
LISTS, MUTABILITY
(download slides and .py files to follow along)

6.100L Lecture 10
Ana Bell

1

INDICES and ORDERING in LISTS

a_list = []

L = [2, 'a', 4, [1,2]]

len(L) evaluates to 4
L[0] evaluates to 2
L[3] evaluates to [1,2], another list!
[2,'a'] + [5,6] evaluates to [2,'a',5,6]
max([3,5,0]) evaluates to 5
L[1:3] evaluates to ['a', 4]
for e in L loop variable becomes each element in L
L[3] = 10 mutates L to [2,'a',4,10]

6.100L Lecture 10
2

MUTABILITY

6.100L Lecture 10

 Lists are mutable!
 Assigning to an element at an index changes the value

L = [2, 4, 3]

L[1] = 5

 L is now [2, 5, 3]; note this is the same object L

L

[2,4,3][2,5,3]

3

MUTABILITY

6.100L Lecture 10

 Compare
 Making L by mutating an element vs.
 Making t by creating a new object

L = [2, 4, 3]

L[1] = 5

t = (2, 4, 3)

t = (2, 5, 3)

L [2,4,3][2,5,3]

t (2,4,3)

(2,5,3)

x

4

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]
L.append(5) L is now [2,1,3,5]

6.100L Lecture 10

L

[2,1,3][2,1,3,5]

5

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]
L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5]

6

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]
L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

7

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]
L.append(5) L is now [2,1,3,5]
L = L.append(5)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

None

8

OPERATION ON LISTS – append

 Add an element to end of list with L.append(element)
 Mutates the list!

L = [2,1,3]
L.append(5) L is now [2,1,3,5]
L.append(5) L is now [2,1,3,5,5]
print(L)

6.100L Lecture 10

L

[2,1,3][2,1,3,5,5]

9

YOU TRY IT!
 What is the value of L1, L2, L3 and L at the end?
L1 = ['re']

L2 = ['mi']

L3 = ['do']

L4 = L1 + L2

L3.append(L4)

L = L1.append(L3)

6.100L Lecture 10
10

BIG IDEA
Some functions mutate
the list and don’t return
anything.
We use these functions for their side effect.

6.100L Lecture 10
11

OPERATION ON LISTS: append

 L = [2,1,3]
L.append(5)

 What is the dot?
• Lists are Python objects, everything in Python is an object
• Objects have data
• Object types also have associated operations
• Access this information by object_name.do_something()
• Equivalent to calling append with arguments L and 5

6.100L Lecture 10
12

YOU TRY IT!
 Write a function that meets these specs:
def make_ordered_list(n):

""" n is a positive int
Returns a list containing all ints in order
from 0 to n (inclusive)
"""

6.100L Lecture 10
13

YOU TRY IT!
 Write a function that meets the specification.
def remove_elem(L, e):

"""

L is a list

Returns a new list with elements in the same order as L

but without any elements equal to e.

"""

L = [1,2,2,2]

print(remove_elem(L, 2)) # prints [1]

6.100L Lecture 10
14

STRINGS to LISTS

 Convert string to list with list(s)
 Every character from s is an element in a list

 Use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

6.100L Lecture 10

s = "I<3 cs &u?" s is a string
L = list(s) L is ['I','<','3',' ','c','s',' ','&','u','?']

L1 = s.split(' ') L1 is ['I<3','cs','&u?']
L2 = s.split('<') L2 is ['I', '3 cs &u?']

15

LISTS to STRINGS

 Convert a list of strings back to string
 Use ''.join(L) to turn a list of strings into a bigger string
 Can give a character in quotes to add char between every

element

6.100L Lecture 10

L = ['a','b','c'] L is a list
A = ''.join(L) A is "abc"
B = '_'.join(L) B is "a_b_c"
C = ''.join([1,2,3]) an error
C = ''.join(['1','2','3'] C is "123" a string!

16

YOU TRY IT!
 Write a function that meets these specs:
def count_words(sen):

""" sen is a string representing a sentence
Returns how many words are in s (i.e. a word is a
a sequence of characters between spaces. """

print(count_words("Hello it's me"))

6.100L Lecture 10
17

A FEW INTERESTING LIST
OPERATIONS

 Add an element to end of list with L.append(element)
 mutates the list

 sort()
 L = [4,2,7]
L.sort()

 Mutates L

 reverse()
 L = [4,2,7]
L.reverse()

 Mutates L

 sorted()
 L = [4,2,7]
 L_new = sorted(L)
 Returns a sorted version of L (no mutation!)

