
BISECTION SEARCH
(download slides and .py files to follow along)

6.100L Lecture 6
Ana Bell

1

LAST LECTURE

 Floating point numbers introduce challenges!
 They can’t be represented in memory exactly

 Operations on floats introduce tiny errors
 Multiple operations on floats magnify errors :(

 Guess-and-check enumerates ints one at a time as a solution to
a problem
 Approximation methods enumerate using a float increment.

Checking a solution is not possible. Checking whether a
solution yields a value within epsilon is possible!

6.100L Lecture 6
2

RECAP: SQUARE ROOT FINDING:
STOPPING CONDITION with a BIG INCREMENT (0.01)

 Blue arrow is the guess
 Green arrow is guess**2

6.100L Lecture 6

x = 54321

epsilon epsilon

3

RECAP of APPROXIMATION METHOD TO
FIND A “close enough” SQUARE ROOT

x = 54321

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.0001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 6
4

BISECTION SEARCH

6.100L Lecture 6
5

CHANCE to WIN BIG BUCKS

 Suppose I attach a hundred dollar bill to a particular page in the text book,
448 pages long

 If you can guess page in 8 or fewer guesses, you get big bucks
 If you fail, you get an F

 Would you want to play?

 Now suppose on each guess I told you whether you were correct, or too low
or too high

 Would you want to play in this case?

6.100L Lecture 6
6

BISECTION SEARCH

 Apply it to problems with an inherent order to the range of
possible answers
 Suppose we know answer lies within some interval

 Guess midpoint of interval
 If not the answer, check if answer is greater than or less than midpoint
 Change interval
 Repeat

 Process cuts set of things to check in half at each stage
 Exhaustive search reduces them from N to N-1 on each step
 Bisection search reduces them from N to N/2

6.100L Lecture 6
7

LOG GROWTH is BETTER

 Process cuts set of things to check in half at each stage
 Characteristic of a logarithmic growth

 Algorithm comparison: guess-and-check vs. bisection search
 Checking answer on-by-one iteratively is linear in the number of

possible guesses
 Checking answer by guessing the halfway point is logarithmic on the

number of possible guesses
 Log algorithm is much more efficient

6.100L Lecture 6
8

AN ANALOGY

 Suppose we forced you to sit in alphabetical order in class,
from front left corner to back right corner
 To find a particular student, I could ask the person in the

middle of the hall their name
 Based on the response, I can either dismiss the back half or the

front half of the entire hall
 And I repeat that process until I find the person I am seeking

6.100L Lecture 6
9

BISECTION SEARCH for SQUARE
ROOT

 Suppose we know that the answer lies between 0 and x
 Rather than exhaustively trying things starting at 0, suppose

instead we pick a number in the middle of this range

 If we are lucky, this answer is close enough

6.100L Lecture 6

0 x

g

10

BISECTION SEARCH for SQUARE
ROOT

 If not close enough, is guess too big or too small?
 If g**2 > x, then know g is too big; so now search

6.100L Lecture 6

0 x

gnew g

11

BISECTION SEARCH for SQUARE
ROOT

 And if, for example, this new g is such that g**2 < x, then know
too small; so now search

 At each stage, reduce range of values to search by half

6.100L Lecture 6

0 x

gnew g next g

12

BISECTION SEARCH for SQUARE
ROOT

 And if, for example, this next g is such that g**2 < x, then know
too small; so now search

 At each stage, reduce range of values to search by half

6.100L Lecture 6

0 x

g
latest g

next g

13

BIG IDEA

Bisection search takes advantage
of properties of the problem.
1) The search space has an order
2) We can tell whether the guess was too low or too high

6.100L Lecture 6
14

YOU TRY IT!
 You are guessing a 4 digit pin code. The only feedback the

phone tells you is whether your guess is correct or not. Can you
use bisection search to quickly and correctly guess the code?

6.100L Lecture 6
15

YOU TRY IT!
 You are playing an EXTREME guessing game to guess a number

EXACTLY. A friend has a decimal number between 0 and 10 (to
any precision) in mind. The feedback on your guess is whether
it is correct, too high, or too low. Can you use bisection search
to quickly and correctly guess the number?

