
DECOMPOSITION,
ABSTRACTION, FUNCTIONS

(download slides and .py files to follow along)

6.100L Lecture 7
Ana Bell

1

AN EXAMPLE: the SMARTPHONE

 A black box, and can be viewed in terms of
 Its inputs
 Its outputs
 How outputs are related to inputs, without any

knowledge of its internal workings
 Implementation is “opaque” (or black)

6.100L Lecture 7
2

AN EXAMPLE: the SMARTPHONE
ABSTRACTION

 User doesn’t know the details of how it
works
 We don’t need to know how something works in

order to know how to use it

 User does know the interface
 Device converts a sequence of screen touches and

sounds into expected useful functionality

 Know relationship between input and output

6.100L Lecture 7

3

ABSTRACTION ENABLES
DECOMPOSITION

 100’s of distinct parts

 Designed and made by different
companies
 Do not communicate with each other,

other than specifications for components
 May use same subparts as others

 Each component maker has to know
how its component interfaces to other
components

 Each component maker can solve sub-
problems independent of other parts,
so long as they provide specified inputs

 True for hardware and for software
6.100L Lecture 7

4

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj2vrKv4LHgAhWkct8KHcpVCF4QjRx6BAgBEAU&url=https://www.dreamstime.com/stock-illustration-iphone-s-components-disassembled-repair-smartphone-phone-vector-clipart-isolated-image75657962&psig=AOvVaw3dOIbKMbSdWsU6P8ZyYmrR&ust=1549908249650533
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj2vrKv4LHgAhWkct8KHcpVCF4QjRx6BAgBEAU&url=https://www.dreamstime.com/stock-illustration-iphone-s-components-disassembled-repair-smartphone-phone-vector-clipart-isolated-image75657962&psig=AOvVaw3dOIbKMbSdWsU6P8ZyYmrR&ust=1549908249650533

BIG IDEA
Apply
abstraction (black box) and
decomposition (split into self-contained parts)

to programming!

6.100L Lecture 7
5

SUPPRESS DETAILS with
ABSTRACTION

 In programming, want to think of piece of code as black box
 Hide tedious coding details from the user
 Reuse black box at different parts in the code (no copy/pasting!)

 Coder creates details, and designs interface
 User does not need or want to see details

6.100L Lecture 7
6

SUPPRESS DETAILS with
ABSTRACTION

 Coder achieves abstraction with a function (or procedure)
 You’ve already been using functions!
 A function lets us capture code within a black box

 Once we create function, it will produce an output from inputs, while
hiding details of how it does the computation

6.100L Lecture 7

max(1,4)
abs(-3)
len("mom's spaghetti")

7

SUPPRESS DETAILS with
ABSTRACTION

 A function has specifications, captured using docstrings
 Think of a docstring as “contract” between coder and user:

 If user provides input that satisfies stated conditions, function will
produce output according to specs, including indicated side effects

 Not typically enforced in Python (we’ll see assertions later), but user
relies on coder’s work satisfying the contract

6.100L Lecture 7

abs(-3)

8

CREATE STRUCTURE with
DECOMPOSITION

 Given the idea of black box abstraction, use it to divide code
into modules that are:
 Self-contained
 Intended to be reusable

 Modules are used to:
 Break up code into logical pieces
 Keep code organized
 Keep code coherent (readable and understandable)

 In this lecture, achieve decomposition with functions
 In a few lectures, achieve decomposition with classes
 Decomposition relies on abstraction to enable construction of

complex modules from simpler ones

6.100L Lecture 7
9

FUNCTIONS

 Reusable pieces of code, called functions or procedures
 Capture steps of a computation so that we can use with any

input
 A function is just some code written in a special, reusable way

6.100L Lecture 7
10

FUNCTIONS

 Defining a function tells Python some code now exists in
memory
 Functions are only useful when they are run (“called” or

“invoked”)
 You write a function once but can run it many times!
 Compare to code in a file

 It doesn’t run when you load the file
 It runs when you hit the run button

6.100L Lecture 7
11

FUNCTION CHARACTERISTICS

 Has a name
 (think: variable bound to a function object)

 Has (formal) parameters (0 or more)
 The inputs

 Has a docstring (optional but recommended)
 A comment delineated by """ (triple quotes) that provides a

specification for the function – contract relating output to input

 Has a body, a set of instructions to execute when function is
called
 Returns something

 Keyword return

6.100L Lecture 7
12

HOW to WRITE a FUNCTION

6.100L Lecture 7

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

if i%2 == 0:

return True

else:

return False

13

HOW TO THINK ABOUT WRITING
A FUNCTION

 What is the problem?
 Given an int, call it i, want to know if it is even
 Use this to write the function name and specs

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""

14

HOW TO THINK ABOUT WRITING
A FUNCTION

 How to solve the problem?
 Can check that remainder when divided by 2 is 0
 Think about what value you need to give back

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
if i%2 == 0:

return True
else:

return False

15

HOW TO THINK ABOUT WRITING
A FUNCTION

 Can you make the code cleaner?
 i%2 is a Boolean that evaluates to True/False already

6.100L Lecture 7

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
return i%2 == 0

16

BIG IDEA
At this point, all we’ve
done is make a function
object

6.100L Lecture 7
17

HOW TO CALL (INVOKE) A
FUNCTION

is_even(3)

is_even(8)

 That’s all!

