FLOATS and APPROXIMATION METHODS

(download slides and .py files to follow along)

6.100L Lecture 5

Ana Bell

OUR MOTIVATION FROM LAST LECTURE

x = 0
for i in range(10):
 x += 0.1
print(x == 1)
print(x, '==', 10*0.1)

INTEGERS

- Integers have straightforward representations in binary
- The code was simple (and can add a piece to deal with negative numbers)

FRACTIONS

FRACTIONS

- What does the decimal fraction 0.abc mean?
 - a*10⁻¹ + b*10⁻² + c*10⁻³
- For binary representation, we use the same idea
 - a*2⁻¹ + b*2⁻² + c*2⁻³
- Or to put this in simpler terms, the binary representation of a decimal fraction f would require finding the values of a, b, c, etc. such that
 - f = 0.5a + 0.25b + 0.125c + 0.0625d + 0.03125e + ...

WHAT ABOUT FRACTIONS?

- How might we find that representation?
- In decimal form: 3/8 = 0.375 = 3*10⁻¹ + 7*10⁻² + 5*10⁻³
- Recipe idea: if we can multiply by a power of 2 big enough to turn into a whole number, can convert to binary, and then divide by the same power of 2 to restore
 - 0.375 * (2**3) = 3₁₀
 - Convert 3 to binary (now 11₂)
 - Divide by 2**3 (shift right three spots) to get 0.011₂

BUT...

- If there is no integer p such that x*(2^p) is a whole number, then internal representation is always an approximation
- And I am assuming that the representation for the decimal fraction I provided as input is completely accurate and not already an approximation as a result of number being read into Python
- Floating point conversion works:
 - Precisely for numbers like 3/8
 - But not for 1/10
 - One has a power of 2 that converts to whole number, the other doesn't

^{6.100}L Lecture 4

WHY is this a PROBLEM?

- What does the decimal representation 0.125 mean
 - 1*10⁻¹ + 2*10⁻² + 5*10⁻³
- Suppose we want to represent it in binary?
 - 1*2⁻³ 0.001
- How how about the decimal representation 0.1
 - In base 10: 1 * 10⁻¹
 - In base 2: ?
 0.0001100110011001100110011...
 Infinite!

THE POINT?

- If everything ultimately is represented in terms of bits, we need to think about how to use binary representation to capture numbers
- Integers are straightforward
- But real numbers (things with digits after the decimal point) are a problem
 - The idea was to try and convert a real number to an int by multiplying the real with some multiple of 2 to get an int
 - Sometimes there is no such power of 2!
 - Have to somehow approximate the potentially infinite binary sequence of bits needed to represent them

FLOATS

STORING FLOATING POINT NUMBERS #.#

- Floating point is a pair of integers
 - Significant digits and base 2 exponent
 - $(1, 1) \rightarrow 1^* 2^1 \rightarrow 10_2 \rightarrow 2.0$
 - $(1, -1) \rightarrow 1^* 2^{-1} \rightarrow 0.1_2 \rightarrow 0.5$
 - $(125, -2) \rightarrow 125^*2^{-2} \rightarrow 11111.01_2 \rightarrow 31.25$

125 is 1111101 then move the decimal point over 2

Called "floating point" because location of decimal can "float" relative to significant digits

USE A FINITE SET OF BITS TO REPRESENT A POTENTIALLY INFINITE SET OF BITS

- The maximum number of significant digits governs the precision with which numbers can be represented
- Most modern computers use 32 bits to represent significant digits
- If a number is represented with more than 32 bits in binary, the number will be rounded
 - Error will be at the 32nd bit
 - Error will only be on order of 2*10⁻¹⁰

2⁻³² is approx. 10⁻¹⁰ pretty small number, isn't it?

SURPRISING RESULTS!

True

x = 0for i in range(10): x += 0.1 print(x == 1)False

print(x, '==', 10*0.1)

0.999999999999999999999999 == 1.0

MORAL of the STORY

- Never use == to test floats
 - Instead test whether they are within small amount of each other
- What gets printed isn't always what is in memory
- Need to be careful in designing algorithms that use floats

APPROXIMATION METHODS

LAST LECTURE

- Guess-and-check provides a simple algorithm for solving problems
- When set of potential solutions is enumerable, exhaustive enumeration guaranteed to work (eventually)
- It's a limiting way to solve problems
 - Increment is usually an integer but not always. i.e. we just need some pattern to give us a finite set of enumerable values
 - Can't give us an approximate solution to varying degrees

BETTER than GUESS-and-CHECK

- Want to find an approximation to an answer
 - Not just the correct answer, like guess-and-check
 - And not just that we did not find the answer, like guess-and-check

EFFECT of APPROXIMATION on our ALGORITHMS?

