LAMBDA FUNCTIONS,
TUPLES and LISTS

(download slides and .py files to follow along)

6.100L Lecture 9
Ana Bell

FROM LAST TIME

def apply(criteria,n):
* criteria: function that takes 1n a number and returns a bool
* n: an int
Returns how many ints from O to n (inclusive) match the
criteria (i.e. return True when run with criteria) """
count = 0
for 1 in range(n+l) :
if criteria(i):
count += 1
return count

def 1is even(x):

return x%2==

print (apply(is _even, 10))

2
6.100L Lecture 9

ANONYMOUS FUNCTIONS

= Sometimes don’t want to name functions, especially simple
ones. This function is a good example:

def 1is even :

return[x%2== }

= Can use an anonymous procedure by using 1ambda

lambda :[x%Z == }

\ Body of lambda

Note no return keyword

parameter

= lambda creates a procedure/function object, but simply does
not bind a name to it

3
6.100L Lecture 9

ANONYMOUS FUNCTIONS

= Function call with a named function:

apply([is_even], 10)

* Function call with an anonymous function as parameter:

apply({lambda X: X%2 == J, 10)

=]1ambda function is one-time use. It can’t be reused because it
has no name!

4
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n))

print (do twice (3, lambda x: x**2))

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n))

print (do twice (3, lambda x: x**2))

Global environment

do_twice function object

6
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n))

print (do twice (3, lambda x: x**2))

Global environment do_twice environment

n

do_twice function object

fn | lambda x: x**2

7
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n))

print (do twice (3, lambda x: x**2))

Global environment

do_twice environment

environment
n 3
fn lambda x: x**2

do_twice function object
27?7

8
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n))

print (do twice (3, lambda x: x**2))

Global environment do_twice environment lambda x: x**2

environment

n 3
fn lambda x: x**2 7?7

do_twice function object

environment

x (3]

9
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn)

return fn(fn(n)) m

print (do twice (3, lambda x: x**2))

lambda x: x**2
environment

Global environment do_twice environment

n 3

do_twice function object
fn lambda x: x**2

lambda x: x**2
environment

Returns 9

10
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):
return fn(fn(n))
print (do twice (3, lambda x: x**2))

Global environment do_twice environment lambda x: x**2
environment

n 3

do_twice function object
fn lambda x: x**2

Returns 81

11
6.100L Lecture 9

YOU TRY IT!

= What does this print?

def do twice(n, fn):

return fn(fn(n)) m

print (do twice (3, lambda x: x**2))

Global environment do_twice environment

do_twice function object f n 3
fn lambda x: x**2
PRINTS 81
Returns 81

12
6.100L Lecture 9

TUPLES

A NEW DATA TYPE

" Have seen scalar types: int, float, bool

" Have seen one compound type: string

= Want to introduce more general compound data types

= |[ndexed sequences of elements, which could themselves be compound
structures

= Tuples —immutable
= Lists — mutable

= Next lecture, will explore ideas of
= Mutability
= Aliasing
= Cloning

14

TUPLES

= Indexable ordered sequence of objects
= Objects can be any type —int, string, tuple, tuple of tuples, ...

= Cannot change element values, immutable nt
ith one elem®

te = () Emptv P] ca Stup\e W\ mmas

_ m 0
ts = (2) Extra com e _ (2) . ara’tedb\lc

compare wit ts N ruple &P
| iple €™
t = (2, "mit", 3) M a gat0
g S
t[0] > evaluates to 2 \ndexing
(2,"mit",3) + (5,6)>evaluatestoanew tuple(2, " "mit",3,5,6)
t[1:2] —> slice tuple, evaluatesto ("mit",)
t[1:3] —> slice tuple, evaluatesto ("mit", 3) L
len (t) — evaluates to 3 s 2150 work, €8
\

t
max(3 , 5,0) - evaluates5 other func
t[1] = 4 -» gives error, can’t modify object

15
6.100L Lecture 9

INDICES AND SLICING

seq = (2,'a'",4
index: 0 1 2 3

print (len)

print (seq

print

N2 20 20 2 Z

(
(
prlnt(seq
(
prlnt(seq

print

print (seq

print

N2 20 20 2 Z

([
([-
print(seq[l
([:
([

print (seq

N2
N

for e in seq:
print (e) a

(1,2)

16

6.100L Lecture 9

TUPLES

= Conveniently used to swap variable values

X

<X K

1

2
Y
X

First, create tupl®
x =1 x =1 y =
y = 2 y =2
temp = x (x, yv)| = (y, X)
x =y NN S
y = temp “,‘o\“d
e o \O

17
6.100L Lecture 9

TUPLES

= Used to return more than one value from a function

def quotilent and remailnder (x, y):

q=x//y
r = x 3%y on object! nts/\’a\UeS\
return[(q, r) (W“hlem

(3,1) 3, 1)

\
both =[guotient_and_remainder(lO,Bﬁ

1 2, 1)
2 \
\\\\7auot, rem) =[quotient_and_remainder(5,2)]

18
6.100L Lecture 9

BIG IDEA

Returning

one object (atuple)

allows you to return
mu\tlp\e values (tuple elements)

YOU TRY IT!

