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AN EXAMPLE: the SMARTPHONE

 A black box, and can be viewed in terms of
 Its inputs
 Its outputs
 How outputs are related to inputs, without any 

knowledge of its internal workings
 Implementation is “opaque” (or black)
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AN EXAMPLE: the SMARTPHONE
ABSTRACTION

 User doesn’t know the details of how it
works
 We don’t need to know how something works in

order to know how to use it

 User does know the interface
 Device converts a sequence of screen touches and

sounds into expected useful functionality

 Know relationship between input and output

6.100L Lecture 7
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ABSTRACTION ENABLES 
DECOMPOSITION

 100’s of distinct parts

 Designed and made by different
companies
 Do not communicate with each other,

other than specifications for components
 May use same subparts as others

 Each component maker has to know
how its component interfaces to other
components

 Each component maker can solve sub-
problems independent of other parts,
so long as they provide specified inputs

 True for hardware and for software
6.100L Lecture 7
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BIG  IDEA
Apply 
abstraction (black box) and 
decomposition (split into self-contained parts)

to programming!

6.100L Lecture 7
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SUPPRESS DETAILS with 
ABSTRACTION

 In programming, want to think of piece of code as black box
 Hide tedious coding details from the user
 Reuse black box at different parts in the code (no copy/pasting!)

 Coder creates details, and designs interface
 User does not need or want to see details
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SUPPRESS DETAILS with 
ABSTRACTION

 Coder achieves abstraction with a function (or procedure)
 You’ve already been using functions!
 A function lets us capture code within a black box

 Once we create function, it will produce an output from inputs, while
hiding details of how it does the computation

6.100L Lecture 7

max(1,4)
abs(-3)
len("mom's spaghetti")

7



SUPPRESS DETAILS with 
ABSTRACTION

 A function has specifications, captured using docstrings
 Think of a docstring as “contract” between coder and user:

 If user provides input that satisfies stated conditions, function will
produce output according to specs, including indicated side effects

 Not typically enforced in Python (we’ll see assertions later), but user
relies on coder’s work satisfying the contract
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abs(-3)
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CREATE STRUCTURE with 
DECOMPOSITION

 Given the idea of black box abstraction, use it to divide code
into modules that are:
 Self-contained
 Intended to be reusable

 Modules are used to:
 Break up code into logical pieces
 Keep code organized
 Keep code coherent (readable and understandable)

 In this lecture, achieve decomposition with functions
 In a few lectures, achieve decomposition with classes
 Decomposition relies on abstraction to enable construction of

complex modules from simpler ones
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FUNCTIONS

 Reusable pieces of code, called functions or procedures
 Capture steps of a computation so that we can use with any

input
 A function is just some code written in a special, reusable way
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FUNCTIONS

 Defining a function tells Python some code now exists in
memory
 Functions are only useful when they are run (“called” or

“invoked”)
 You write a function once but can run it many times!
 Compare to code in a file

 It doesn’t run when you load the file
 It runs when you hit the run button
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FUNCTION CHARACTERISTICS

 Has a name
 (think: variable bound to a function object)

 Has (formal) parameters (0 or more)
 The inputs

 Has a docstring (optional but recommended)
 A comment delineated by """ (triple quotes) that provides a

specification for the function – contract relating output to input

 Has a body, a set of instructions to execute when function is
called
 Returns something

 Keyword return
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HOW to WRITE a FUNCTION

6.100L Lecture 7

def is_even( i ):

""" 

Input: i, a positive int

Returns True if i is even, otherwise False

"""

if i%2 == 0:

return True

else:

return False
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HOW TO THINK ABOUT WRITING 
A FUNCTION

 What is the problem?
 Given an int, call it i, want to know if it is even
 Use this to write the function name and specs
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def is_even( i ):
""" 
Input: i, a positive int
Returns True if i is even, otherwise False
"""
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HOW TO THINK ABOUT WRITING 
A FUNCTION

 How to solve the problem?
 Can check that remainder when divided by 2 is 0
 Think about what value you need to give back
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def is_even( i ):
""" 
Input: i, a positive int
Returns True if i is even, otherwise False
"""
if i%2 == 0:

return True
else:

return False
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HOW TO THINK ABOUT WRITING 
A FUNCTION

 Can you make the code cleaner?
 i%2 is a Boolean that evaluates to True/False already
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def is_even( i ):
""" 
Input: i, a positive int
Returns True if i is even, otherwise False
"""
return i%2 == 0
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BIG  IDEA
At this point, all we’ve 
done is make a function 
object
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HOW TO CALL (INVOKE) A 
FUNCTION

is_even(3)

is_even(8)

 That’s all!
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HOW TO CALL (INVOKE) A 
FUNCTION

is_even(3)

is_even(8)

 That’s all!
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ALL TOGETHER IN A FILE