6.100L Lecture 7
18

HOW TO CALL (INVOKE) A
FUNCTION

is_even(3)

is_even(8)

 That’s all!

6.100L Lecture 7
19

ALL TOGETHER IN A FILE

 This code might be in one file

def is_even(i):

return i%2 == 0

is_even(3)

6.100L Lecture 7
20

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

def is_even(i):

return i%2 == 0

is_even(3)

6.100L Lecture 7
21

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

 Python executes expressions in the body of the function
 return 3%2 == 0

def is_even(i):

return i%2 == 0

is_even(3)

6.100L Lecture 7
22

WHAT HAPPENS when you CALL a
FUNCTION?

 Python replaces:
formal parameters in function def with values from function call

i replaced with 3

def is_even(i):

return i%2 == 0

is_even(3)

print(is_even(3))

6.100L Lecture 7
23

BIG IDEA
A function’s code
only runs when you
call (aka invoke) the function

6.100L Lecture 7
24

YOU TRY IT!
 Write code that satisfies the following specs
def div_by(n, d):

""" n and d are ints > 0

Returns True if d divides n evenly and False otherwise """

Test your code with:
 n = 10 and d = 3
 n = 195 and d = 13

6.100L Lecture 7
25

Program Scope

a

b

c

a = 3
b = 4
c = a+b

ZOOMING OUT
(no functions)

6.100L Lecture 7

3

4

7

26

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.fstoys.com%2Fbuy%2Fhapee5568%2Fnature-fun-adjustable-telescope&psig=AOvVaw2xl9xPGN7gtzvnGQVjnuFM&ust=1613072004139000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOC3t9CH4O4CFQAAAAAdAAAAABAR

Program Scope

is_even

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

This is me telling my black box to do
something

27

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.fstoys.com%2Fbuy%2Fhapee5568%2Fnature-fun-adjustable-telescope&psig=AOvVaw2xl9xPGN7gtzvnGQVjnuFM&ust=1613072004139000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOC3t9CH4O4CFQAAAAAdAAAAABAR

Program Scope

is_even

a

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

28

Program Scope

is_even

a

b

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

True

29

Program Scope

is_even

a

b

c

def is_even(i):
print("inside is_even")
return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

ZOOMING OUT

6.100L Lecture 7

Some
code

function
object

This is my “black box”

One function call

False

True

True

30

INSERTING FUNCTIONS IN CODE

 Remember how expressions are replaced with the value?
 The function call is replaced with the return value!

print("Numbers between 1 and 10: even or odd")

for i in range(1,10):

if is_even(i):

print(i, "even")

else:

print(i, "odd")

6.100L Lecture 7
31

ANOTHER EXAMPLE

 Suppose we want to add all the odd integers between (and
including) a and b

 What is the input?
 Values for a and b

 What is the output?
 The sum_of_odds

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

32

BIG IDEA

Don’t write code right
away!

6.100L Lecture 7
33

PAPER FIRST

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 Systematically solve

the example

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

34

SIMPLE TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 4

 sum_of_odds should be 3

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b
35

MORE COMPLEX TEST CASE

 Suppose we want to add all the odd integers between (and
including) a and b

 Start with a simple
example on paper
 a = 2 and b = 7

 sum_of_odds should be 15

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 7

a b

4 5 6

36

SOLVE SIMILAR PROBLEM

 Start by looking at each number between (and including) a and b
 A similar problem that is

easier that you know
how to do?
 Add ALL numbers between

(and including) a and b
 Start with this

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b

37

CHOOSE BIG-PICTURE STRUCTURE

 Add ALL numbers between
(and including) a and b
 It’s a loop

 while or for?
 Your choice

6.100L Lecture 7

def sum_odd(a, b):

your code here

return sum_of_odds

2 3 4

a b

38

WRITE the LOOP
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a

while i <= b:

do something

i += 1

return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):

do something

return sum_of_odds

39

DO the SUMMING
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

def sum_odd(a, b):

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

40

INITIALIZE the SUM
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

41

TEST!
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4))

42

WEIRD RESULTS…
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,4))

5 9
43

DEBUG! aka ADD PRINT STATEMENTS
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b):

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

5 9

2 2
3 5

2 2
3 5
4 9

44

FIX for LOOP END INDEX
(for adding all numbers)

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

9 9
45

ADD IN THE ODD PART!

for LOOP while LOOP

6.100L Lecture 7

2 3 4

a b

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:

sum_of_odds += i

print(i, sum_of_odds)

i += 1

return sum_of_odds

print(sum_odd(2,4))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:

sum_of_odds += i

print(i, sum_of_odds)

return sum_of_odds

print(sum_odd(2,4))

3 3
46

BIG IDEA

Solve a simpler problem
first.
Add functionality to the code later.

