
LAMBDA FUNCTIONS,
TUPLES and LISTS

(download slides and .py files to follow along)
6.100L Lecture 9

Ana Bell

1

FROM LAST TIME

def apply(criteria,n):
"""
* criteria: function that takes in a number and returns a bool
* n: an int
Returns how many ints from 0 to n (inclusive) match the
criteria (i.e. return True when run with criteria) """
count = 0
for i in range(n+1):

if criteria(i):
count += 1

return count

def is_even(x):
return x%2==0

print(apply(is_even,10))

6.100L Lecture 9
2

ANONYMOUS FUNCTIONS

 Sometimes don’t want to name functions, especially simple
ones. This function is a good example:

def is_even(x):

return x%2==0

 Can use an anonymous procedure by using lambda

 lambda creates a procedure/function object, but simply does
not bind a name to it

6.100L Lecture 9

lambda x: x%2 == 0

parameter
Body of lambda
Note no return keyword

3

ANONYMOUS FUNCTIONS

 Function call with a named function:

 Function call with an anonymous function as parameter:

 lambda function is one-time use. It can’t be reused because it
has no name!

6.100L Lecture 9

apply(lambda x: x%2 == 0 , 10)

apply(is_even , 10)

4

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9
5

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

6

YOU TRY IT!

do_twice environment

n 3
fn lambda x: x**2

 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

7

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

8

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

lambda x: x**2
environment

x 3
9

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x ???

lambda x: x**2
environment

x 3
Returns 9

9

9

10

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

do_twice environment

n 3
fn lambda x: x**2

lambda x: x**2
environment

x 9
Returns 81

9

81

11

YOU TRY IT!
 What does this print?

def do_twice(n, fn):

return fn(fn(n))

print(do_twice(3, lambda x: x**2))

6.100L Lecture 9

Global environment

do_twice function object

PRINTS 81

do_twice environment

n 3
fn lambda x: x**2

Returns 81

81

12

TUPLES

6.100L Lecture 9
13

A NEW DATA TYPE

 Have seen scalar types: int,float,bool
 Have seen one compound type: string
 Want to introduce more general compound data types

 Indexed sequences of elements, which could themselves be compound
structures

 Tuples – immutable
 Lists – mutable

 Next lecture, will explore ideas of
 Mutability
 Aliasing
 Cloning

6.100L Lecture 9
14

TUPLES

 Indexable ordered sequence of objects
 Objects can be any type – int, string, tuple, tuple of tuples, …

 Cannot change element values, immutable
te = ()
ts = (2,)

t = (2, "mit", 3)
t[0]  evaluates to 2
(2,"mit",3) + (5,6)evaluates to a new tuple(2,"mit",3,5,6)
t[1:2]  slice tuple, evaluates to ("mit",)
t[1:3]  slice tuple, evaluates to ("mit",3)
len(t)  evaluates to 3
max((3,5,0))  evaluates 5
t[1] = 4  gives error, can’t modify object

6.100L Lecture 9
15

INDICES AND SLICING

seq = (2,'a',4,(1,2))

print(len(seq))  4
print(seq[3])  (1,2)
print(seq[-1])  (1,2)
print(seq[3][0])  1
print(seq[4])  error

print(seq[1])  'a'
print(seq[-2:]  (4,(1,2))
print(seq[1:4:2]  ('a',(1,2))
print(seq[:-1])  (2,'a',4)
print(seq[1:3])  ('a',4)

for e in seq:  2
print(e) a

4
(1,2)

6.100L Lecture 9

index: 0 1 2 3

16

TUPLES

 Conveniently used to swap variable values
x = 1 x = 1 x = 1

y = 2 y = 2 y = 2

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

6.100L Lecture 9
17

TUPLES

 Used to return more than one value from a function
def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

both = quotient_and_remainder(10,3)

(quot, rem) = quotient_and_remainder(5,2)

6.100L Lecture 9
18

BIG IDEA
Returning
one object (a tuple)

allows you to return
multiple values (tuple elements)

6.100L Lecture 9
19

YOU TRY IT!
 Write a function that meets these specs:
 Hint: remember how to check if a character is in a string?

