LOOPS OVER STRINGS,
GUESS-and-CHECK,
BINARY

(download slides and .py files to follow along)

6.100L Lecture 4
Ana Bell

LAST TIME

" Looping mechanisms
" while and for loops

= While loops
= Loop as long as a condition is true
= Need to make sure you don’t enter an infinite loop

" For loops
= Loop variable takes on values in a sequence, one at a time
= Can loop over ranges of numbers
= Will soon see many other things are easy to loop over

break STATEMENT

" Immediately exits whatever loop itisin

= Skips remaining expressions in code block

= Exits only innermost loop!

while <condition 1>:

whille <condition 2>:

. ted
| <expression a> | ea?
break

6.100L Lecture 4

break STATEMENT

mysum = 0
for 1 in range(5, 11, 2):
mysum += 1
1f mysum ==

break
mysum += 1

print (mysum)

» What happens in this program?
= Python Tutor LINK

4
6.100L Lecture 4

https://pythontutor.com/visualize.html#code=mysum%20%3D%200%0Afor%20i%20in%20range%285,%2011,%202%29%3A%0A%20%20%20%20mysum%20%2B%3D%20i%0A%20%20%20%20if%20mysum%20%3D%3D%205%3A%0A%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20mysum%20%2B%3D%201%0Aprint%28mysum%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!

= Write code that loops a for loop over some range and prints
how many even numbers are in that range. Try it with:

" range (5)

" range (10)

" range (2,9, 3)

" range (-4 2)
(

STRINGS and LOOPS

" Code to check for letter i or uin a string.

= All 3 do the same thing

s = "demo loops - fruit loops"
for index in range (len(s)):
1f s[index] == '"1' or s[index] == 'u':
print ("There is an i or u")
for char in s:
1f char == '"1'" or char == 'u':
print ("There is an i or u")
for char in s:

if char 1in '"iu':

print ("There is an i or u")
6

6.100L Lecture 4

(OU% \

S yrectly

\te(a’tecte of 5 d\:e
C‘f‘arast o€
(o

BIG IDEA

The sequence of values
ina for loop isn’t
limited to numbers

ROBOT CHEERLEADERS

an_letters = "aefhilmnorsxAEFHILMNORSX"

<
word = input("I will cheer for you! Enter a word: ") .,go\e’ Nt

times = int(input("Enthusiasm level (1-10): ")) dQ¢$;§CNp
O~ (*
for ¢ _in word: déévvﬁg o
if ¢ in an_letters: 2 e¢§owd8
print(f'Give me an {c}: {c}') Q$©51§3“
else: 2%
print(f'Give me a {c}: {c}') \@Qad;y
print("What's that spell?") ~@PQV3§°
for i in range(times): ’Q&®<g&%

print{word, ''!!") o

8
6.100L Lecture 4

YOU TRY IT!

= Assume you are given a string of lowercase letters in variable s.
Count how many unique letters there are in the string. For
example, if

s = "abca"
Then your code prints 3.

HINT:

Go through each character in s.

Keep track of ones you’ve seen in a string variable.

Add characters from s to the seen string variable if they are not already a character in

that seen variable.

SUMMARY SO FAR

= Objects have types

= Expressions are evaluated to one value, and bound to a
variable name

" Branching
= if else, elif
= Program executes one set of code or another

" Looping mechanisms
" while and for loops
= Code executes repeatedly while some condition is true
= Code executes repeatedly for all values in a sequence

10
6.100L Lecture 4

THAT IS ALL YOU NEED TO
IMPLEMENT ALGORITHMS

GUESS-and-CHECK

GUESS-and-CHECK

" Process called exhaustive enumeration

= Applies to a problem where ...

= You are able to guess a value for solution
= You are able to check if the solution is correct

" You can keep guessing until
" Find solution or Initial guess Choose the
= Have guessed all values

next guess
(Be systematic)

done

13
6.100L Lecture 4

GUESS-and-CHECK
SQUARE ROOT

= Basic idea:

= Given an int, call it x, want to see if there is another int which is its
square root

= Start with a guess and check if it is the right answer

guess? guess? guess? X guess?