 This code might be in one file

def is_even( i ):

return i%2 == 0

is_even(3)
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20



WHAT HAPPENS when you CALL a 
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with   3

def is_even( i ):

return i%2 == 0

is_even(3)

6.100L Lecture 7
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WHAT HAPPENS when you CALL a 
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with   3

 Python executes expressions in the body of the function
 return 3%2 == 0

def is_even( i ):

return i%2 == 0

is_even(3)

6.100L Lecture 7
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WHAT HAPPENS when you CALL a 
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with   3

def is_even( i ):

return i%2 == 0

is_even(3)

print(is_even(3))

6.100L Lecture 7
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BIG  IDEA
A function’s code 
only runs when you 
call (aka invoke) the function

6.100L Lecture 7
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YOU TRY IT!
 Write code that satisfies the following specs
def div_by(n, d):

""" n and d are ints > 0

Returns True if d divides n evenly and False otherwise """

Test your code with:
 n = 10 and d = 3
 n = 195 and d = 13

6.100L Lecture 7
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Program Scope

a

b

c

a = 3
b = 4
c = a+b

ZOOMING OUT
(no functions)

6.100L Lecture 7

3

4

7
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Program Scope

is_even

def is_even( i ):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some 
code

function 
object

This is my “black box”

This is me telling my black box to do 
something
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Program Scope

is_even

a

def is_even( i ):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some 
code

function 
object

This is my “black box”

One function call

False
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Program Scope

is_even

a

b

def is_even( i ):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some 
code

function 
object

This is my “black box”

One function call

False

True
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Program Scope

is_even

a

b

c

def is_even( i ):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT
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Some 
code

function 
object

This is my “black box”

One function call

False

True

True
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INSERTING FUNCTIONS IN CODE

 Remember how expressions are replaced with the value? 
 The function call is replaced with the return value!

print("Numbers between 1 and 10: even or odd")

for i in range(1,10):

if is_even(i):

print(i, "even")

else:

print(i, "odd")

6.100L Lecture 7
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ANOTHER EXAMPLE

 Suppose we want to add all the odd integers between (and
including) a and b

 What is the input?
 Values for a and b

 What is the output?
 The sum_of_odds

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds
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BIG  IDEA

Don’t write code right 
away!

6.100L Lecture 7
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PAPER FIRST

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 Systematically solve

the example

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds
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SIMPLE TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 4

 sum_of_odds should be 3

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds

2 3 4

a b
35



MORE COMPLEX TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 7

 sum_of_odds should be 15

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds

2 3 7

a b

4 5 6

36



SOLVE SIMILAR PROBLEM

 Start by looking at each number between (and including) a and b
 A similar problem that is

easier that you know
how to do?
 Add ALL numbers between

(and including) a and b
 Start with this

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds

2 3 4

a b
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CHOOSE BIG-PICTURE STRUCTURE

 Add ALL numbers between
(and including) a and b
 It’s a loop

 while or for?
 Your choice

6.100L Lecture 7

def sum_odd(a, b):

# your code here

return sum_of_odds

2 3 4

a b
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WRITE the LOOP
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a

while i <= b:

# do something

i += 1

return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):

# do something

return sum_of_odds
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DO the SUMMING
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):

sum_of_odds += i

return sum_of_odds
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INITIALIZE the SUM
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds
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TEST!
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4)) 
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WEIRD RESULTS…
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4)) 

5 9
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DEBUG! aka ADD PRINT STATEMENTS
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4)) 

5 9

2 2
3 5

2 2
3 5
4 9
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FIX for LOOP END INDEX
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4)) 

9 9
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ADD IN THE ODD PART!

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4)) 

3 3
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BIG  IDEA

Solve a simpler problem 
first.
Add functionality to the code later.

6.100L Lecture 7
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TRY IT ON ANOTHER 
EXAMPLE

for LOOP while LOOP

6.100L Lecture 7

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,7)) 

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,7)) 

15 15

2 3 7

a b

4 5 6
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PYTHON TUTOR

 Also a great debugging tool

6.100L Lecture 7
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BIG  IDEA

Test code often. 
Use prints to debug.

6.100L Lecture 7
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YOU TRY IT!
 Write code that satisfies the following specs
def is_palindrome(s):

""" s is a string
Returns True if s is a palindrome and False otherwise
"""

For example:
 If s = "222" returns True
 If s = "2222" returns True
 If s = "abc" returns False

6.100L Lecture 7
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SUMMARY

 Functions allow us to suppress detail from a user
 Functions capture computation within a black box
 A programmer writes functions with

 0 or more inputs
 Something to return

 A function only runs when it is called
 The entire function call is replaced with the return value

 Think expressions! And how you replace an entire expression with the
value it evaluates to.

6.100L Lecture 7
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