolls then standardizing we get

$$
z=\frac{\bar{x}-5.5}{0.957}
$$

is (approximately) one sample from $\mathrm{N}(0,1)$.
So, to approximate a standard normal, we would roll 9 times and compute z.

Standard normal is shown in orange.
$\bar{X}=$ average of nine rolls: $\mu=5.5, \sigma=\sqrt{8.25 / 9}$.
Standarized statistic: $Z=\frac{\bar{X}-\mu}{\sigma} \approx N(0,1)$.

Extra problems

Bonus problem

An accountant rounds to the nearest dollar. We'll assume the error in rounding is uniform on $[-0.5,0.5]$. Estimate the probability that the total error in 300 entries is more than $\$ 5$.
Solution: Let X_{j} be the error in the $j^{\text {th }}$ entry, so, $X_{j} \sim U(-0.5,0.5)$.
We have $E\left[X_{j}\right]=0$ and $\operatorname{Var}\left(X_{j}\right)=1 / 12$.
The total error $S=X_{1}+\ldots+X_{300}$ has $E[S]=0, \operatorname{Var}(S)=300 / 12=25$, and $\sigma_{S}=5$.
Standardizing we get, by the CLT, $S / 5$ is approximately standard normal. That is, $S / 5 \approx Z$.
So, $P(S<-5$ or $S>5) \approx P(Z<-1$ or $Z>1) \approx 0.32$.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