14

GUESS-and-CHECK
SQUARE ROOT

= Basic idea:

= Given an int, call it x, want to see if there is another int which is its
square root

= Start with a guess and check if it is the right answer
= To be systematic, start with guess =0, then 1, then 2, etc

15

GUESS-and-CHECK
SQUARE ROOT

= Basic idea:

= Given an int, call it x, want to see if there is another int which is its
square root

= Start with a guess and check if it is the right answer
= To be systematic, start with guess =0, then 1, then 2, etc

" |[f x is a perfect square, we will eventually find its root and can
stop (look at guess squared)

guess? guess? guess? ‘ X

6.100L Lecture 4

GUESS-and-CHECK
SQUARE ROOT

= Basic idea:

= Given an int, call it x, want to see if there is another int which is its
square root

= Start with a guess and check if it is the right answer
= To be systematic, start with guess =0, then 1, then 2, etc

" But what if x is not a perfect square?
= Need to know when to stop
= Use algebra — if guess squared is bigger than x, then can stop

guess? guess? guess? guess? guess? ® X

6.100L Lecture 4

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

X = 1nt(input ("Enter an 1nteger: "))

while|guess**2 < x: e’
guess = guess + 1 ¢ +*7

5

o

1f guess**2 == x:

print ("Square root of", x, "i1s", guess)

else:

print (x, "is not a perfect square")

18
6.100L Lecture 4

GUESS-and-CHECK
SQUARE ROOT

" Does this work for any integer value of x?

* What if x is negative?
" while loop immediately terminates

* Could check for negative input, and handle differently

6.100L Lecture 4

GUESS-and-CHECK
SQUARE ROQOT with while loop

guess = 0

neg flag = False

X = 1nt (input ("Enter a positive integer: "))

1if x < 0:
neg flag = True

while guess**2 < x:

guess = guess + 1
1f guess**2 == x:

print ("Square root of", x, "is", guess)
else:

print (x, "is not a perfect square")

[if neg flag:

print ("Just checking... did you mean", -x, "?")]

20
6.100L Lecture 4

BIG IDEA

Guess-and-check can’t
test an infinite number
of values

You have to stop at some point!

GUESS-and-CHECK COMPARED

while LOOP

Initial guess

Choose next guess

s your (Be systematic)

guess

correct
?

Break the
loop, you're
done

for LOOP
Nothing here
s Check if
the guess

Sequentially
go through
all possible
guesses

is correct

Still more vals in
sequence

Went through all
vals in sequence

Did not find a solution
22

YOU TRY IT!

» Hardcode a nhumber as a secret number.

= Write a program that checks through all the numbers from 1 to
10 and prints the secret value if it’s in that range. If it’s not
found, it doesn’t print anything.

" How does the program look if | change the requirement to be:
If it’s not found, prints that it didn’t find it.

23

YOU TRY IT!

= Compare the two codes that:

= Hardcode a number as a secret number.
= Checks through all the numbers from 1 to 10 and prints the secret value if

it’s in that range.

If it’s not found, it doesn’t print anything.

/

Answer:
secret = 7
for 1 in range(1l,11):

secret:
print ("yes,

1f 1 ==

it's", 1)

24

If it’s not found, prints that it didn’t find it.
4 Answer:

\

secret = 7
found = False
for 1 in range(l,11):
if 1 secret:
print ("yes,
found = True
if not found:

it's", 1)

L print ("not found"))

BIG IDEA

Booleans can be used as
signals that something
happened

We call them Boolean flags.

while LOOPor for LOOP?

= Already saw that code looks cleaner when iterating over
sequences of values (i.e. using a for loop)
= Don’t set up the iterant yourself as with a while loop
= Less likely to introduce errors

= Consider an example that uses a for loop and an explicit
range of values

26
6.100L Lecture 4

GUESS-and-CHECK CUBE ROOT:
POSITIVE CUBES

cube = int (input ("Enter an integer: "))
ge 0O
Y
for guess in range (cube+l) : q«ﬂﬁf;beﬁx
. net
1f guess**3 == cube: W

print ("Cube root of", cube, "is'", guess)

27
6.100L Lecture 4

GUESS-and-CHECK CUBE ROQT:
POSITIVE and NEGATIVE CUBES

cube = int (input ("Enter an integer: "))
.gspsﬁw
e\
. U
for guess 1n range (abs (cube)l+1) : PS> o@
n
e
<\ O
if cube < 0: w

guess = -guess

print ("Cube root of "+str(cube)+" i1is "+str (guess))

28
6.100L Lecture 4

GUESS-and-CHECK CUBE ROOT:
JUST a LITTLE FASTER

cube = int (input ("Enter an integer: ")) “owﬁd
\\% e
for guess in range (abs (cube)+1) : e° qﬁﬁ
. \Y
1f guess**3 >= abs (cube) : KG(VON\\O\) (\5\“‘?’
&P “&ea «ed
break os° N &
Q oY det ot
- \(\\\\\ 660\ e(‘\e
if guess**3 != abs (cube) : o O (2P
N 00?6
print (cube, "is not a perfect cube") g@xgygﬁ\
e
else: ‘\; 20

1f cube < O:
guess = —guess

print ("Cube root of "+str (cube)+" 1s "+str (guess))

29
6.100L Lecture 4

ANOTHER EXAMPLE

= Remember those word problems from your childhood?

