
ITERATION
(download slides and .py files to follow along)

6.100L Lecture 3
Ana Bell

1

LAST LECTURE RECAP

 Strings provide a new data type
 They are sequences of characters, the first one at index 0
 They can be indexed and sliced

 Input
 Done with the input command
 Anything the user inputs is read as a string object!

 Output
 Is done with the print command
 Only objects that are printed in a .py code file will be visible in the shell

 Branching
 Programs execute code blocks when conditions are true
 In an if-elif-elif… structure, the first condition that is True will

be executed
 Indentation matters in Python!

6.100L Lecture 3
2

BRANCHING RECAP

 <condition> has a value True or False
 Evaluate the first block whose corresponding <condition> is
True
 A block is started by an if statement

 Indentation matters in Python!

6.100L Lecture 3

if <condition>:
< code >
< code >
...

if <condition>:
< code >
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

else:
< code >
< code >
...

if <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

elif <condition>:
< code >
< code >
...

3

 Zelda, Lost Woods tricks you

6.100L Lecture 3

if <exit right>:
<set background to woods_background>
if <exit right>:

<set background to woods_background>
if <exit right>:

<set background to woods_background>
and so on and on and on...

else:
<set background to exit_background>

else:
<set background to exit_background>

else:
<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

4

https://ocw.mit.edu/help/faq-fair-use/

 Zelda, Lost Woods tricks you

6.100L Lecture 3

while <exit_right>:
<set background to woods_background>
<ask user which way to go>

<set background to exit_background>

 If you keep going right, you are
stuck in the same spot forever

 To exit, take a chance and go
the opposite way

© Nintendo. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

5

https://ocw.mit.edu/help/faq-fair-use/

while LOOPS

6.100L Lecture 3
6

BINGE ALL EPISODES OF ONE SHOW

6.100L Lecture 3

Netflix: start watching a new show

Suggest 3 more shows like this one

There are
more

episodes to
watch?

Play the next one

no

yes

7

CONTROL FLOW: while LOOPS

while <condition>:

<code>

<code>

...

 <condition> evaluates to a Boolean
 If <condition> is True, execute all the steps inside the

while code block
 Check <condition> again
 Repeat until <condition> is False
 If <condition> is never False, then will loop forever!!

6.100L Lecture 3
8

while LOOP EXAMPLE

You are in the Lost Forest.



Go left or right?

PROGRAM:

where = input("You're in the Lost Forest. Go left or right? ")
while where == "right":

where = input("You're in the Lost Forest. Go left or right? ")
print("You got out of the Lost Forest!")

6.100L Lecture 3

where "right"

"left"

9

YOU TRY IT!
 What is printed when you type "RIGHT"?

where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

6.100L Lecture 3
10

while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1

6.100L Lecture 3

n 4

3

2

1

0

11

while LOOP EXAMPLE

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x')

n = n-1

 To terminate:
 Hit CTRL-c or CMD-c in the shell
 Click the red square in the shell

6.100L Lecture 3
12

YOU TRY IT!
 Run this code and stop the infinite loop in your IDE
while True:

print("noooooo")

6.100L Lecture 3
13

BIG IDEA

while loops can repeat
code inside indefinitely!
Sometimes they need your intervention to end the program.

6.100L Lecture 3
14

YOU TRY IT!
 Expand this code to show a sad face when the user entered the

while loop more than 2 times.
 Hint: use a variable as a counter
where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

6.100L Lecture 3
15

CONTROL FLOW: while LOOPS

 Iterate through numbers in a sequence

n = 0
while n < 5:

print(n)
n = n+1

6.100L Lecture 3
16

A COMMON PATTERN

 Find 4!
 i is our loop variable
 factorial keeps track of the product

 Python Tutor LINK

6.100L Lecture 3

x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}')

17

https://pythontutor.com/visualize.html#code=x%20%3D%204%0Ai%20%3D%201%0Afactorial%20%3D%201%0Awhile%20i%20%3C%3D%20x%3A%0A%20%20%20%20factorial%20*%3D%20i%0A%20%20%20%20i%20%2B%3D%201%0Aprint%28f'%7Bx%7D%20factorial%20is%20%7Bfactorial%7D'%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

for LOOPS

6.100L Lecture 3
18

ARE YOU STILL WATCHING?