6.100L Lecture 7
47

TRY IT ON ANOTHER
EXAMPLE

for LOOP while LOOP

6.100L Lecture 7

def sum_odd(a, b):

sum_of_odds = 0

i = a

while i <= b:

if i%2 == 1:

sum_of_odds += i

i += 1

return sum_of_odds

print(sum_odd(2,7))

def sum_odd(a, b):

sum_of_odds = 0

for i in range(a, b+1):

if i%2 == 1:

sum_of_odds += i

return sum_of_odds

print(sum_odd(2,7))

15 15

2 3 7

a b

4 5 6

48

PYTHON TUTOR

 Also a great debugging tool

6.100L Lecture 7
49

BIG IDEA

Test code often.
Use prints to debug.

6.100L Lecture 7
50

YOU TRY IT!
 Write code that satisfies the following specs
def is_palindrome(s):

""" s is a string
Returns True if s is a palindrome and False otherwise
"""

For example:
 If s = "222" returns True
 If s = "2222" returns True
 If s = "abc" returns False

6.100L Lecture 7
51

SUMMARY

 Functions allow us to suppress detail from a user
 Functions capture computation within a black box
 A programmer writes functions with

 0 or more inputs
 Something to return

 A function only runs when it is called
 The entire function call is replaced with the return value

 Think expressions! And how you replace an entire expression with the
value it evaluates to.

6.100L Lecture 7
52

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

53

https://ocw.mit.edu
https://ocw.mit.edu/terms

	DECOMPOSITION, ABSTRACTION, FUNCTIONS�(download slides and .py files to follow along)
	AN EXAMPLE: the SMARTPHONE
	AN EXAMPLE: the SMARTPHONE�ABSTRACTION
	ABSTRACTION ENABLES DECOMPOSITION
	Apply �abstraction (black box) and �decomposition (split into self-contained parts)�to programming!
	SUPPRESS DETAILS with ABSTRACTION
	SUPPRESS DETAILS with ABSTRACTION
	SUPPRESS DETAILS with ABSTRACTION
	CREATE STRUCTURE with DECOMPOSITION
	FUNCTIONS
	FUNCTIONS
	FUNCTION CHARACTERISTICS
	HOW to WRITE a FUNCTION
	HOW TO THINK ABOUT WRITING A FUNCTION
	HOW TO THINK ABOUT WRITING A FUNCTION
	HOW TO THINK ABOUT WRITING A FUNCTION
	At this point, all we’ve done is make a function object
	HOW TO CALL (INVOKE) A FUNCTION
	HOW TO CALL (INVOKE) A FUNCTION
	ALL TOGETHER IN A FILE
	WHAT HAPPENS when you CALL a FUNCTION?
	WHAT HAPPENS when you CALL a FUNCTION?
	WHAT HAPPENS when you CALL a FUNCTION?
	A function’s code �only runs when you �call (aka invoke) the function
	Slide Number 25
	ZOOMING OUT�(no functions)
	ZOOMING OUT
	ZOOMING OUT
	ZOOMING OUT
	ZOOMING OUT
	INSERTING FUNCTIONS IN CODE
	ANOTHER EXAMPLE
	Don’t write code right away!
	PAPER FIRST
	SIMPLE TEST CASE
	MORE COMPLEX TEST CASE
	SOLVE SIMILAR PROBLEM
	CHOOSE BIG-PICTURE STRUCTURE
	WRITE the LOOP�(for adding all numbers)
	DO the SUMMING�(for adding all numbers)
	INITIALIZE the SUM�(for adding all numbers)
	TEST!�(for adding all numbers)
	WEIRD RESULTS…�(for adding all numbers)
	DEBUG! aka ADD PRINT STATEMENTS�(for adding all numbers)
	FIX for LOOP END INDEX�(for adding all numbers)
	ADD IN THE ODD PART!
	Solve a simpler problem first.
	TRY IT ON ANOTHER �EXAMPLE
	PYTHON TUTOR
	Test code often. �Use prints to debug.
	Slide Number 52
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

