
Problem Set 4: Recursion and Caesar Cipher

Pset Buddy

You do not have a buddy assigned for this pset.

Introduction

This problem set is split into two topics: the first focuses on recursion and trees (Part A), while the second looks at classes and cryptography (Parts B

and C). The two topics are not dependent on one another, so feel free to work on them in parallel, or out-of-order. Please carefully read through the

instruction for each.

Do not rename the files we provide you with, change any of the provided helper functions, change function/method names, or delete provided

docstrings. You will need to keep words.txt, story.txt and pads.txt in the same folder in which you store your .py files.

Finally, please consult the Style Guide, as we will be taking point deductions for violations (e.g. non-descriptive variable names and uncommented

code). For this pset style guide numbers 6, 7 and 8 will be highly relevant so make sure you go over those before starting the pset and again before you

hand it in!

1) Part A: Recursive Operations on Trees

A tree is a hierarchical data structure composed of linked nodes. The highest node is called the root, which has branches that link it to other nodes,

which are themselves roots of their respective subtrees. A simple tree is shown below:

We can make a few observations:
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Each node can hold data: in this example they are holding a string with their node type.

Data is hierarchical: each node has a parent (except the root), each non-leaf node has 1 or more children, and each leaf node has 0 children. We

will be using this nomenclature in the rest of the problem set.

Trees are inherently recursive: a root's children nodes are "roots" of other smaller trees (called subtrees).

1.1) Data Representation Practice

In this problem set, we will be using a provided Node  object in tree.py to represent trees.

The simple tree above can be initialized with the Node  object as follows:

example_tree = Node(1, Node(2), Node(5, Node(7), Node(8)))

A brief explanation of the Node class is below:

You can initialize a node with the following Node(value, left_child, right_child) . value  holds the value held in the node, left_child
optionally holds the Node constructing the left subtree, right_child  does the same for the right subtree. If there is not a subtree, either do not

input that parameter or pass in None .
You can get the Node  object holding the left or right subtrees with get_left_child()  or get_right_child()  respectively. If there is no child,

this function returns None .
You can get the value held by a Node  with get_value() .

We will practice initializing trees in this part. For the trees shown below, create objects accurately representing the data. Put them into the variables at

the top of ps4a.py, named tree1 , tree2 , and tree3 .

1.1.1) Testing
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You can test out your representation so far by running test_ps4a_student.py. Make sure it s̓ in the same folder as your problem set. When you

correctly initialize the three tree variables, the test named test_data_representation  in test_ps4a_student.py should pass.

1.2) Determining The Height of a Tree

The height of a tree is the number of edges between the root and the furthest leaf. For example, in the trees you initialized above tree 1 has a height of 2

and trees 2 and 3 have a height of 3. Write a recursive function, find_tree_height , that determines the depth of a tree. This function must be

recursive; non-recursive implementations will receive a zero.

Hint. The following approach may prove to be helpful:

Given an input tree, :

Base case. If  is a leaf, it has a height of 0.

Recursive case. Recursively find the height of 's left and right subtrees and take the maximum of the two. Add 1 to the maximum height

and return that value.

You should test your function using the variables from the previous part. For example:

find_tree_height(tree1) # should be 2
find_tree_height(tree2) # should be 3
find_tree_height(tree3) # should be 3

1.2.1) Testing

Now, your code should also pass the tests test_tree_height  and tree_tree_height_additional  in test_ps4a_student.py.

1.3) Heaps

A special type of trees are heaps. There are two types of heaps: max heaps and min heaps.

In a max heap, for each node ,  is the maximum value in the tree rooted at . This means that all of the elements stored in 's left and right

subtrees are less than than the value stored in .

Conversely, in a min heap,  is the minimum value in the tree rooted at , so all of the elements stored in 's left and right subtrees are greater than

the value stored in .

