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LAST LECTURE RECAP

 Strings provide a new data type
 They are sequences of characters, the first one at index 0
 They can be indexed and sliced

 Input 
 Done with the input command
 Anything the user inputs is read as a string object!

 Output 
 Is done with the print command
 Only objects that are printed in a .py code file will be visible in the shell

 Branching
 Programs execute code blocks when conditions are true
 In an if-elif-elif… structure, the first condition that is True will 

be executed
 Indentation matters in Python!
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BRANCHING RECAP

 <condition> has a value True or False
 Evaluate the first block whose corresponding <condition> is 
True
 A block is started by an if statement

 Indentation matters in Python!
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if <condition>:
< code >
< code >
...

if <condition>:
< code >
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code > 
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code > 
< code >
...

elif <condition>:
< code >
< code >
...
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 Zelda, Lost Woods tricks you
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if <exit right>:
<set background to woods_background>
if <exit right>:

<set background to woods_background>
if <exit right>:

<set background to woods_background>
and so on and on and on...

else:
<set background to exit_background>

else:
<set background to exit_background>

else:
<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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 Zelda, Lost Woods tricks you
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while <exit_right>:
<set background to woods_background>
<ask user which way to go>

<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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while LOOPS
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BINGE ALL EPISODES OF ONE SHOW
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Netflix: start watching a new show

Suggest 3 more shows like this one

There are 
more 

episodes to 
watch?

Play the next one

no

yes
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CONTROL FLOW: while LOOPS

while <condition>:

<code>

<code>

...

 <condition> evaluates to a Boolean
 If <condition> is True, execute all the steps inside the

while code block
 Check <condition> again
 Repeat until <condition> is False
 If <condition> is never False, then will loop forever!!
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while LOOP EXAMPLE

You are in the Lost Forest.
************
************


************
************
Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")
print("You got out of the Lost Forest!")
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where "right"

"left"
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YOU TRY IT!
 What is printed when you type "RIGHT"?

where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

6.100L Lecture 3
10



while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1
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n 4

3

2

1

0

11



while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1

 To terminate:
 Hit CTRL-c or CMD-c in the shell
 Click the red square in the shell
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YOU TRY IT!
 Run this code and stop the infinite loop in your IDE
while True:

print("noooooo")
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BIG  IDEA

while loops can repeat
code inside indefinitely!
Sometimes they need your intervention to end the program.
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YOU TRY IT!
 Expand this code to show a sad face when the user entered the

while loop more than 2 times.
 Hint: use a variable as a counter
where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")
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CONTROL FLOW: while LOOPS

 Iterate through numbers in a sequence

n = 0
while n < 5:

print(n)
n = n+1
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A COMMON PATTERN

 Find 4!
 i is our loop variable
 factorial keeps track of the product

 Python Tutor LINK
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x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}')
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for LOOPS
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ARE YOU STILL WATCHING?
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Netflix while falling asleep
(it plays only 4 episodes if 
you’re not paying attention)

Cuts you off

4 episodes 
in the 

sequence

Play the next episode

Went through all 
eps in sequence

Still more eps 
in sequence
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CONTROL FLOW:
while and for LOOPS

 Iterate through numbers in a sequence

# very verbose with while loop
n = 0
while n < 5:

print(n)
n = n+1

# shortcut with for loop
for n in range(5):

print(n)

6.100L Lecture 3
20



STRUCTURE of for LOOPS

for <variable> in <sequence of values>:
<code> 
...

 Each time through the loop, <variable> takes a value

 First time, <variable> is the first value in sequence
 Next time, <variable> gets the second value
 etc. until <variable> runs out of values
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A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code> 
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1
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A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code> 
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1
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n 0

1

2

3

4
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range

 Generates a sequence of ints, following a pattern
 range(start, stop, step)

 start: first int generated
 stop: controls last int generated (go up to but not including this int)
 step: used to generate next int in sequence

 A lot like what we saw for slicing
 Often omit start and step

 e.g., for i in range(4):
 start defaults to 0
 step defaults to 1

 e.g., for i in range(3,5):
 step defaults to 1
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YOU TRY IT!
 What do these print?
 for i in range(1,4,1):

print(i)

 for j in range(1,4,2):
print(j*2)

 for me in range(4,0,-1):
print("$"*me)
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RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)
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i 0

mysum 0
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RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)
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i 0

mysum 0

1

1
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RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)
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i 0

mysum 1

1

3

2
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RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)
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i 0

mysum 3

1

6

2

3
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RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

…

i 0

mysum 36

1

45

2

3

9

30



YOU TRY IT!
 Fix this code to use variables start and end in the range, to get

the total sum between and including those values. 
 For example, if start=3 and end=5 then the sum should be 12.
mysum = 0
start = ??
end = ??
for i in range(start, end):

mysum += i
print(mysum)
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for LOOPS and range

 Factorial implemented with a while loop (seen this already)
and a for loop
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x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}’)

x = 4
factorial = 1
for i in range(1, x+1, 1):

factorial *= i
print(f'{x} factorial is {factorial}')
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BIG  IDEA
for loops only repeat 
for however long the 
sequence is
The loop variables takes on these values in order.
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SUMMARY

 Looping mechanisms
 while and for loops
 Lots of syntax today, be sure to get lots of practice!

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Can loop over ranges of numbers
 Can loop over elements of a string
 Will soon see many other things are easy to loop over
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