
LOOPS OVER STRINGS,
GUESS-and-CHECK,

BINARY
(download slides and .py files to follow along)

6.100L Lecture 4
Ana Bell

1

LAST TIME

 Looping mechanisms
 while and for loops

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Loop variable takes on values in a sequence, one at a time
 Can loop over ranges of numbers
 Will soon see many other things are easy to loop over

6.100L Lecture 4
2

break STATEMENT

 Immediately exits whatever loop it is in
 Skips remaining expressions in code block
 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.100L Lecture 4
3

break STATEMENT

mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 What happens in this program?
 Python Tutor LINK

6.100L Lecture 4
4

https://pythontutor.com/visualize.html#code=mysum%20%3D%200%0Afor%20i%20in%20range%285,%2011,%202%29%3A%0A%20%20%20%20mysum%20%2B%3D%20i%0A%20%20%20%20if%20mysum%20%3D%3D%205%3A%0A%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20mysum%20%2B%3D%201%0Aprint%28mysum%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!
 Write code that loops a for loop over some range and prints

how many even numbers are in that range. Try it with:
 range(5)
 range(10)
 range(2,9,3)
 range(-4,6,2)
 range(5,6)

6.100L Lecture 4
5

STRINGS and LOOPS

 Code to check for letter i or u in a string.
 All 3 do the same thing

6.100L Lecture 4

s = "demo loops - fruit loops"
for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':
print("There is an i or u")

for char in s:
if char == 'i' or char == 'u':

print("There is an i or u")

for char in s:
if char in 'iu':

print("There is an i or u")
6

BIG IDEA
The sequence of values
in a for loop isn’t
limited to numbers

6.100L Lecture 4
7

ROBOT CHEERLEADERS

6.100L Lecture 4
8

YOU TRY IT!
 Assume you are given a string of lowercase letters in variable s.

Count how many unique letters there are in the string. For
example, if

s = "abca"
Then your code prints 3.

6.100L Lecture 4

HINT:
Go through each character in s.
Keep track of ones you’ve seen in a string variable.
Add characters from s to the seen string variable if they are not already a character in
that seen variable.

9

SUMMARY SO FAR

 Objects have types
 Expressions are evaluated to one value, and bound to a

variable name
 Branching

 if, else, elif
 Program executes one set of code or another

 Looping mechanisms
 while and for loops
 Code executes repeatedly while some condition is true
 Code executes repeatedly for all values in a sequence

6.100L Lecture 4
10

THAT IS ALL YOU NEED TO
IMPLEMENT ALGORITHMS

6.100L Lecture 4
11

GUESS-and-CHECK

6.100L Lecture 4
12

GUESS-and-CHECK

 Process called exhaustive enumeration
 Applies to a problem where …

 You are able to guess a value for solution
 You are able to check if the solution is correct

 You can keep guessing until
 Find solution or
 Have guessed all values

6.100L Lecture 4

Initial guess

done

Is your
guess

correct?

Choose the
next guess
(Be systematic)

yes

no

13

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess?guess?guess?

14

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

6.100L Lecture 4
15

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root and can
stop (look at guess squared)

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess?

16

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 But what if x is not a perfect square?
 Need to know when to stop
 Use algebra – if guess squared is bigger than x, then can stop

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess? guess? guess?

17

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.100L Lecture 4
18

GUESS-and-CHECK
SQUARE ROOT

 Does this work for any integer value of x?
 What if x is negative?

 while loop immediately terminates

 Could check for negative input, and handle differently

6.100L Lecture 4

x

-2 -1 0 1 2 3 4 5 6 7 8

guess?

19

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")

6.100L Lecture 4
20

BIG IDEA
Guess-and-check can’t
test an infinite number
of values
You have to stop at some point!

6.100L Lecture 4
21

GUESS-and-CHECK COMPARED

while LOOP for LOOP

6.100L Lecture 4

Initial guess

Break the
loop, you’re

done

Is your
guess

correct
?

