
LOOPS OVER STRINGS,
GUESS-and-CHECK,

BINARY
(download slides and .py files to follow along)

6.100L Lecture 4
Ana Bell

1

LAST TIME

 Looping mechanisms
 while and for loops

 While loops
 Loop as long as a condition is true
 Need to make sure you don’t enter an infinite loop

 For loops
 Loop variable takes on values in a sequence, one at a time
 Can loop over ranges of numbers
 Will soon see many other things are easy to loop over

6.100L Lecture 4
2

break STATEMENT

 Immediately exits whatever loop it is in
 Skips remaining expressions in code block
 Exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.100L Lecture 4
3

break STATEMENT

mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 What happens in this program?
 Python Tutor LINK

6.100L Lecture 4
4

https://pythontutor.com/visualize.html#code=mysum%20%3D%200%0Afor%20i%20in%20range%285,%2011,%202%29%3A%0A%20%20%20%20mysum%20%2B%3D%20i%0A%20%20%20%20if%20mysum%20%3D%3D%205%3A%0A%20%20%20%20%20%20%20%20break%0A%20%20%20%20%20%20%20%20mysum%20%2B%3D%201%0Aprint%28mysum%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

YOU TRY IT!
 Write code that loops a for loop over some range and prints

how many even numbers are in that range. Try it with:
 range(5)
 range(10)
 range(2,9,3)
 range(-4,6,2)
 range(5,6)

6.100L Lecture 4
5

STRINGS and LOOPS

 Code to check for letter i or u in a string.
 All 3 do the same thing

6.100L Lecture 4

s = "demo loops - fruit loops"
for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':
print("There is an i or u")

for char in s:
if char == 'i' or char == 'u':

print("There is an i or u")

for char in s:
if char in 'iu':

print("There is an i or u")
6

BIG IDEA
The sequence of values
in a for loop isn’t
limited to numbers

6.100L Lecture 4
7

ROBOT CHEERLEADERS

6.100L Lecture 4
8

YOU TRY IT!
 Assume you are given a string of lowercase letters in variable s.

Count how many unique letters there are in the string. For
example, if

s = "abca"
Then your code prints 3.

6.100L Lecture 4

HINT:
Go through each character in s.
Keep track of ones you’ve seen in a string variable.
Add characters from s to the seen string variable if they are not already a character in
that seen variable.

9

SUMMARY SO FAR

 Objects have types
 Expressions are evaluated to one value, and bound to a

variable name
 Branching

 if, else, elif
 Program executes one set of code or another

 Looping mechanisms
 while and for loops
 Code executes repeatedly while some condition is true
 Code executes repeatedly for all values in a sequence

6.100L Lecture 4
10

THAT IS ALL YOU NEED TO
IMPLEMENT ALGORITHMS

6.100L Lecture 4
11

GUESS-and-CHECK

6.100L Lecture 4
12

GUESS-and-CHECK

 Process called exhaustive enumeration
 Applies to a problem where …

 You are able to guess a value for solution
 You are able to check if the solution is correct

 You can keep guessing until
 Find solution or
 Have guessed all values

6.100L Lecture 4

Initial guess

done

Is your
guess

correct?

Choose the
next guess
(Be systematic)

yes

no

13

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess?guess?guess?

14

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

6.100L Lecture 4
15

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 If x is a perfect square, we will eventually find its root and can
stop (look at guess squared)

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess?

16

GUESS-and-CHECK
SQUARE ROOT

 Basic idea:
 Given an int, call it x, want to see if there is another int which is its

square root
 Start with a guess and check if it is the right answer
 To be systematic, start with guess = 0, then 1, then 2, etc

 But what if x is not a perfect square?
 Need to know when to stop
 Use algebra – if guess squared is bigger than x, then can stop

6.100L Lecture 4

x

0 1 2 3 4 5 6 7 8 9 10

guess? guess? guess? guess? guess?

17

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

x = int(input("Enter an integer: "))

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

6.100L Lecture 4
18

GUESS-and-CHECK
SQUARE ROOT

 Does this work for any integer value of x?
 What if x is negative?

 while loop immediately terminates

 Could check for negative input, and handle differently

6.100L Lecture 4

x

-2 -1 0 1 2 3 4 5 6 7 8

guess?

19

GUESS-and-CHECK
SQUARE ROOT with while loop

guess = 0

neg_flag = False

x = int(input("Enter a positive integer: "))

if x < 0:

neg_flag = True

while guess**2 < x:

guess = guess + 1

if guess**2 == x:

print("Square root of", x, "is", guess)

else:

print(x, "is not a perfect square")

if neg_flag:

print("Just checking... did you mean", -x, "?")

6.100L Lecture 4
20

BIG IDEA
Guess-and-check can’t
test an infinite number
of values
You have to stop at some point!

6.100L Lecture 4
21

GUESS-and-CHECK COMPARED

while LOOP for LOOP

6.100L Lecture 4

Initial guess

Break the
loop, you’re

done

Is your
guess

correct
?