Write the function is_heap  to quickly determine if a tree is a max or min heap, depending on the compare_func  parameter. The

compare_func  is a function that takes in two arguments, child_value  and parent_value . For max heaps, this function will return True  if

child_value < parent_value  and False  otherwise. For min heaps, the function will return True  if child_value > parent_value  and False
otherwise. Conceptually, this allows you to write one function that can determine both max and min heaps based on a parameter, instead of

writing two separate methods with very similar code. Below, we have provided you with working implementations of compare_func  for a max and

min heap, respectively.
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# max heap comparator
def compare_func(child_value, parent_value):
    if child_value < parent_value:
        return True
    return False

# min heap comparator
def compare_func(child_value, parent_value):
    if child value > parent_value:
        return True
    return False

Hint. The following approach may prove to be helpful:

Given an input tree, :

Base case. If  is a leaf then it is a heap (for both max and min heaps)

Recursive case. For a node , recursively check if 's right and left subtrees are also heaps and that  is the max or min element (using

the comparator function compare_func  passed to is_heap ) of its subtree. If all the previous conditions are true, then the tree rooted at 
is a heap. Otherwise, it is not.

1.3.1) Testing

You should now pass all of the tests in test_ps4a_student.py.

2) Part B: Encryption with One Time Pads

2.1) Introduction

In this problem we will implement a simple encryption technique that when implemented correctly cannot be broken.

Here is some important vocabulary we will use going forward:

encryption. the process of obscuring or encoding messages to make them unreadable.

decryption. the process of converting encrypted messages back to their original, readable form.

plaintext. the original, readable message.

ciphertext. the encrypted message. A ciphertext still contains all of the original message information, even though it looks like gibberish.

2.1.1) How a One Time Pad Works

The idea of a one time pad is to "shift" each character in your plaintext message by a random amount. This results in a ciphertext that cannot be

decrypted without the list of random amounts your letters were shifted by, called the pad.

In this pset we want our messages to be able to include letters, numbers, spaces and other special characters. Shifting a letter makes sense (for

example a  shifted by 3 would be d ), but what would a space shifted by 3 be? Luckily, all characters are represented on our computers as numbers

already! You can view the mappings of basic characters to numbers in this ASCII table. In it we can see that a space is represented by the numeric value

32 , so shifting it by 3 results in 35  or the character # . An example of shifting letters by 3 is pictured below.
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We need to be careful to properly handle the case where the shift wraps around to the start. We're only interested in characters with ASCII values from

32  to 126 . So the last character ~  with the value 126  shifted by 1 would be a space (value 32 ) and ~  shifted by 5 would be a $  (value 36 ). Some
more examples are found in the following table:

Character (& ASCII Value) Shift value Shifted Character (& ASCII Value)

“A” (65) 5 “F” (70)

"a" (97) 10 "k" (107)

“ ” (SPACE, 32) -1 "~" (126)

“-" (45) 8 "5" (53)

“}” (125) 4 """ (QUOTE, 34)

“k” (107) -3 "h" (104)

“Y” (89) -12 "M" (77)

“Y” (89) -107 "M" (77)

Now that we know how to shift characters, to use a one time pad we simply have to shift each character in our message by a random amount specified

by the pad. For example, if we have the message hello  (ASCII values [104, 101, 108, 108, 111] ) and the pad [3, 0, 10, 11, 4] , we would
do compute [104+3, 101+0, 108+10, 108+11, 111+4] , which equals [107, 101, 118, 119, 115] . Converting back from values to characters,

our ciphertext would be kevws . More examples are in the chart below:

Plaintext One Time Pad Process Ciphertext

Aaa 1,2,3 65+1=66, 97+2=99, 97+3=100 Bcd

xyz 2,10,12 120+2=122, 121+10=36, 122+12=39 z$'

Hello! 5,10,2,3,0,2 72+5=77, 101+10=111, 108+2=110, 108+3=111, 111+0=111, 33+2=35 Monoo#

Monoo# -5,-10,-2,-3,0,-2 77-5=72, 111-10=101, 110-2=108, 111-3=108, 111+0=111, 35-2=33 Hello!

Now that we know how one time pads work we can start implementing them!

2.1.2) Using Classes and Inheritance

This is your first experience creating your own classes! Get excited! They are a powerful idea that you will use throughout the rest of your programming

career. If you need a refresher on how classes and inheritance work, refer to the lecture and recitation notes.

For this problem set, we will use a parent class called Message , which has two child classes: PlaintextMessage  and EncryptedMessage .

Message  contains methods that both plaintext and encrypted messages will need to use. For example, a method to get the text of the message.

