FLOATS and APPROXIMATION METHODS

(download slides and .py files to follow along) 6.100L Lecture 5

Ana Bell

OUR MOTIVATION FROM LAST LECTURE

$$
\begin{aligned}
& \mathrm{x}=0 \\
& \text { for i in range }(10): \\
& \quad \mathrm{x}+=0.1 \\
& \text { print }(\mathrm{x}==1) \\
& \text { print }\left(\mathrm{x}, \mathrm{r}^{\prime}==^{\prime}, 10 * 0.1\right) \quad 0.999999999999==1.0
\end{aligned}
$$

INTEGERS

- Integers have straightforward representations in binary
- The code was simple (and can add a piece to deal with negative numbers)

FRACTIONS

FRACTIONS

- What does the decimal fraction 0.abc mean?
- $a^{*} 10^{-1}+b^{*} 10^{-2}+c^{*} 10^{-3}$
- For binary representation, we use the same idea
- $a^{*} 2^{-1}+b^{*} 2^{-2}+c^{*} 2^{-3}$
- Or to put this in simpler terms, the binary representation of a decimal fraction f would require finding the values of a, b, c, etc. such that
- $f=0.5 a+0.25 b+0.125 c+0.0625 d+0.03125 e+\ldots$

WHAT ABOUT FRACTIONS?

- How might we find that representation?
- In decimal form: $3 / 8=0.3 \mid 5=3 * 10^{-1}+7^{*} 10^{-2}+5^{*} 10^{-3}$
- Recipe idea: if we can multiply by a power of 2 big enough to turn into a whole number, can convert to binary, and then divide by the same power of 2 to restore
- 0.375 * $\left(2^{* *} 3\right)=3_{10}$
- Convert 3 to binary (now $11{ }_{2}$)
- Divide by $2^{* *} 3$ (shift right three spots) to get 0.011_{2}

BUT...

- If there is no integer p such that $x^{*}\left(2^{p}\right)$ is a whole number, then internal representation is always an approximation
- And I am assuming that the representation for the decimal fraction I provided as input is completely accurate and not already an approximation as a result of number being read into Python
- Floating point conversion works:
- Precisely for numbers like 3/8
- But not for $1 / 10$
- One has a power of 2 that converts to whole number, the other doesn't

TRACE THROUGH THIS ON YOUR OWN Python Tutor LINK
 $$
\begin{aligned} & x=0.625 \quad \text { \% grabs the decimal p } \\ & \text { e.g. } 1.1 \% 1 \text { gives } 0.1 \end{aligned}
$$

```
p=0
    print('Remainder = ' + str((2**p)*x - int((2**p)*x)))
    p += 1
```

```
num = int(x* (2**p))
```

```
```

result = ''

```
```

result = ''
if num == 0:
if num == 0:
result = '0'
result = '0'
while num > 0:
while num > 0:
result = str(num%2) + result
result = str(num%2) + result
num = num//2

```
```

 num = num//2
    ```
```

```
```

for i in range(p - len(result)):

```
```

for i in range(p - len(result)):
result = '0' + result

```
```

 result = '0' + result
    ```
```

result $=$ result $[0:-\mathrm{p}]+{ }^{\prime} .{ }^{\prime}+\operatorname{result}[-\mathrm{p}:]$
str(result))

WHY is this a PROBLEM?

- What does the decimal representation 0.125 mean
- $1^{*} 10^{-1}+2^{*} 10^{-2}+5^{*} 10^{-3}$
- Suppose we want to represent it in binary?
- $1^{*} 2^{-3} 0.001$
- How how about the decimal representation 0.1
- In base 10: 1 * 10^{-1}
- In base 2: ?
$0.0001100110011001100110011 \ldots$ Infinite!

THE POINT?