6.100L Lecture 10
18

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L

[9,6,0,3][9,6,0,3,5]

19

[9,6,0,3,5]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a
20

[0,3,5,6,9][9,6,0,3,5]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a

b
None

21

[0,3,5,6,9][9,6,5,3,0]

MUTABILITY

6.100L Lecture 10

L=[9,6,0,3]

L.append(5)

a = sorted(L) returns a new sorted list, does not mutate L

b = L.sort() mutates L to be [0,3,5,6,9] and returns None

L.reverse() mutates L to be [9,6,5,3,0] and returns None

L
[0,3,5,6,9]

a

b
None

22

YOU TRY IT!
 Write a function that meets these specs:
def sort_words(sen):

""" sen is a string representing a sentence
Returns a list containing all the words in sen but
sorted in alphabetical order. """

print(sort_words("look at this photograph"))

6.100L Lecture 10
23

BIG IDEA

Functions with side
effects mutate inputs.
You can write your own!

6.100L Lecture 10
24

 Let’s write a function that mutates the input
 Example: square every element of a list, mutating original list

 Solutions (we’ll go over option 2, try the others on your own!):
 Option 1: Make a new variable representing the index, initialized to 0

before the loop and incremented by 1 in the loop.
 Option 2: Loop over the index not the element, and use L[index] to get

the element
 Option 3: Use enumerate in the for loop (I leave this option to you to

look up). i.e. for i,e in enumerate(L)

LISTS SUPPORT ITERATION

6.100L Lecture 10

def square_list(L):

for elem in L:

?? How to do L[index] = the square ??

?? elem is an element in L, not the index :(

25

LISTS SUPPORT ITERATION

 Example: square every element of a list, mutating original list

 Note, no return!

6.100L Lecture 10

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

26

 Example: square every element of a list, mutating original list

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

TRACE the CODE with an
EXAMPLE

6.100L Lecture 10

i is 0: L is mutated to [4, 3, 4]
i is 1: L is mutated to [4, 9, 4]
i is 2: L is mutated to [4, 9, 16]

Suppose L is [2,3,4]

27

 Example: square every element of a list, mutating original list

def square_list(L):

for i in range(len(L)):

L[i] = L[i]**2

Lin = [2,3,4]

print("before fcn call:",Lin) # prints [2,3,4]

square_list(Lin)

print("after fcn call:",Lin) # prints [4,9,16]

TRACE the CODE with an
EXAMPLE

6.100L Lecture 10
28

BIG IDEA

Functions that mutate
the input likely…..
Iterate over len(L) not L.
Return None, so the function call does not need to be saved.

6.100L Lecture 10
29

MUTATION

 Lists are mutable structures
 There are many advantages to being able to change a portion

of a list
 Suppose I have a very long list (e.g. of personnel records) and I want to

update one element. Without mutation, I would have to copy the
entire list, with a new version of that record in the right spot. A
mutable structure lets me change just that element

 But, this ability can also introduce unexpected challenges

6.100L Lecture 10
30

TRICKY EXAMPLES OVERVIEW

 TRICKY EXAMPLE 1:
 A loop iterates over indices of L and mutates L each time (adds more

elements).

 TRICKY EXAMPLE 2:
 A loop iterates over L’s elements directly and mutates L each time (adds

more elements).

 TRICKY EXAMPLE 3:
 A loop iterates over L’s elements directly but reassigns L to a new

object each time

 TRICKY EXAMPLE 4 (next time):
 A loop iterates over L’s elements directly and mutates L by removing

elements.

6.100L Lecture 10
31

TRICKY EXAMPLE 1: append

 Range returns something that behaves like a tuple
(but isn’t – it returns an iterable)
 Returns the first element, and an iteration method by which

subsequent elements are generated as needed

range(4) kind of like tuple (0,1,2,3)
range(2,9,2) kind of like tuple (2,4,6,8)

L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)

6.100L Lecture 10

1st time: L is [1, 2, 3, 4, 0]
2nd time: L is [1, 2, 3, 4, 0, 1]
3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]
32

TRICKY EXAMPLE 1: append

L = [1,2,3,4]

for i in range(len(L)):

L.append(i)

print(L)

6.100L Lecture 10

[1,2,3,4]

L

[1,2,3,4,0][1,2,3,4,0,1]

(0,1,2,3)

i

[1,2,3,4,0,1,2][1,2,3,4,0,1,2,3]

1st time: L is [1, 2, 3, 4, 0]
2nd time: L is [1, 2, 3, 4, 0, 1]
3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]

33

TRICKY EXAMPLE 2: append

Looks similar but …
L = [1,2,3,4]

i = 0

for e in L:

L.append(i)

i += 1

print(L)

6.100L Lecture 10

1st time: L is [1, 2, 3, 4, 0]

2nd time: L is [1, 2, 3, 4, 0, 1]

3rd time: L is [1, 2, 3, 4, 0, 1, 2]

4th time: L is [1, 2, 3, 4, 0, 1, 2, 3]
NEVER STOPS!