6.100L Lecture 6
16

SLOW SQUARE ROOT USING
APPROXIMATION METHODS

x = 54321

epsilon = 0.01

num_guesses = 0

guess = 0.0

increment = 0.00001

while abs(guess**2 - x) >= epsilon and guess**2 <= x:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**2 - x) >= epsilon:

print('Failed on square root of', x)

else:

print(guess, 'is close to square root of', x)

6.100L Lecture 6
17

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0

while abs(guess**2 - x) >= epsilon:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
18

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
19

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :

else:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
20

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
21

FAST SQUARE ROOT

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:
high = guess

num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
22

FAST SQUARE ROOT
Python Tutor LINK

x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

if guess**2 < x :
low = guess

else:
high = guess

guess = (high + low)/2.0
num_guesses += 1

print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

6.100L Lecture 6
23

https://pythontutor.com/render.html#code=x%20%3D%2036%0Aepsilon%20%3D%201%0Alow%20%3D%200%0Ahigh%20%3D%20x%0Aguess%20%3D%20%28high%20%2B%20low%29/2.0%0Awhile%20abs%28guess**2%20-%20x%29%20%3E%3D%20epsilon%3A%0A%20%20%20%20if%20guess**2%20%3C%20x%20%3A%0A%20%20%20%20%20%20%20%20low%20%3D%20guess%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20high%20%3D%20guess%0A%20%20%20%20guess%20%3D%20%28high%20%2B%20low%29/2.0%0Aprint%28guess,%20'is%20close%20to%20square%20root%20of',%20x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

LOG GROWTH is BETTER

 Brute force search for root of 54321 took over 23M guesses
 With bisection search, reduced to 30 guesses!
 We’ll spend more time on this later, but we say the brute force

method is linear in size of problem, because number to steps
grows linearly as we increase problem size
 Bisection search is logarithmic in size of problem, because

number of steps grows logarithmically with problem size
 search space

 first guess: N/2
 second guess: N/4
 kth guess: N/2k

 guess converges on the order of log2N steps

6.100L Lecture 6
24

WHY?

 N/2k = 1 Since at this point we have one guess left to check
this tells us n in terms of k

 N = 2k Solve this for k
 k = log(N) Tells us k in terms of N

It takes us k steps to guess using bisection search
==

It takes us log(N) steps to guess using bisection search

6.100L Lecture 6
25

DOES IT ALWAYS WORK?

 Try running code for x such that 0 < x < 1
 If x < 1, we are searching from 0 to x
 But know square root is greater than x and less than 1
 Modify the code to choose the search space depending on

value of x

6.100L Lecture 6
26

You Try It: BISECTION SEARCH –
SQUARE ROOT with 0 < x < 1

x = 0.5
epsilon = 0.01

guess = (high + low)/2

while abs(guess**2 - x) >= epsilon:
if guess**2 < x:

low = guess
else:

high = guess
guess = (high + low)/2.0

print(f'{str(guess)} is close to square root of {str(x)}')
6.100L Lecture 6

27

BISECTION SEARCH – SQUARE
ROOT for ALL x VALUES

x = 0.5
epsilon = 0.01

if x >= 1:
low = 1.0
high = x

else:
low = x
high = 1.0

guess = (high + low)/2

while abs(guess**2 - x) >= epsilon:
if guess**2 < x:

low = guess
else:

high = guess
guess = (high + low)/2.0

print(f'{str(guess)} is close to square root of {str(x)}')
6.100L Lecture 6

28

SOME OBSERVATIONS

 Bisection search radically reduces computation time – being
smart about generating guesses is important
 Search space gets smaller quickly at the beginning and then

more slowly (in absolute terms, but not as a fraction of search
space) later
 Works on problems with “ordering” property

6.100L Lecture 6
29

YOU TRY IT!
 Write code to do bisection search to find the cube root of

positive cubes within some epsilon. Start with:
cube = 27
epsilon = 0.01
low = 0
high = cube

6.100L Lecture 6
30

NEWTON-RAPHSON

 General approximation algorithm to find roots of a polynomial
in one variable

p(x) = anxn + an-1xn-1 + … + a1x + a0

 Newton and Raphson showed that if g is an approximation to
the root, then

g – p(g)/p’(g)
is a better approximation; where p’ is derivative of p

 Try to use this idea for finding the square root of x
 Want to find r such that p(r) = 0
 For example, to find the square root of 24, find the root of p(x) = x2 – 24

6.100L Lecture 6
31

INTUITION - LINK

6.100L Lecture 6
32

https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif

NEWTON-RAPHSON ROOT FINDER

 Simple case for a polynomial: x2 - k
 First derivative: 2x
 Newton-Raphson says given a guess g for root of k, a better

guess is:
g – (g2 –k)/2g

 This eventually finds an approximation to the square root of k!