The child classes will inherit these shared methods from their parent.

PlaintextMessage  contains methods that are specific to a plaintext message, such as a method for generating a one time pad or encrypting a

message.

EncryptedMessage  contains methods that are specific to a ciphertext, such as a method to decrypt a message given a one time pad.

2.2) Message

We have provided skeleton code in the Message  class for the following functions. Your task is to fill in the methods of the Message  class found in

ps4b.py according to the specifications in the docstrings. Please see the docstring comment of each function for more information about the function's

specification.

__init__(self, input_text)
get_text(self)
shift_char(self, char, shift) . This should return a string containing char  shifted by shift  according to the method described above.

Some hints to keep in mind:

ord(char)  returns the ASCII value of a string char  which contains a single character

chr(ascii_num)  returns a string with the single character specified by ascii_num
We are only interested in the 95 ASCII characters from ASCII values 32  to 126
The modulo operator %  which returns the remainder of division is helpful for "wrapping around".

apply_pad(self, pad) . This should return a string containing the ciphertext of self.message_text  after pad  is applied
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We have also implemented a __repr__  function so that when you print out your Message  objects, the console displays a nice human readable result.

Please do not change it.

2.2.1) Testing

You can test out your code so far by running test_ps4bc_student.py. Make sure it's in the same folder as your problem set. At this point, your code

should be able to pass all the tests beginning with test_message , but not the ones beginning with test_plaintext_message  or

test_encrypted_message . We will implement code for those in the next section.

2.3) PlaintextMessage

Again, your task is to fill in the methods of the PlaintextMessage  class found in ps4b.py according to the specifications in the docstrings.

__init__(self, input_text, pad=None)
You should use the parent class constructor (using super() ) in this method to make your code more concise. Take a look at Style Guide #7
if you are confused.

The syntax pad=None  indicates an optional argument that can be omitted and the specified default value of None  is passed in instead.

For example, PlaintextMessage('test')  and PlaintextMessage('test', [0,15,3,9])  are both valid constructors but the

former should generate a random pad and the latter should use the specified pad.

You should save a copy of pad  as an attribute and not pad  directly to protect it from being mutated.

generate_pad(self)
Note: our shift_char  should work for any arbitrary integer but for simplicity we'll only generate pads with integers in the range [0, 110)
Hint: random.randint(a, b)  returns a random integer  such that .

get_pad(self)
This should return a copy of self.pad  to prevent someone from mutating the original list.

get_ciphertext(self)
change_pad(self, new_pad)

Make sure self.get_ciphertext  uses the new pad!

We have also implemented a __repr__  function so that when you print out your PlaintextMessage  objects it returns a nice human readable result.

Please do not change it.

2.3.1) Testing

You can test your new class by running test_ps4bc.py. You should now be able to pass all the tests starting with test_message  and

test_plaintext .

2.4) EncryptedMessage

Given an encrypted message, if you know the one time pad used to encode the message, decoding it is trivial. That's because if we shifted a character

by  to encrypt it then to decrypt it we simply shift it back by ! Therefore to decrypt a message that was shifted with the onetime pad [i, j, k,
...]  we simply apply the pad [-i, -j, -k, ...] . So if $ip!  is the encrypted message, and [5, 1, 7, 2]  was the pad used to encrypt the

message, then [-5, -1, -7, -2]  decodes the encrypted message and gives you the original plaintext message.

Ciphertext One Time Pad Process Plaintext

$ip! 5,1,7,2 36-5=126, 105-1=104, 112-7=105, 33-2=126 ~hi~

We now will implement decryption in the EncryptedMessage  class.

Fill in the following methods of the EncryptedMessage  class found in ps4b.py according to the specifications in the docstrings.

__init__(input_text)
As with PlaintextMessage , use the parent class constructor ( super() ) to make your code more concise. Take a look at Style Guide #7 if
you are confused.

decrypt_message(self, pad)
This function should be very short. Using the above explanation of how to decrypt a one-time pad, try to use a function you already wrote in

the Message  class.

2.4.1) Testing

N a ≤ N ≤ b

x −x
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You can test your new class by running test_ps4bc_student.py. You should now be able to pass all the tests in that file, except for test_try_pads .