- If everything ultimately is represented in terms of bits, we need to think about how to use binary representation to capture numbers
- Integers are straightforward
- But real numbers (things with digits after the decimal point) are a problem
- The idea was to try and convert a real number to an int by multiplying the real with some multiple of 2 to get an int
- Sometimes there is no such power of 2!
- Have to somehow approximate the potentially infinite binary sequence of bits needed to represent them

FLOATS

STORING FLOATING POINT NUMBERS

 \#.\#- Floating point is a pair of integers
- Significant digits and base 2 exponent
- $(1,1) \rightarrow 1^{*} 2^{1} \rightarrow 10_{2} \rightarrow 2.0$
- $(1,-1) \rightarrow 1^{*} 2^{-1} \rightarrow 0.1_{2} \rightarrow 0.5$
- $(125,-2) \rightarrow 125^{*} 2^{-2} \rightarrow 11111.01_{2} \rightarrow 31.25$

125 is 1111101 then move the decimal point over 2

USE A FINITE SET OF BITS TO REPRESENT A POTENTIALLY INFINITE SET OF BITS

- The maximum number of significant digits governs the precision with which numbers can be represented
- Most modern computers use 32 bits to represent significant digits
- If a number is represented with more than 32 bits in binary, the number will be rounded
- Error will be at the $32^{\text {nd }}$ bit
- Error will only be on order of $2 * 10^{-10}$
2^{-32} is approx. 10^{-10}
pretty small number, isn't it?

SURPRISING RESULTS!

$$
\begin{aligned}
& X=0 \\
& \text { for i in range (10): } \\
& x+=0.125 \\
& \text { print }(x==1.25) \\
& \text { True } \\
& x=0 \\
& \text { for i in range(10): } \\
& x+=0.1 \\
& \text { print }(x==1) \\
& \text { False } \\
& \text { print (x, } \quad '==\text { ', } 10 * 0.1 \text {) } \\
& 0.9999999999999999=1.0
\end{aligned}
$$

MORAL of the STORY

- Never use == to test floats
- Instead test whether they are within small amount of each other
- What gets printed isn't always what is in memory
- Need to be careful in designing algorithms that use floats

APPROXIMATION METHODS

LAST LECTURE

- Guess-and-check provides a simple algorithm for solving problems
- When set of potential solutions is enumerable, exhaustive enumeration guaranteed to work (eventually)
- It's a limiting way to solve problems
- Increment is usually an integer but not always. i.e. we just need some pattern to give us a finite set of enumerable values
- Can't give us an approximate solution to varying degrees

BETTER than GUESS-and-CHECK

- Want to find an approximation to an answer
- Not just the correct answer, like guess-and-check
- And not just that we did not find the answer, like guess-and-check

EFFECT of APPROXIMATION on our ALGORITHMS?

- Exact answer may not be accessible
- Need to find ways to get "good enough" answer
- Our answer is "close enough" to ideal answer
- Need ways to deal with fact that exhaustive enumeration can't test every possible value, since set of possible answers is in principle infinite
- Floating point approximation errors are important to this method
- Can't rely on equality!

APPROXIMATE sqrt(x)

FINDING ROOTS

- Last lecture we looked at using exhaustive enumeration/guess and check methods to find the roots of perfect squares
- Suppose we want to find the square root of any positive integer, or any positive number
- Question: What does it mean to find the square root of x ?
- Find an r such that $r^{*} r=x$?
- If x is not a perfect square, then not possible in general to find an exact r that satisfies this relationship; and exhaustive search is infinite

APPROXIMATION

- Find an answer that is "good enough"
- E.g., find a r such that $r^{*} r$ is within a given (small) distance of x
- Use epsilon: given x we want to find r such that $\left|r^{2}-x\right|<\varepsilon$
- Algorithm
- Start with guess known to be too small - call it g
- Increment by a small value - call it a - to give a new guess g
- Check if $g^{\star *} 2$ is close enough to x (within ε)
- Continue until get answer close enough to actual answer
- Looking at all possible values $g+k$ *a for integer values of k - so similar to exhaustive enumeration
- But cannot test all possibilities as infinite