= Write a function that meets these specs:

" Hint: remember how to check if a character is in a string?

def char counts(s):
""" s 1s a string of lowercase chars
Return a tuple where the first element is the

number of vowels in s and the second element
1s the number of consonants in s """

20

VARIABLE NUMBER of
ARGUMENTS

" Python has some built-in functions that take variable number
of arguments, e.g, min

= Python allows a programmer to have same capability,
using * notation

def mean(ﬁargs):
tot =0
for a 1n args:

tot += a
return tot/len (args)

" numbers is bound to a tuple of the supplied values

" Example: . 4,5,6)
202013 !
" mean(l,2,3,4,5,0) args 7 (11

21
6.100L Lecture 9

LISTS

LISTS

" Indexable ordered sequence of objects
e Usually homogeneous (i.e., all integers, all strings, all lists)

e But can contain mixed types (not common)

* Denoted by square brackets, [] Tuples Were \

= Mutable, this means you can change values of specific
elements of list

23
6.100L Lecture 9

INDICES and ORDERING omber SENES

Re
and wples?

X
list = AN
a lis [] e«@

L = [2, "a', 4, [1,2]]
[1,2]14+([3,4] -2 evaluatesto [1, 2, 3, 4]\Hup\e

of 1o P \e\le

len (L) =2 evaluatesto 4 G.Nes\engh
L[O] - evaluates to 2 mdex-mgstaftsato

L[2]+1 = evaluatesto5

L[3] — evaluatesto [1, 2], another list!

L[4]

—> gives an error
1 =2
L[i-1] = evaluatesto 'a'sinceL[l]="a"
max([3,5,0]) =2 evaluates5

24
6.100L Lecture 9

ITERATING OVER a LIST

= Compute the sum of elements of a list

= Common pattern

total = 0

for 1 1n range(len (L)) :

total += L[1]

print (total)

= Notice

e |ist elements are indexed O to len (
and range (n) goesfrom 0 ton-1

25
6.100L Lecture 9

" .\‘efa:?z
Gﬁﬁiﬁi@&ﬁ&“s
O\é‘i(ec\,\\l
total = 0
for 1 1in L:
total += 1
print (total)
©
@,éQ}}ﬁﬁ
L)-1 x\:\o(e“)

ITERATING OVER a LIST

= Natural to capture iteration over a list inside a function

def list sum(L) :

total = 0 total

for 1 1n L: for

total += 1

1

= 0

in L:

1 1s 8 then 3 then 5

total += 1

print (total) return total

" Functioncall 1ist sum([8,3,5])
= Loop variable i takes on values in the list in order! 8 then 3 then 5
= To help you write code and debug, comment on what the loop var

values are so you don’t get confused!

26

LISTS SUPPORT ITERATION

" Because lists are ordered sequences of elements, they naturally
interface with iterative functions

Add the elements of a list | Add the length of elements of a list

\

def list sum(L) : def len sum(L) : e“\%
N ot ™
total = 0 total = 0 o\ ‘\\eﬂd
| A
for|le|in L: for|s |in L: %‘\(\e(\X
el
< 3‘\\606 total += e total +=|len(s) ’),’ﬁ\(\
e
'\
X&\(\e return (total) return (total)

list sum([1,3,5]) =2 9 len sum(['ab', 'def', 'g']) 2> 6

27
6.100L Lecture 9

YOU TRY IT!

= Write a function that meets these specs:

def sum and prod(L) :
""" I, is a list of numbers
Return a tuple where the first value is the
sum of all elements 1n L and the second value
is the product of all elements in L """

28

SUMMARY

= Lambda functions are useful when you need a simple function
once, and whose body can be written in one line

" Tuples are indexable sequences of objects

= Can’t change its elements, for ex. can’t add more objects to a tuple
= Syntax is to use ()

= Lists are indexable sequences of objects

= Can change its elements. Will see this next time!
= Syntax is to use []

" Lists and tuples are very similar to strings in terms of
= |Indexing,
= Slicing,
= Looping over elements

29
6.100L Lecture 9

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LAMBDA FUNCTIONS, TUPLES and LISTS�(download slides and .py files to follow along)
	FROM LAST TIME
	ANONYMOUS FUNCTIONS
	ANONYMOUS FUNCTIONS
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	TUPLES
	A NEW DATA TYPE
	TUPLES
	INDICES AND SLICING
	TUPLES
	TUPLES
	Returning �one object (a tuple) �allows you to return multiple values (tuple elements)
	Slide Number 23
	VARIABLE NUMBER of ARGUMENTS
	LISTS
	LISTS
	INDICES and ORDERING
	ITERATING OVER a LIST
	ITERATING OVER a LIST
	LISTS SUPPORT ITERATION
	Slide Number 32
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