" For example:
= Alyssa, Ben, and Cindy are selling tickets to a fundraiser
Ben sells 2 fewer than Alyssa
Cindy sells twice as many as Alyssa
10 total tickets were sold by the three people
= How many did Alyssa sell?

" Could solve this algebraically, but we can also use guess-and-
check

30

GUESS-and-CHECK
with WORD PROBLEMS

e\
qoe
\ 90>
cn eoﬁ aN\ oS
W AV 2
for|alyssa|in range (11): cof eaC‘“\\\'posg\b\e\' (o a\\l?;?e\,a\ues
. 2 o <5\
for| ben |[in range (11) : C\\ec\< cof eas‘(‘(\\ec\ka\\po
for| cindy |in range (11): ‘&%
o total|= (alyssa + ben + cindy == 10)
(O
%Oo\eaﬂsfom two less =|(ben == alyssa-2) ou"‘d
e o\© = o0
0(69(0 twice|= (cindy == 2*alyssa) '50\\)"\0 \\?:‘(\0\d
v u’a"‘oﬂs e @
e if|total and two less and twice: W

print (f"Alyssa sold {alyssa} tickets")
print (£f"Ben sold {ben} tickets")
print (f"Cindy sold {cindy} tickets")

31
6.100L Lecture 4

EXAMPLE WITH BIGGER
NUMBERS

= With bigger numbers, nesting loops is slow!

" For example:
= Alyssa, Ben, and Cindy are selling tickets to a fundraiser
= Ben sells 20 fewer than Alyssa

Cindy sells twice as many as Alyssa

1000 total tickets were sold by the three people

= How many did Alyssa sell?

= The previous code won’t end in a reasonable time

" Instead, loop over one variable and code the equations directly

32

MORE EFFICIENT SOLUTION

\la(\a‘o\e
el ne
one 'O n dve
for|alyssal|in range (1001) : ?\ep\ace}(::f;j)v 0“(\6‘1
ben = max(alyssa - 20, 0) ca\c'\’\\a:,\peop\e
cindy = alyssa * 2 s a§ﬁpﬂ&ﬂoﬁ
if |ben + cindy + alyssa == 1000} -

print ("Alyssa sold " + str(alyssa) + " tickets'")
print ("Ben sold " + str(ben) + " tickets")

print ("Cindy sold " + str(cindy) + " tickets™")

33
6.100L Lecture 4

BIG IDEA

You can apply
computation to many
oroblems!

BINARY NUMBERS

NUMBERS in PYTHON

" int
= integers, like the ones you learned about in elementary school

" float
= reals, like the ones you learned about in middle school

36

OUR MOTIVATION - keep this in
mind for the next few slides

/$*0A
_ e @ *
x = 0 e Sa(“
[] [.\S ‘
for i in range (10) : €$wﬂx
Nl
x += 0.1
print(x == 1) '%XQ
; | I | * 9999
print(x, '==', 10*0.1) 003
003’

37
6.100L Lecture 4

BIG IDEA

Operations on some
floats introduces a very
small error.

The small error can have a big effect if operations are done
many times!

A CLOSER LOOK AT FLOATS

* Python (and every other programming language) uses “floating
point” to approximate real numbers

" The term “floating point” refers to the way these numbers are
stored in computer

= Approximation usually doesn’t matter
= But it does for us!
= Let’s see why...

39

FLOATING POINT
REPRESENTATION

" Depends on computer hardware, not programming language
implementation

= Key things to understand
= Numbers (and everything else) are represented as a sequence of bits (O
or1).
= When we write numbers down, the notation uses base 10.
= 0.1 stands for the rational number 1/10
= This produces cognitive dissonance — and it will influence how we write
code

40

WHY BINARY?
HARDWARE IMPLEMENTATION

= Easy to implement in hardware—build components that can be
in one of two states

= Computer hardware is built around methods that can efficiently
store information as 0’s or 1’s and do arithmetic with this rep

= 3 voltage is “high” or “low” a magnetic spin is “up” or “down”

" Fine for integer arithmetic, but what about numbers with
fractional parts (floats)?

