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LAST TIME

 Looping mechanisms
 while and for loops

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Loop variable takes on values in a sequence, one at a time
 Can loop over ranges of numbers
 Will soon see many other things are easy to loop over
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break STATEMENT

 Immediately exits whatever loop it is in
 Skips remaining expressions in code block
 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>
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break STATEMENT

mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 What happens in this program?
 Python Tutor LINK
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YOU TRY IT!
 Write code that loops a for loop over some range and prints

how many even numbers are in that range. Try it with:
 range(5)
 range(10)
 range(2,9,3)
 range(-4,6,2)
 range(5,6)
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STRINGS and LOOPS

 Code to check for letter i or u in a string.
 All 3 do the same thing
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s = "demo loops - fruit loops"
for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':
print("There is an i or u")

for char in s:
if char == 'i' or char == 'u':

print("There is an i or u")

for char in s:
if char in 'iu':

print("There is an i or u")
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BIG  IDEA
The sequence of values 
in a for loop isn’t
limited to numbers
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ROBOT CHEERLEADERS

6.100L Lecture 4
8



YOU TRY IT!
 Assume you are given a string of lowercase letters in variable s.

Count how many unique letters there are in the string. For
example, if

s = "abca"
Then your code prints 3. 
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HINT: 
Go through each character in s. 
Keep track of ones you’ve seen in a string variable. 
Add characters from s to the seen string variable if they are not already a character in 
that seen variable. 
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SUMMARY SO FAR

 Objects have types
 Expressions are evaluated to one value, and bound to a

variable name
 Branching

 if, else, elif
 Program executes one set of code or another

 Looping mechanisms
 while and for loops
 Code executes repeatedly while some condition is true
 Code executes repeatedly for all values in a sequence
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THAT IS ALL YOU NEED TO 
IMPLEMENT ALGORITHMS
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GUESS-and-CHECK
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GUESS-and-CHECK

 Process called exhaustive enumeration
 Applies to a problem where …

 You are able to guess a value for solution
 You are able to check if the solution is correct

 You can keep guessing until
 Find solution or
 Have guessed all values
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Initial guess

done

Is your 
guess 

correct?

Choose the 
next guess
(Be systematic)

yes

no

13



GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
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x

0    1     2    3    4    5     6      7    8  9  10

guess? guess?guess?guess?
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GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc
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GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root and can
stop (look at guess squared)
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x

0    1     2    3    4    5     6      7    8  9  10

guess? guess? guess?
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GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 But what if x is not a perfect square?
 Need to know when to stop
 Use algebra – if guess squared is bigger than x, then can stop
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x

0    1     2    3    4    5     6      7    8  9  10

guess? guess? guess? guess? guess?
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GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.100L Lecture 4
18



GUESS-and-CHECK
SQUARE ROOT

 Does this work for any integer value of x?
 What if x is negative?

 while loop immediately terminates

 Could check for negative input, and handle differently
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x

-2 -1   0    1  2   3    4    5   6   7 8 

guess?
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GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")
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BIG  IDEA
Guess-and-check can’t 
test an infinite number 
of values
You have to stop at some point!
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GUESS-and-CHECK COMPARED

while LOOP for LOOP
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Initial guess

Break the 
loop, you’re

done

Is your 
guess 

correct
?

Choose next guess
(Be systematic)

yes

no

Nothing here

Did not find a solution

Sequentially 
go through 
all possible 

guesses

Check if 
the guess 
is correct

Went through all 
vals in sequence

Still more vals in 
sequence
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YOU TRY IT!
 Hardcode a number as a secret number.
 Write a program that checks through all the numbers from 1 to

10 and prints the secret value if it’s in that range. If it’s not
found, it doesn’t print anything.

 How does the program look if I change the requirement to be:
If it’s not found, prints that it didn’t find it.
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YOU TRY IT!
 Compare the two codes that:

 Hardcode a number as a secret number.
 Checks through all the numbers from 1 to 10 and prints the secret value if

it’s in that range.

If it’s not found, it doesn’t print anything. If it’s not found, prints that it didn’t find it. 
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Answer:

secret = 7
found = False
for i in range(1,11):

if i == secret:
print("yes, it's", i)
found = True

if not found:
print("not found")

Answer:

secret = 7

for i in range(1,11):
if i == secret:

print("yes, it's", i)
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BIG  IDEA
Booleans can be used as 
signals that something 
happened
We call them Boolean flags.
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while LOOP or for LOOP?