Choose next guess
(Be systematic)

yes

no

Nothing here

Did not find a solution

Sequentially
go through
all possible

guesses

Check if
the guess
is correct

Went through all
vals in sequence

Still more vals in
sequence

22

YOU TRY IT!
 Hardcode a number as a secret number.
 Write a program that checks through all the numbers from 1 to

10 and prints the secret value if it’s in that range. If it’s not
found, it doesn’t print anything.

 How does the program look if I change the requirement to be:
If it’s not found, prints that it didn’t find it.

6.100L Lecture 4
23

YOU TRY IT!
 Compare the two codes that:

 Hardcode a number as a secret number.
 Checks through all the numbers from 1 to 10 and prints the secret value if

it’s in that range.

If it’s not found, it doesn’t print anything. If it’s not found, prints that it didn’t find it.

6.100L Lecture 4

Answer:

secret = 7
found = False
for i in range(1,11):

if i == secret:
print("yes, it's", i)
found = True

if not found:
print("not found")

Answer:

secret = 7

for i in range(1,11):
if i == secret:

print("yes, it's", i)

24

BIG IDEA
Booleans can be used as
signals that something
happened
We call them Boolean flags.

6.100L Lecture 4
25

while LOOP or for LOOP?

 Already saw that code looks cleaner when iterating over
sequences of values (i.e. using a for loop)
 Don’t set up the iterant yourself as with a while loop
 Less likely to introduce errors

 Consider an example that uses a for loop and an explicit
range of values

6.100L Lecture 4
26

GUESS-and-CHECK CUBE ROOT:
POSITIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

6.100L Lecture 4
27

GUESS-and-CHECK CUBE ROOT:
POSITIVE and NEGATIVE CUBES

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 == abs(cube):

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4
28

GUESS-and-CHECK CUBE ROOT:
JUST a LITTLE FASTER

cube = int(input("Enter an integer: "))

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, "is not a perfect cube")

else:

if cube < 0:

guess = -guess

print("Cube root of "+str(cube)+" is "+str(guess))

6.100L Lecture 4
29

ANOTHER EXAMPLE

 Remember those word problems from your childhood?
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 2 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 10 total tickets were sold by the three people
 How many did Alyssa sell?

 Could solve this algebraically, but we can also use guess-and-
check

6.100L Lecture 4
30

GUESS-and-CHECK
with WORD PROBLEMS

for alyssa in range(11):

for ben in range(11):

for cindy in range(11):

total = (alyssa + ben + cindy == 10)

two_less = (ben == alyssa-2)

twice = (cindy == 2*alyssa)

if total and two_less and twice:

print(f"Alyssa sold {alyssa} tickets")

print(f"Ben sold {ben} tickets")

print(f"Cindy sold {cindy} tickets")

6.100L Lecture 4
31

EXAMPLE WITH BIGGER
NUMBERS

 With bigger numbers, nesting loops is slow!
 For example:

 Alyssa, Ben, and Cindy are selling tickets to a fundraiser
 Ben sells 20 fewer than Alyssa
 Cindy sells twice as many as Alyssa
 1000 total tickets were sold by the three people
 How many did Alyssa sell?
 The previous code won’t end in a reasonable time

 Instead, loop over one variable and code the equations directly

6.100L Lecture 4
32

MORE EFFICIENT SOLUTION

for alyssa in range(1001):

ben = max(alyssa - 20, 0)

cindy = alyssa * 2

if ben + cindy + alyssa == 1000:

print("Alyssa sold " + str(alyssa) + " tickets")

print("Ben sold " + str(ben) + " tickets")

print("Cindy sold " + str(cindy) + " tickets")

6.100L Lecture 4
33

BIG IDEA
You can apply
computation to many
problems!

6.100L Lecture 4
34

BINARY NUMBERS

6.100L Lecture 4
35

NUMBERS in PYTHON

 int
 integers, like the ones you learned about in elementary school

 float
 reals, like the ones you learned about in middle school

6.100L Lecture 4
36

OUR MOTIVATION - keep this in
mind for the next few slides

x = 0

for i in range(10):

x += 0.1

print(x == 1)

print(x, '==', 10*0.1)

6.100L Lecture 4
37

BIG IDEA
Operations on some
floats introduces a very
small error.
The small error can have a big effect if operations are done
many times!

6.100L Lecture 4
38

A CLOSER LOOK AT FLOATS

 Python (and every other programming language) uses “floating
point” to approximate real numbers
 The term “floating point” refers to the way these numbers are

stored in computer
 Approximation usually doesn’t matter

 But it does for us!
 Let’s see why…

6.100L Lecture 4
39

FLOATING POINT
REPRESENTATION

 Depends on computer hardware, not programming language
implementation
 Key things to understand

 Numbers (and everything else) are represented as a sequence of bits (0
or 1).