3) Part C: Using Your Classes

Now that we have created our classes in ps4b.py we will learn how to use them in ps4c.py! At the top of ps4c.py you can see the line:

import ps4b # Importing your work from Part B

This imports your code from the ps4b.py file if it is in the same folder. To use a class created in Part B you can initialize it like this: my_message =
ps4b.Message("My Message!") .

There are a few helper functions we have implemented for you: load_words , is_word , and get_story_string . These will be helpful for
implementing decrypt_message_try_pads  and decode_story . You don't need to understand exactly how they work, but you should read their

associated docstrings to understand what they do and how to use them.

3.1) Decoding Ciphertexts

One time pads are secure so we can't find a plaintext message without the pad used to encrypt it. However, if we have a ciphertext and a list of the pads

which might have been used to encrypt it, we can find which pad actually encrypted it and what the plaintext message is.

To do this programmatically we would try decrypting the ciphertext with each pad in the list and count the number of English words in the output. We

can count the number of words by spliting the decrypted output on spaces and testing if each is a valid English word. Then we can assume that pad that

produces a plaintext message with the most valid words was the pad used to encrypt the message. Additionally, in the event of ties, we want to return

the last pad that results in the maximum number of valid English words.

Fill in decrypt_message_try_pads(self, pads)  using the approach described above.

You may find the helper functions is_word(wordlist, word)  and load_words , and the string method split  useful. Note that is_word  will ignore

punctuation and other special characters when considering whether or not a word is valid.

3.1.1) Testing

You should now be able to pass all the tests in test_ps4bc_student.py.

Please note that in the student tester your decrypt_message_try_pads  will rely on your work from ps4b.py. However, the staff tester will have one

test where it will use our reference staff implementation of ps4b.py. Therefore you should make sure that you are using your getters and setters

rather than directly accessing class attributes from decrypt_message_try_pads !

3.1.2) Decoding a Story

Bob is trying to share a story with Alice without us being able to learn the story. Fortunately for us we overheard Bob when he was sharing all of his one

time pads with Alice; we just don't know which pad he used for his story.

Implement decode_story  to find what Bob's story was.

use get_story_string  to get the ciphertext of Bob's story and get_story_pads  to get a list of Bob's one time pads.

Use your decrypt_message_try_pads  function to find what Bob's message to Alice was.

Check the output of decode_story  by uncommenting the code at the bottom of ps4c.py and running ps4c.py. This function is not tested in

test_ps4bc_student.py, but be prepared to discuss the decrypted story at your checkoff.

4) Hand-in Procedure

4.1) Time and Collaboration Info

At the start of each file, in a comment, write down the names of your collaborators. For example:

# Problem Set 4B
# Name: Jane Lee
# Collaborators: John Doe
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Please estimate the number of hours you spent on the Problem Set in the question box below.

4.2) Half-way Submission

All students should submit their progress by the half-way due date (1 week before the final due date).

This submission will be worth 1 point out of the problem set grade and will not be graded for correctness. The intention is to make sure that you are

making steady progress on the problem set as opposed to working on it in the final days before the due date.

You may upload new versions of ps4a.py until Nov 09 at 09�00PM. You cannot use extensions or late days on this submission.

Please refresh the page before submitting a new file. If you do not, your latest submission won't be updated.

Select File No file selected

Submit

You have infinitely many submissions remaining.

4.3) Final Submission

Be sure to run the student testers test_ps4a_student.py , and test_ps4bc_student.py  and make sure all the tests pass. However, the

student tester contains only a subset of the tests that will be run to determine the problem set grade. Passing all of the provided test cases does not

guarantee full credit on the pset.

You may upload new versions of each file until Nov 16 at 09�00PM, but anything uploaded after that time will be counted towards your late days, if you

have any remaining. If you have no remaining late days, you will receive no credit for a late submission.

When you upload a new file with the same name, your old one will be overwritten.

4.3.1) Part A

Select File No file selected

Submit

You have infinitely many submissions remaining.

4.3.2) Part B

Select File No file selected

Submit

You have infinitely many submissions remaining.

4.3.3) Part C

Select File No file selected

Submit

You have infinitely many submissions remaining.
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