APPROXIMATION ALGORITHM

- In this case, we have two parameters to set
- epsilon (how close are we to answer?)
- increment (how much to increase our guess?)
- Performance will vary based on these values
- In speed
- In accuracy
- Decreasing increment size \rightarrow slower program, but more likely to get good answer (and vice versa)

APPROXIMATION ALGORITHM

- In this case, we have two parameters to set
- epsilon (how close are we to answer?)
- increment (how much to increase our guess?)
- Performance will vary based on these values
- In speed
- In accuracy
- Increasing epsilon \rightarrow less accurate answer, but faster program (and vice versa)

BIG IDEA

Approximation is like guess-and-check except...

1) We increment by some small amount
2) We stop when close enough (exact is not possible)

IMPLEMENTATION

```
x = 36
epsilon = 0.01
num_guesses = 0
guess = 0.0
increment = 0.0001
```

while abs (guess**2 - x) $>=$ epsilon:
guess $+=$ increment
num_guesses $+=1$

print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

OBSERVATIONS with DIFFERENT VALUES for x

- For $x=36$
- Didn't find 6
- Took about 60,000 guesses
- Let's try:
- 24
- 2
- 12345
- 54321

```
x = 54321
```

epsilon $=0.01$
numGuesses $=0$

```
guess = 0.0
increment = 0.0001
```

while abs(guess**2 - x) >= epsilon:
guess $+=$ increment
numGuesses += 1
if numGuesses\%100000==0:
print('Current guess $=$ ', guess)
print('Current guess**2 $-\mathrm{x}=$ ', abs(guess*guess - x))
print('numGuesses $=$ ', numGuesses)
print(guess, 'is close to square $\underset{28}{ }$ root of', x)

WE OVERSHOT the EPSILON!

- Blue arrow is the guess
- Green arrow is guess**2

sOME OBSERVATIONS

- Decrementing function eventually starts incrementing
- So didn't exit loop as expected
- We have over-shot the mark
- I.e., we jumped from a value too far away but too small to one too far away but too large
- We didn't account for this possibility when writing the loop
- Let's fix that

LETS FIX IT

$$
x=54321
$$

$$
\text { epsilon }=0.01
$$

$$
\text { numGuesses }=0
$$

$$
\text { guess }=0.0
$$

$$
\text { increment }=0.0001
$$

$$
\text { while abs (guess**2 }-x)>=\text { epsilon and guess**2 }<=x:
$$

guess $+=$ increment
numGuesses $+=1$
print('numGuesses $=$ ' , numGuesses)
if abs (guess**2 - x) $>=$ epsilon:
print('Failed on square root of', x)
else:

BlG IDEA

It's possible to overshoot the epsilon, so you need another end condition

sOME OBSERVATIONS

- Now it stops, but reports failure, because it has over-shot the answer
- Let's try resetting increment to 0.00001
- Smaller increment means more values will be checked
- Program will be slower

BIG IDEA

Be careful when comparing floats.

LESSONS LEARNED in APPROXIMATION

- Can't use == to check an exit condition
- Need to be careful that looping mechanism doesn't jump over exit test and loop forever
- Tradeoff exists between efficiency of algorithm and accuracy of result
- Need to think about how close an answer we want when setting parameters of algorithm
- To get a good answer, this method can be painfully slow.
- Is there a faster way that still gets good answers?
- YES! We will see it next lecture....

SUMMARY

- Floating point numbers introduce challenges!
- They can't be represented in memory exactly
- Operations on floats introduce tiny errors
- Multiple operations on floats magnify errors :(
- Approximation methods use floats
- Like guess-and-check except that
(1) We use a float as an increment
(2) We stop when we are close enough
- Never use == to compare floats in the stopping condition
- Be careful about overshooting the close-enough stopping condition

MITOpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