def char_counts(s):
""" s is a string of lowercase chars
Return a tuple where the first element is the
number of vowels in s and the second element
is the number of consonants in s """

6.100L Lecture 9
20

VARIABLE NUMBER of
ARGUMENTS

 Python has some built-in functions that take variable number
of arguments, e.g, min
 Python allows a programmer to have same capability,

using * notation
def mean(*args):

tot = 0
for a in args:

tot += a
return tot/len(args)

 numbers is bound to a tuple of the supplied values
 Example:
 mean(1,2,3,4,5,6)

6.100L Lecture 9
21

LISTS

6.100L Lecture 9
22

LISTS

 Indexable ordered sequence of objects
• Usually homogeneous (i.e., all integers, all strings, all lists)
• But can contain mixed types (not common)

 Denoted by square brackets, []
 Mutable, this means you can change values of specific

elements of list

6.100L Lecture 9
23

INDICES and ORDERING

a_list = []
L = [2, 'a', 4, [1,2]]
[1,2]+[3,4]  evaluates to [1,2,3,4]
len(L)  evaluates to 4
L[0]  evaluates to 2
L[2]+1  evaluates to 5
L[3]  evaluates to [1,2], another list!
L[4]  gives an error
i = 2
L[i-1]  evaluates to 'a' since L[1]='a'
max([3,5,0])  evaluates 5

6.100L Lecture 9
24

ITERATING OVER a LIST

6.100L Lecture 9

 Compute the sum of elements of a list
 Common pattern

 Notice
• list elements are indexed 0 to len(L)-1

and range(n) goes from 0 to n-1

total = 0

for i in range(len(L)):

total += L[i]

print(total)

total = 0

for i in L:

total += i

print(total)

25

ITERATING OVER a LIST

 Natural to capture iteration over a list inside a function

 Function call list_sum([8,3,5])
 Loop variable i takes on values in the list in order! 8 then 3 then 5
 To help you write code and debug, comment on what the loop var

values are so you don’t get confused!

6.100L Lecture 9

total = 0

for i in L:

total += i

print(total)

def list_sum(L):

total = 0

for i in L:

total += i

return total

i is 8 then 3 then 5

26

LISTS SUPPORT ITERATION

 Because lists are ordered sequences of elements, they naturally
interface with iterative functions

Add the elements of a list Add the length of elements of a list

6.100L Lecture 9

def list_sum(L):

total = 0

for e in L:

total += e

return(total)

list_sum([1,3,5])  9

def len_sum(L):

total = 0

for s in L:

total += len(s)

return(total)

len_sum(['ab', 'def', 'g'])  6

27

YOU TRY IT!
 Write a function that meets these specs:
def sum_and_prod(L):

""" L is a list of numbers
Return a tuple where the first value is the
sum of all elements in L and the second value
is the product of all elements in L """

6.100L Lecture 9
28

SUMMARY

 Lambda functions are useful when you need a simple function
once, and whose body can be written in one line
 Tuples are indexable sequences of objects

 Can’t change its elements, for ex. can’t add more objects to a tuple
 Syntax is to use ()

 Lists are indexable sequences of objects
 Can change its elements. Will see this next time!
 Syntax is to use []

 Lists and tuples are very similar to strings in terms of
 Indexing,
 Slicing,
 Looping over elements

6.100L Lecture 9
29

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LAMBDA FUNCTIONS, TUPLES and LISTS�(download slides and .py files to follow along)
	FROM LAST TIME
	ANONYMOUS FUNCTIONS
	ANONYMOUS FUNCTIONS
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	TUPLES
	A NEW DATA TYPE
	TUPLES
	INDICES AND SLICING
	TUPLES
	TUPLES
	Returning �one object (a tuple) �allows you to return multiple values (tuple elements)
	Slide Number 23
	VARIABLE NUMBER of ARGUMENTS
	LISTS
	LISTS
	INDICES and ORDERING
	ITERATING OVER a LIST
	ITERATING OVER a LIST
	LISTS SUPPORT ITERATION
	Slide Number 32
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