6.100L Lecture 3

Netflix while falling asleep
(it plays only 4 episodes if
you’re not paying attention)

Cuts you off

4 episodes
in the

sequence

Play the next episode

Went through all
eps in sequence

Still more eps
in sequence

19

CONTROL FLOW:
while and for LOOPS

 Iterate through numbers in a sequence

very verbose with while loop
n = 0
while n < 5:

print(n)
n = n+1

shortcut with for loop
for n in range(5):

print(n)

6.100L Lecture 3
20

STRUCTURE of for LOOPS

for <variable> in <sequence of values>:
<code>
...

 Each time through the loop, <variable> takes a value

 First time, <variable> is the first value in sequence
 Next time, <variable> gets the second value
 etc. until <variable> runs out of values

6.100L Lecture 3
21

A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code>
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1

6.100L Lecture 3
22

A COMMON SEQUENCE of VALUES

for <variable> in range(<some_num>):
<code>
<code>
...

for n in range(5):
print(n)

 Each time through the loop, <variable> takes a value
 First time, <variable> starts at 0
 Next time, <variable> gets the value 1
 Then, <variable> gets the value 2
 ...
 etc. until <variable> gets some_num -1

6.100L Lecture 3

n 0

1

2

3

4

23

range

 Generates a sequence of ints, following a pattern
 range(start, stop, step)

 start: first int generated
 stop: controls last int generated (go up to but not including this int)
 step: used to generate next int in sequence

 A lot like what we saw for slicing
 Often omit start and step

 e.g., for i in range(4):
 start defaults to 0
 step defaults to 1

 e.g., for i in range(3,5):
 step defaults to 1

6.100L Lecture 3
24

YOU TRY IT!
 What do these print?
 for i in range(1,4,1):

print(i)

 for j in range(1,4,2):
print(j*2)

 for me in range(4,0,-1):
print("$"*me)

6.100L Lecture 3
25

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

i 0

mysum 0

26

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

i 0

mysum 0

1

1

27

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

i 0

mysum 1

1

3

2

28

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

i 0

mysum 3

1

6

2

3

29

RUNNING SUM

 mysum is a variable to store the running sum
 range(10) makes i be 0 then 1 then 2 then … then 9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

6.100L Lecture 3

…

i 0

mysum 36

1

45

2

3

9

30

YOU TRY IT!
 Fix this code to use variables start and end in the range, to get

the total sum between and including those values.
 For example, if start=3 and end=5 then the sum should be 12.
mysum = 0
start = ??
end = ??
for i in range(start, end):

mysum += i
print(mysum)

6.100L Lecture 3
31

for LOOPS and range

 Factorial implemented with a while loop (seen this already)
and a for loop

6.100L Lecture 3

x = 4
i = 1
factorial = 1
while i <= x:

factorial *= i
i += 1

print(f'{x} factorial is {factorial}’)

x = 4
factorial = 1
for i in range(1, x+1, 1):

factorial *= i
print(f'{x} factorial is {factorial}')

32

BIG IDEA
for loops only repeat
for however long the
sequence is
The loop variables takes on these values in order.

6.100L Lecture 3
33

SUMMARY

 Looping mechanisms
 while and for loops
 Lots of syntax today, be sure to get lots of practice!

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Can loop over ranges of numbers
 Can loop over elements of a string
 Will soon see many other things are easy to loop over

6.100L Lecture 3
34

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

35

https://ocw.mit.edu
https://ocw.mit.edu/terms

	ITERATION�(download slides and .py files to follow along)
	LAST LECTURE RECAP
	BRANCHING RECAP
	Slide Number 4
	Slide Number 5
	while LOOPS
	BINGE ALL EPISODES OF ONE SHOW
	CONTROL FLOW: while LOOPS
	while LOOP EXAMPLE
	Slide Number 10
	while LOOP EXAMPLE
	while LOOP EXAMPLE
	Slide Number 14
	while loops can repeat code inside indefinitely!
	Slide Number 16
	CONTROL FLOW: while LOOPS
	A COMMON PATTERN
	for LOOPS
	ARE YOU STILL WATCHING?
	CONTROL FLOW:�while and for LOOPS
	STRUCTURE of for LOOPS
	A COMMON SEQUENCE of VALUES
	A COMMON SEQUENCE of VALUES
	range
	Slide Number 27
	RUNNING SUM
	RUNNING SUM
	RUNNING SUM
	RUNNING SUM
	RUNNING SUM
	Slide Number 33
	for LOOPS and range
	for loops only repeat for however long the sequence is
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