- Exact answer may not be accessible
- Need to find ways to get "good enough" answer
 - Our answer is "close enough" to ideal answer
- Need ways to deal with fact that exhaustive enumeration can't test every possible value, since set of possible answers is in principle infinite
- Floating point approximation errors are important to this method
 - Can't rely on equality!

APPROXIMATE sqrt(x)

FINDING ROOTS

- Last lecture we looked at using exhaustive enumeration/guess and check methods to find the roots of perfect squares
- Suppose we want to find the square root of any positive integer, or any positive number
- Question: What does it mean to find the square root of x?
 - Find an r such that r*r = x ?
 - If x is not a perfect square, then not possible in general to find an exact r that satisfies this relationship; and exhaustive search is infinite

APPROXIMATION

- Find an answer that is "good enough"
 - E.g., find a r such that r*r is within a given (small) distance of x
 - Use epsilon: given x we want to find r such that $|r^2 x| < \varepsilon$
- Algorithm
 - Start with guess known to be too small call it g
 - Increment by a small value call it a to give a new guess g
 - Check if g * * 2 is close enough to x (within ε)
 - Continue until get answer close enough to actual answer
- Looking at all possible values g + k*a for integer values of k
 - so similar to exhaustive enumeration
 - But cannot test all possibilities as infinite

APPROXIMATION ALGORITHM

- In this case, we have two parameters to set
 - epsilon (how close are we to answer?)
 - increment (how much to increase our guess?)
- Performance will vary based on these values
 - In speed
 - In accuracy
- Decreasing increment size → slower program, but more likely to get good answer (and vice versa)

APPROXIMATION ALGORITHM

- In this case, we have two parameters to set
 - **epsilon** (how close are we to answer?)
 - increment (how much to increase our guess?)
- Performance will vary based on these values
 - In speed
 - In accuracy
- Increasing epsilon → less accurate answer, but faster program (and vice versa)

BIG IDEA

Approximation is like guess-and-check except...

1) We increment by some small amount

2) We stop when close enough (exact is not possible)

IMPLEMENTATION

x = 36 epsilon = 0.01 num_guesses = 0 guess = 0.0 increment = 0.0001

while abs(guess**2 - x) >= epsilon:

guess += increment

num guesses += 1

print('num_guesses =', num_guesses)

print(guess, 'is close to square root of', x)

Will this loop always terminate?

Note: guess += increment is same as guess = guess + increment

6.100L Lecture 5

OBSERVATIONS with DIFFERENT VALUES for x

- For x = 36
 - Didn't find 6
 - Took about 60,000 guesses
- Let's try:
 - **2**4
 - **2**
 - **12345**
 - **5**4321

```
x = 54321
epsilon = 0.01
numGuesses = 0
                                            Debugging print statements
                                             every 100000 times through the
quess = 0.0
                                             loop, showing guess and how
increment = 0.0001
                                              far away from epsilon we are
while abs(quess**2 - x) >= epsilon:
    quess += increment
    numGuesses += 1
    if numGuesses%100000 == 0:
        print('Current guess =', guess)
        print('Current guess**2 - x =', abs(guess*guess - x))
print('numGuesses =', numGuesses)
print(guess, 'is close to square root of', x)
                                 28
```

```
6.100L Lecture 5
```

WE OVERSHOT the EPSILON!

- Blue arrow is the guess
- Green arrow is guess**2

SOME OBSERVATIONS

- Decrementing function eventually starts incrementing
 - So didn't exit loop as expected
- We have over-shot the mark
 - I.e., we jumped from a value too far away but too small to one too far away but too large
- We didn't account for this possibility when writing the loop
- Let's fix that

LET'S FIX IT

BIG IDEA

It's possible to overshoot the epsilon, so you need another end condition

SOME OBSERVATIONS

- Now it stops, but reports failure, because it has over-shot the answer
- Let's try resetting increment to 0.00001
 - Smaller increment means more values will be checked
 - Program will be slower

BIG IDEA

Be careful when comparing floats.

LESSONS LEARNED in APPROXIMATION

- Can't use == to check an exit condition
- Need to be careful that looping mechanism doesn't jump over exit test and loop forever
- Tradeoff exists between efficiency of algorithm and accuracy of result
- Need to think about how close an answer we want when setting parameters of algorithm
- To get a good answer, this method can be painfully slow.
 - Is there a faster way that still gets good answers?
 - **YES!** We will see it next lecture....

SUMMARY

- Floating point numbers introduce challenges!
- They can't be represented in memory exactly
 - Operations on floats introduce tiny errors
 - Multiple operations on floats magnify errors :(
- Approximation methods use floats
 - Like guess-and-check except that

 (1) We use a float as an increment
 (2) We stop when we are close enough
 - Never use == to compare floats in the stopping condition
 - Be careful about overshooting the close-enough stopping condition

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.