 When we write numbers down, the notation uses base 10.
 0.1 stands for the rational number 1/10

 This produces cognitive dissonance – and it will influence how we write
code

6.100L Lecture 4
40

WHY BINARY?
HARDWARE IMPLEMENTATION

 Easy to implement in hardware—build components that can be
in one of two states
 Computer hardware is built around methods that can efficiently

store information as 0’s or 1’s and do arithmetic with this rep
 a voltage is “high” or “low” a magnetic spin is “up” or “down”

 Fine for integer arithmetic, but what about numbers with
fractional parts (floats)?

6.100L Lecture 4
41

BINARY NUMBERS

 Base 10 representation of an integer
 sum of powers of 10, scaled by integers from 0 to 9

1507 = 1*103 + 5*102 + 0*101 + 7*100

= 1000 + 500 + 7
 Binary representation is same idea in base 2

 sum of powers of 2, scaled by integers from 0 to 1

 150710 = 1*210 + 1*28 + 1*27 + 1*26 + 1*25 + 1*21 + 1*20

= 1024 + 256 + 128 + 64 + 32 + 2 + 1
= 210 + 28 + 27 + 26 + 25 + 21 + 20

= 101111000112

6.100L Lecture 4
42

CONVERTING DECIMAL INTEGER
TO BINARY

 We input integers in decimal, computer needs to convert to
binary
 Consider example of
 x = 1910 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 10011

 If we take remainder of x relative to 2 (x%2), that gives us
the last binary bit
 If we then integer divide x by 2 (x//2), all the bits get

shifted right
 x//2 = 1*23 + 0*22 + 0*21 + 1*20 = 1001

 Keep doing successive divisions; now remainder gets next bit,
and so on
 Let’s convert to binary form

6.100L Lecture 4
43

DOING THIS in PYTHON for
POSITIVE NUMBERS

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

6.100L Lecture 4

Python Tutor LINK

44

https://pythontutor.com/visualize.html#code=num%20%3D%201507%0Aresult%20%3D%20''%0Aif%20num%20%3D%3D%200%3A%0A%20%20%20%20result%20%3D%20'0'%0Awhile%20num%20%3E%200%3A%0A%20%20%20%20result%20%3D%20str%28num%252%29%20%2B%20result%0A%20%20%20%20num%20%3D%20num//2%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

DOING this in PYTHON and
HANDLING NEGATIVE NUMBERS

if num < 0:

is_neg = True

num = abs(num)

else:

is_neg = False

result = ''

if num == 0:

result = '0'

while num > 0:

result = str(num%2) + result

num = num//2

if is_neg:

result = '-' + result

6.100L Lecture 4
45

SUMMARY

 Loops can iterate over any sequence of values:
 range for numbers
 A string

 Guess-and-check provides a simple algorithm for solving
problems
 When set of potential solutions is enumerable, exhaustive

enumeration guaranteed to work (eventually)

 Binary numbers help us understand how the machine works
 Converting to binary will help us understand how decimal numbers are

stored
 Important for the next algorithm we will see

6.100L Lecture 4
46

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

47

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LOOPS OVER STRINGS, GUESS-and-CHECK, �BINARY�(download slides and .py files to follow along)
	LAST TIME
	break STATEMENT
	break STATEMENT
	Slide Number 5
	STRINGS and LOOPS
	The sequence of values in a for loop isn’t limited to numbers
	ROBOT CHEERLEADERS
	Slide Number 11
	SUMMARY SO FAR
	THAT IS ALL YOU NEED TO IMPLEMENT ALGORITHMS
	GUESS-and-CHECK
	GUESS-and-CHECK
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	GUESS-and-CHECK�SQUARE ROOT
	GUESS-and-CHECK�SQUARE ROOT with while loop
	Guess-and-check can’t test an infinite number of values
	GUESS-and-CHECK COMPARED
	Slide Number 26
	Slide Number 29
	Booleans can be used as signals that something happened
	while LOOP or for LOOP?
	GUESS-and-CHECK CUBE ROOT:�POSITIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�POSITIVE and NEGATIVE CUBES
	GUESS-and-CHECK CUBE ROOT:�JUST a LITTLE FASTER
	ANOTHER EXAMPLE
	GUESS-and-CHECK �with WORD PROBLEMS
	EXAMPLE WITH BIGGER NUMBERS
	MORE EFFICIENT SOLUTION
	You can apply computation to many problems!
	BINARY NUMBERS
	NUMBERS in PYTHON
	OUR MOTIVATION - keep this in mind for the next few slides
	Operations on some floats introduces a very small error.
	A CLOSER LOOK AT FLOATS
	FLOATING POINT REPRESENTATION
	WHY BINARY? �HARDWARE IMPLEMENTATION
	BINARY NUMBERS
	CONVERTING DECIMAL INTEGER TO BINARY
	DOING THIS in PYTHON for POSITIVE NUMBERS
	DOING this in PYTHON and HANDLING NEGATIVE NUMBERS
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