6.100L Lecture 6
33

NEWTON-RAPHSON ROOT FINDER

 Another way of generating guesses which we can check; very
efficient

epsilon = 0.01

k = 24.0

guess = k/2.0

num_guesses = 0

while abs(guess*guess - k) >= epsilon:

num_guesses += 1

guess = guess - (((guess**2) - k)/(2*guess))

print('num_guesses = ' + str(num_guesses))

print('Square root of ' + str(k) + ' is about ' + str(guess))

6.100L Lecture 6
34

ITERATIVE ALGORITHMS

 Guess and check methods build on reusing same code
 Use a looping construct
 Generate guesses (important difference in algorithms)
 Check and continue

 Generating guesses
 Exhaustive enumeration
 Approximation algorithm
 Bisection search
 Newton-Raphson (for root finding)

6.100L Lecture 6
35

SUMMARY

 For many problems, cannot find exact answer
 Need to seek a “good enough” answer using approximations
 When testing floating point numbers

 It’s important to understand how the computer represents these in
binary

 Understand why we use “close enough” and not “==“

 Bisection search works is FAST but for problems with:
 Two endpoints
 An ordering to the values
 Feedback on guesses (too low, too high, correct, etc.)

 Newton-Raphson is a smart way to find roots of a polynomial

6.100L Lecture 6
36

DECOMPOSITION and
ABSTRACTION

6.100L Lecture 6
37

LEARNING to CREATE CODE

 So far have covered basic language mechanisms – primitives,
complex expressions, branching, iteration

 In principle, you know all you need to know to accomplish
anything that can be done by computation

 But in fact, we’ve taught you nothing about two of the most
important concepts in programming…

6.s061 Lecture 7
38

DECOMPOSITION and
ABSTRACTION

 Decomposition
 How to divide a program into self-contained parts that can be

combined to solve the current problem

6.s061 Lecture 7
39

DECOMPOSITION and
ABSTRACTION

 Abstraction
 How to ignore unnecessary detail

6.s061 Lecture 7
40

DECOMPOSITION and
ABSTRACTION

 Decomposition:
 Ideally parts can be reused by other programs
 Self-contained means parts should complete computation using only

inputs provided to them and “basic” operations

 Abstraction:
 Used to separate what something does, from how it actually does it
 Creating parts and abstracting away details allows us to write complex

code while suppressing details, so that we are not overwhelmed by
that complexity

6.s061 Lecture 7

a = 3.14*2.2*2.2 pi = 3.14
r = 2.2
area = pi*r**2

calculate the area of a circle
41

BIG IDEA
Make code easy to
create
modify
maintain
understand

6.s061 Lecture 7
42

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

43

https://ocw.mit.edu
https://ocw.mit.edu/terms

	BISECTION SEARCH�(download slides and .py files to follow along)
	LAST LECTURE
	RECAP: SQUARE ROOT FINDING:�STOPPING CONDITION with a BIG INCREMENT (0.01)
	RECAP of APPROXIMATION METHOD TO FIND A “close enough” SQUARE ROOT
	BISECTION SEARCH
	CHANCE to WIN BIG BUCKS
	BISECTION SEARCH
	LOG GROWTH is BETTER
	AN ANALOGY
	BISECTION SEARCH for SQUARE ROOT
	BISECTION SEARCH for SQUARE ROOT
	BISECTION SEARCH for SQUARE ROOT
	BISECTION SEARCH for SQUARE ROOT
	Bisection search takes advantage of properties of the problem.
	Slide Number 15
	Slide Number 16
	SLOW SQUARE ROOT USING APPROXIMATION METHODS
	FAST SQUARE ROOT
	FAST SQUARE ROOT
	FAST SQUARE ROOT
	FAST SQUARE ROOT
	FAST SQUARE ROOT
	FAST SQUARE ROOT�Python Tutor LINK
	LOG GROWTH is BETTER
	WHY?
	DOES IT ALWAYS WORK?
	You Try It: BISECTION SEARCH – SQUARE ROOT with 0 < x < 1
	BISECTION SEARCH – SQUARE ROOT for ALL x VALUES
	SOME OBSERVATIONS
	Slide Number 30
	NEWTON-RAPHSON
	INTUITION - LINK
	NEWTON-RAPHSON ROOT FINDER
	NEWTON-RAPHSON ROOT FINDER
	ITERATIVE ALGORITHMS
	SUMMARY
	DECOMPOSITION and ABSTRACTION
	LEARNING to CREATE CODE
	DECOMPOSITION and ABSTRACTION
	DECOMPOSITION and ABSTRACTION
	DECOMPOSITION and ABSTRACTION
	Make code easy to �create�modify�maintain�understand
	cover-slides.pdf
	cover_h.pdf
	Blank Page