 Already saw that code looks cleaner when iterating over
sequences of values (i.e. using a for loop)
 Don’t set up the iterant yourself as with a while loop
 Less likely to introduce errors

 Consider an example that uses a for loop and an explicit
range of values
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GUESS-and-CHECK CUBE ROOT:
POSITIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)
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GUESS-and-CHECK CUBE ROOT:
POSITIVE and NEGATIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))
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GUESS-and-CHECK CUBE ROOT:
JUST a LITTLE FASTER

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))
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ANOTHER EXAMPLE

 Remember those word problems from your childhood?
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 2 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 10 total tickets were sold by the three people
 How many did Alyssa sell?

 Could solve this algebraically, but we can also use guess-and-
check

6.100L Lecture 4
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GUESS-and-CHECK 
with WORD PROBLEMS

for alyssa in range(11):

for ben in range(11):

for cindy in range(11):

total = (alyssa + ben + cindy == 10)

two_less = (ben == alyssa-2)

twice = (cindy == 2*alyssa)

if total and two_less and twice:

print(f"Alyssa sold {alyssa} tickets")

print(f"Ben sold {ben} tickets")

print(f"Cindy sold {cindy} tickets")
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EXAMPLE WITH BIGGER 
NUMBERS

 With bigger numbers, nesting loops is slow!
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 20 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 1000 total tickets were sold by the three people
 How many did Alyssa sell?
 The previous code won’t end in a reasonable time

 Instead, loop over one variable and code the equations directly
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MORE EFFICIENT SOLUTION

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")
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BIG  IDEA
You can apply 
computation to many 
problems!
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BINARY NUMBERS

6.100L Lecture 4
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NUMBERS in PYTHON

 int
 integers, like the ones you learned about in elementary school

 float
 reals, like the ones you learned about in middle school
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OUR MOTIVATION - keep this in 
mind for the next few slides

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)
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BIG  IDEA
Operations on some 
floats introduces a very 
small error.
The small error can have a big effect if operations are done 
many times!
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A CLOSER LOOK AT FLOATS

 Python (and every other programming language) uses “floating
point” to approximate real numbers
 The term “floating point” refers to the way these numbers are

stored in computer
 Approximation usually doesn’t matter

 But it does for us!
 Let’s see why…
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FLOATING POINT 
REPRESENTATION

 Depends on computer hardware, not programming language
implementation
 Key things to understand

 Numbers (and everything else) are represented as a sequence of bits (0
or 1).

 When we write numbers down, the notation uses base 10.
 0.1 stands for the rational number 1/10

 This produces cognitive dissonance – and it will influence how we write
code
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WHY BINARY? 
HARDWARE IMPLEMENTATION

 Easy to implement in hardware—build components that can be
in one of two states
 Computer hardware is built around methods that can efficiently

store information as 0’s or 1’s and do arithmetic with this rep
 a voltage is “high” or “low” a magnetic spin is “up” or “down”

 Fine for integer arithmetic, but what about numbers with
fractional parts (floats)?
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BINARY NUMBERS

 Base 10 representation of an integer
 sum of powers of 10, scaled by integers from 0 to 9

1507 = 1*103 + 5*102 + 0*101 + 7*100

= 1000 + 500 + 7
 Binary representation is same idea in base 2

 sum of powers of 2, scaled by integers from 0 to 1

 150710 = 1*210 + 1*28 + 1*27 + 1*26 + 1*25 + 1*21 + 1*20

= 1024 + 256 + 128 + 64 + 32 + 2 + 1
= 210 + 28 + 27 + 26 + 25 + 21 + 20

= 101111000112
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CONVERTING DECIMAL INTEGER 
TO BINARY

 We input integers in decimal, computer needs to convert to
binary
 Consider example of
 x = 1910 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 10011

 If we take remainder of x relative to 2 (x%2), that gives us
the last binary bit
 If we then integer divide x by 2 (x//2), all the bits get

shifted right
 x//2 = 1*23 + 0*22 + 0*21 + 1*20 = 1001

 Keep doing successive divisions; now remainder gets next bit,
and so on
 Let’s convert to binary form
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DOING THIS in PYTHON for 
POSITIVE NUMBERS

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

6.100L Lecture 4

Python Tutor LINK
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DOING this in PYTHON and 
HANDLING NEGATIVE NUMBERS

if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result
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SUMMARY

 Loops can iterate over any sequence of values:
 range for numbers
 A string

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)

 Binary numbers help us understand how the machine works
 Converting to binary will help us understand how decimal numbers are

stored
 Important for the next algorithm we will see
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