Choose next guess
(Be systematic)

yes

no

Nothing here

Did not find a solution

Sequentially
go through
all possible

guesses

Check if
the guess
is correct

Went through all
vals in sequence

Still more vals in
sequence

22

YOU TRY IT!
 Hardcode a number as a secret number.
 Write a program that checks through all the numbers from 1 to

10 and prints the secret value if it’s in that range. If it’s not
found, it doesn’t print anything.

 How does the program look if I change the requirement to be:
If it’s not found, prints that it didn’t find it.

6.100L Lecture 4
23

YOU TRY IT!
 Compare the two codes that:

 Hardcode a number as a secret number.
 Checks through all the numbers from 1 to 10 and prints the secret value if

it’s in that range.

If it’s not found, it doesn’t print anything. If it’s not found, prints that it didn’t find it.

6.100L Lecture 4

Answer:

secret = 7
found = False
for i in range(1,11):

if i == secret:
print("yes, it's", i)
found = True

if not found:
print("not found")

Answer:

secret = 7

for i in range(1,11):
if i == secret:

print("yes, it's", i)

24

BIG IDEA
Booleans can be used as
signals that something
happened
We call them Boolean flags.

6.100L Lecture 4
25

while LOOP or for LOOP?

 Already saw that code looks cleaner when iterating over
sequences of values (i.e. using a for loop)
 Don’t set up the iterant yourself as with a while loop
 Less likely to introduce errors

 Consider an example that uses a for loop and an explicit
range of values

6.100L Lecture 4
26

GUESS-and-CHECK CUBE ROOT:
POSITIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

6.100L Lecture 4
27

GUESS-and-CHECK CUBE ROOT:
POSITIVE and NEGATIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4
28

GUESS-and-CHECK CUBE ROOT:
JUST a LITTLE FASTER

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4
29

ANOTHER EXAMPLE

 Remember those word problems from your childhood?
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 2 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 10 total tickets were sold by the three people
 How many did Alyssa sell?

 Could solve this algebraically, but we can also use guess-and-
check

6.100L Lecture 4
30

GUESS-and-CHECK
with WORD PROBLEMS

for alyssa in range(11):

for ben in range(11):

for cindy in range(11):

total = (alyssa + ben + cindy == 10)

two_less = (ben == alyssa-2)

twice = (cindy == 2*alyssa)

if total and two_less and twice:

print(f"Alyssa sold {alyssa} tickets")

print(f"Ben sold {ben} tickets")

print(f"Cindy sold {cindy} tickets")

6.100L Lecture 4
31

EXAMPLE WITH BIGGER
NUMBERS

 With bigger numbers, nesting loops is slow!
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 20 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 1000 total tickets were sold by the three people
 How many did Alyssa sell?
 The previous code won’t end in a reasonable time

 Instead, loop over one variable and code the equations directly

6.100L Lecture 4
32

MORE EFFICIENT SOLUTION

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")

6.100L Lecture 4
33

BIG IDEA
You can apply
computation to many
problems!

6.100L Lecture 4
34

BINARY NUMBERS

6.100L Lecture 4
35

NUMBERS in PYTHON

 int
 integers, like the ones you learned about in elementary school

 float
 reals, like the ones you learned about in middle school

6.100L Lecture 4
36

OUR MOTIVATION - keep this in
mind for the next few slides

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 4
37

BIG IDEA
Operations on some
floats introduces a very
small error.
The small error can have a big effect if operations are done
many times!

6.100L Lecture 4
38

A CLOSER LOOK AT FLOATS

 Python (and every other programming language) uses “floating
point” to approximate real numbers
 The term “floating point” refers to the way these numbers are

stored in computer
 Approximation usually doesn’t matter

 But it does for us!
 Let’s see why…

6.100L Lecture 4
39

FLOATING POINT
REPRESENTATION

 Depends on computer hardware, not programming language
implementation
 Key things to understand

 Numbers (and everything else) are represented as a sequence of bits (0
or 1).