41

BINARY NUMBERS

= Base 10 representation of an integer
= sum of powers of 10, scaled by integers from 0 to 9

1507 = 1*103 + 5*102 + 0*10 + 7*10°
=1000+ 500+ 7

" Binary representation is same idea in base 2
= sum of powers of 2, scaled by integers fromOto 1

" 1507, =1%210+21%28 + 1*27 4+ 1%2°0 + 1*2° + 1*21 4+ 1%20
=11024|+ 256 + 128 +64 + 32+ 2 +1

et
X
\X\%\\eS‘Qis a0s®” =210 4 28 4 27 4 26 4+ 254 21+ 20
el 0%
1&?‘\%0&%261 = 10111100011,
N\ &0,\‘

42

CONVERTING DECIMAL INTEGER
TO BINARY

= We input integers in decimal, computer needs to convert to
binary

" Consider example of
" x = 19,, <1} 2940 P {0* 22 +(1}2V+ 1*20 =[10011)

= |[f we take remainder of x relative to 2 (x%2), that gives us
the last binary bit

" |f we then integer dividexby 2 (x//2), all the bits get
shifted right

= x//2 (132 +0r22+0r 20 +1¥29= 1001

= Keep doing successive divisions; now remainder gets next bit,
and so on

= Let’s convert to binary form

43
6.100L Lecture 4

DOING THIS in PYTHON for
POSITIVE NUMBERS

result = "'
if num ==
result = '0'
while num > O:
result = str(num%2) + result

num = num//2

44
6.100L Lecture 4

Python Tutor LINK

https://pythontutor.com/visualize.html#code=num%20%3D%201507%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

DOING this in PYTHON and

HANDLING NEGATIVE NUMBERS

if num < O:

is neg = True

num = abs (num)
else:

is neg = False
result = "'
if num ==

result = '0'

while num > O:

result = str(num%2) + result

num = num//2

i1f is neg:

result = '"-'" 4+ result

45

6.100L Lecture 4

SUMMARY

" Loops can iterate over any sequence of values:
= range for numbers
= Astring
" Guess-and-check provides a simple algorithm for solving
problems
= When set of potential solutions is enumerable, exhaustive
enumeration guaranteed to work (eventually)

" Binary numbers help us understand how the machine works

= Converting to binary will help us understand how decimal numbers are
stored

= |mportant for the next algorithm we will see

46

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LOOPS OVER STRINGS, GUESS-and-CHECK, �BINARY�(download slides and .py files to follow along)
	LAST TIME
	break STATEMENT
	break STATEMENT
	Slide Number 5
	STRINGS and LOOPS
	The sequence of values in a for loop isn’t limited to numbers
	ROBOT CHEERLEADERS
	Slide Number 11
	SUMMARY SO FAR
	THAT IS ALL YOU NEED TO IMPLEMENT ALGORITHMS
	GUESS-and-CHECK
	GUESS-and-CHECK
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	Guess-and-check can’t test an infinite number of values
	GUESS-and-CHECK COMPARED
	Slide Number 26
	Slide Number 29
	Booleans can be used as signals that something happened
	while LOOP or for LOOP?
	GUESS-and-CHECK CUBE ROOT:�POSITIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�POSITIVE and NEGATIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�JUST a LITTLE FASTER
	ANOTHER EXAMPLE
	GUESS-and-CHECK �with WORD PROBLEMS
	EXAMPLE WITH BIGGER NUMBERS
	MORE EFFICIENT SOLUTION
	You can apply computation to many problems!
	BINARY NUMBERS
	NUMBERS in PYTHON
	OUR MOTIVATION - keep this in mind for the next few slides
	Operations on some floats introduces a very small error.
	A CLOSER LOOK AT FLOATS
	FLOATING POINT REPRESENTATION
	WHY BINARY? �HARDWARE IMPLEMENTATION
	BINARY NUMBERS
	CONVERTING DECIMAL INTEGER TO BINARY
	DOING THIS in PYTHON for POSITIVE NUMBERS
	DOING this in PYTHON and HANDLING NEGATIVE NUMBERS
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