[1,2,3,4]

L

e

[1,2,3,4,0][1,2,3,4,0,1]

i

012

In previous example, L was accessed at
onset to create a range iterable; in this
example, the loop is directly accessing
indices into L

[1,2,3,4,0,1,2]

3

34

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

6.100L Lecture 10
35

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1.extend([0,6]) mutate L1 to [2,1,3,0,6]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

6.100L Lecture 10
36

COMBINING LISTS

 Concatenation, + operator, creates a new list, with copies
 Mutate list with L.extend(some_list) (copy of some_list)
L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]

L1.extend([0,6]) mutate L1 to [2,1,3,0,6]

L2.extend([[1,2],[3,4]]) mutates L2 to [4,5,6,[1,2],[3,4]]

L1 [2,1,3]

L2 [4,5,6]

L3 [2,1,3,4,5,6]

[2,1,3,0,6]

6.100L Lecture 10

[4,5,6,[1,2],[3,4]]

37

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

3rd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

4th time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

38

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

39

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

40

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

1st time: new L is [1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4]

2nd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,]

3rd time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4] 41

TRICKY EXAMPLE 3: combining

L = [1,2,3,4]

for e in L:

L = L + L

print(L)

6.100L Lecture 10

[1,2,3,4]

L

e

[1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,]

[1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,
1,2,3,4,1,2,3,4,]

4th time: new L is [1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4 ,
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4]

42

EMPTY OUT A LIST AND CHECKING
THAT IT’S THE SAME OBJECT

 You can mutate a list to remove all its elements
 This does not make a new empty list!

 Use L.clear()
 How to check that it’s the same object in memory?

 Use the id() function
 Try this in the console

6.100L Lecture 10

>>> L = [4,5,6]

>>> id(L)

>>> L.append(8)

>>> id(L)

>>> L.clear()

>>> id(L)

>>> L = [4,5,6]

>>> id(L)

>>> L.append(8)

>>> id(L)

>>> L = []

>>> id(L)
43

SUMMARY

 Lists and tuples provide a way to organize data that naturally
supports iterative functions
 Tuples are immutable (like strings)

 Tuples are useful when you have data that doesn’t need to change.
e.g. (latitude, longitude) or (page #, line #)

 Lists are mutable
 You can modify the object by changing an element at an index
 You can modify the object by adding elements to the end
 Will see many more operations on lists next time
 Lists are useful in dynamic situations.

e.g. a list of daily top 40 songs or a list of recently watched movies

6.100L Lecture 10
44

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

45

https://ocw.mit.edu
https://ocw.mit.edu/terms

	LISTS, MUTABILITY�(download slides and .py files to follow along)
	INDICES and ORDERING in LISTS
	MUTABILITY
	MUTABILITY
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	OPERATION ON LISTS – append
	Slide Number 10
	Some functions mutate the list and don’t return anything.
	OPERATION ON LISTS: append
	Slide Number 14
	Slide Number 16
	STRINGS to LISTS
	LISTS to STRINGS
	Slide Number 20
	A FEW INTERESTING LIST OPERATIONS
	MUTABILITY
	MUTABILITY
	MUTABILITY
	MUTABILITY
	Slide Number 27
	Functions with side effects mutate inputs.
	LISTS SUPPORT ITERATION
	LISTS SUPPORT ITERATION
	TRACE the CODE with an EXAMPLE
	TRACE the CODE with an EXAMPLE
	Functions that mutate the input likely…..
	MUTATION
	TRICKY EXAMPLES OVERVIEW
	TRICKY EXAMPLE 1: append
	TRICKY EXAMPLE 1: append
	TRICKY EXAMPLE 2: append
	COMBINING LISTS
	COMBINING LISTS
	COMBINING LISTS
	TRICKY EXAMPLE 3: combining
	TRICKY EXAMPLE 3: combining
	TRICKY EXAMPLE 3: combining
	TRICKY EXAMPLE 3: combining
	TRICKY EXAMPLE 3: combining
	EMPTY OUT A LIST AND CHECKING THAT IT’S THE SAME OBJECT
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