 When we write numbers down, the notation uses base 10.
 0.1 stands for the rational number 1/10

 This produces cognitive dissonance – and it will influence how we write
code

6.100L Lecture 4
40

WHY BINARY?
HARDWARE IMPLEMENTATION

 Easy to implement in hardware—build components that can be
in one of two states
 Computer hardware is built around methods that can efficiently

store information as 0’s or 1’s and do arithmetic with this rep
 a voltage is “high” or “low” a magnetic spin is “up” or “down”

 Fine for integer arithmetic, but what about numbers with
fractional parts (floats)?

6.100L Lecture 4
41

BINARY NUMBERS

 Base 10 representation of an integer
 sum of powers of 10, scaled by integers from 0 to 9

1507 = 1*103 + 5*102 + 0*101 + 7*100

= 1000 + 500 + 7
 Binary representation is same idea in base 2

 sum of powers of 2, scaled by integers from 0 to 1

 150710 = 1*210 + 1*28 + 1*27 + 1*26 + 1*25 + 1*21 + 1*20

= 1024 + 256 + 128 + 64 + 32 + 2 + 1
= 210 + 28 + 27 + 26 + 25 + 21 + 20

= 101111000112

6.100L Lecture 4
42

CONVERTING DECIMAL INTEGER
TO BINARY

 We input integers in decimal, computer needs to convert to
binary
 Consider example of
 x = 1910 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 10011

 If we take remainder of x relative to 2 (x%2), that gives us
the last binary bit
 If we then integer divide x by 2 (x//2), all the bits get

shifted right
 x//2 = 1*23 + 0*22 + 0*21 + 1*20 = 1001

 Keep doing successive divisions; now remainder gets next bit,
and so on
 Let’s convert to binary form

6.100L Lecture 4
43

DOING THIS in PYTHON for
POSITIVE NUMBERS

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

6.100L Lecture 4

Python Tutor LINK

44

https://pythontutor.com/visualize.html#code=num%20%3D%201507%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

DOING this in PYTHON and
HANDLING NEGATIVE NUMBERS

if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result

6.100L Lecture 4
45

SUMMARY

 Loops can iterate over any sequence of values:
 range for numbers
 A string

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)

 Binary numbers help us understand how the machine works
 Converting to binary will help us understand how decimal numbers are

stored
 Important for the next algorithm we will see

6.100L Lecture 4
46

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LOOPS OVER STRINGS, GUESS-and-CHECK, �BINARY�(download slides and .py files to follow along)
	LAST TIME
	break STATEMENT
	break STATEMENT
	Slide Number 5
	STRINGS and LOOPS
	The sequence of values in a for loop isn’t limited to numbers
	ROBOT CHEERLEADERS
	Slide Number 11
	SUMMARY SO FAR
	THAT IS ALL YOU NEED TO IMPLEMENT ALGORITHMS
	GUESS-and-CHECK
	GUESS-and-CHECK
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	Guess-and-check can’t test an infinite number of values
	GUESS-and-CHECK COMPARED
	Slide Number 26
	Slide Number 29
	Booleans can be used as signals that something happened
	while LOOP or for LOOP?
	GUESS-and-CHECK CUBE ROOT:�POSITIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�POSITIVE and NEGATIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�JUST a LITTLE FASTER
	ANOTHER EXAMPLE
	GUESS-and-CHECK �with WORD PROBLEMS
	EXAMPLE WITH BIGGER NUMBERS
	MORE EFFICIENT SOLUTION
	You can apply computation to many problems!
	BINARY NUMBERS
	NUMBERS in PYTHON
	OUR MOTIVATION - keep this in mind for the next few slides
	Operations on some floats introduces a very small error.
	A CLOSER LOOK AT FLOATS
	FLOATING POINT REPRESENTATION
	WHY BINARY? �HARDWARE IMPLEMENTATION
	BINARY NUMBERS
	CONVERTING DECIMAL INTEGER TO BINARY
	DOING THIS in PYTHON for POSITIVE NUMBERS
	DOING this in PYTHON and HANDLING NEGATIVE NUMBERS
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

