8.323 Problem Set 1 Solutions

February 15, 2023

Question 1: Quantum harmonic oscillator in the Heisenberg picture (25 points)
Consider the Hamiltonian for a unit mass harmonic oscillator with frequency w,

1
H =3 (5" +w3?)

In the Heisenberg picture p(t) and Z(t) are dynamical variables which evolve with time. They obey the
equal-time commutation relation

[2(t),p(t)] =i
Here and below we set h = 1.

(a) Obtain the Heisenberg evolution equations for &(t) and p(t).
We use Heisenberg’s equations of motion for #(¢) and p(t):
dp(t)

= i[H,#(t)] g = {HB(t)]

di(t)
dt

The right hand sides can be computed using H = %(ﬁz + w?#?), the commutator [#,p] = 4, and the
Heisenberg time evolution O(t) = e??'Oe~*H. For instance:

[H,i’(t)] _ [H, ethi,efth] — eth[H, i,]efth — _Z'ethﬁefth — —Zﬁ(t)
Hence, we have:
dz(t) dp(t) .
dt —p(t) dt =-w $(t)

(b) Suppose the initial conditions at ¢ = 0 are given by
WO =8 p0)=p

Find #(¢) and p(t).
We can decouple the system by converting to second order equations:

i = () (1) = —?p(t)
Solving with the initial conditions (0) = & and p(0) = p, we find

1
Z(t) = & coswt + —psinwt p(t) = pcoswt — wi sin wt
w



(¢) It is convenient to introduce operators a(t) and a'(t) defined by:

1

#() =\ 5 (@(t) +al (1), B() = —iy/ S (a() — ' (1)

Show that a(t) and af(t) satisfy the equal-time commutation relation
[a(t),a’ ()] = 1
We solve for a(t) and af(t) in terms of &(t) and p(t):

w 1

1
a(t) =/ =2(t) +iy/ —p(t at(t) = [ =a(t) — iy —p(t
a(t) S 2(t) + iy 5 -B(2), a'(t) 5 () =iy 5 -p(t)
Using the commutation relations between position and momentum operators, we have

[p(t), &(t)] = 1

(1), a1 (1) = —L[2(5), 5(1)] +

v
2 2

(d) Express the Hamiltonian in terms of a(t) and af(t).

where in the last equality we define the number operator, N(t) = a'(t)a(t).

(e) Obtain the Heisenberg equations for a(t) and a'(t).
Using the results in parts (c¢) and (d), we have

dizit) = i[H,a(t)] = iwla' ()a(t), a(t)] = —iwal(t)
af
: dt(t) = i[H,al ()] = iwla' (t)a(t), ' (1)] = iwa(2)

(f) Suppose the initial conditions at ¢ = 0 are given by
a(0) = a, at(0) =al

Find a(t) and af(t).
The equations in (e) are decoupled, and first-order linear. We immediately have

a(t) = ae~ ™t al(t) = ale™!

(g) Express 2(t), p(t), and the Hamiltonian H in terms of @ and a'.
We substitute the expressions obtained in (f) into parts (c) and (d).

1 . .
.ﬁ'(t) _ ﬂ(de—zwt + &T€ZWt)



Question 2: Lorentz transformations (15 points)
(a) Probe that the 4-dimensional J-function

is Lorentz invariant, i.e.
69 (p) =8 (p)

where p* is a Lorentz transformation of p*.
We express the d-function in integral form, and use that p - x is a Lorentz scalar, i.e. Ap- Ax =p - x.

1 1 )
(4) — 4,.,ipT 4 . iAp-Ax
' (p) (@) /d xe (27r) /d xe

Now we make the change of variables Z = Az. Note that d*Z = d*z. To see this we use ATnA = 7, which
implies 1 = det(AT) det(A) = (det A)?. Hence, the Jacobian J = |det A| = 1. One thus has

1 o 1 )
(4) _ 4z iApE 4. iApxr _ ¢(4)
0" (p) @) /d ze G /d xe 0" (Ap)

(b) Show that
w16® (ke — k)
is Lorentz invariant, i.e.
w18®) (k1 — ka) = 6O (K — k)

Here k; and ko are respectively the spatial part of four-vectors K = (w1, El) and kb = (wo, EQ) which
satisfy the on-shell condition

k2 4+ k2 = —m?

and k' = (w], ), k' = (wh, kb) are related to k¥, k& by the same Lorentz transformation.
We consider the expression §(k? + m?) which imposes the mass-shell constraint. We can simplify this

using the J-function identity o(f(x)) = Z /1 Sz — x;).
R
S(k* +m?) = 6(—k3 + k% +m?) = 23} ] (6(ko — lwgl) + 6(ko + |wgl)) (1)

We will assume wy wg, > 0, as is the case for physical 4-momenta.

k b
We can pick out the k) = wg, enforcing d-function in (1) by multiplying both sides by 9(“’1'51)'

G(wgl)é(k‘% +m?) =

Now we multiply both sides by 6®) (k; — ks):

0(wy )3(kT +m?) - 2w 63 (ky — ka) = 6(k) — wp 0@ (kr — ko)
= 0(k) — w,)6@) (y — ko)
= 0(kY — k9)8®) (ky — k2)
0(wp )5(kF +m?) - 2w 63 (ky — k) = 6 (kY — k) (3)



In the second equality, we use that the 5(3)(E1 - Eg) allows us to replace w; with wg . For this step, it is

crucial that sign(wy; ) = sign(wy, ), which is true since both are positive.

Finally, let us study (3). The right-hand side is Lorentz invariant by part (a). On the left-hand side,
§(k? +m?) is Lorentz invariant since k} is a Lorentz scalar, and 0(w;-) is Lorentz invariant because the
energy of a particle does not change under a (proper, orthochronous) Lorentz transformation. It then
follows that wglé(?’)(ﬁl — k) is Lorentz invariant.

(¢) For any function f(k) = f(k°, k', k2, k?), prove that

Pr1 .
/W%Ef(k), CL)E = ]{72 + m2

is Lorentz invariant, in the sense that

Bk 1 Bk 1, -
| ey ® = [ g/ ®

where kt = AP, kY is a Lorentz transformation of k*.
Since the momentum is on the mass-shell, we write f(k) = f(wg, k).
By introducing another §-function, we may write this expression as a integral over 4-dimensions:

Pk 1 Bk 1 - 1 1 =
/ @ 2 w=J @) 2y B 2 | Phggnd 07— SR F)

(27103 / d*k 0(wz)5 (k% +m?) f (k") (4)

where in the last equality we have used (2).

Now we make a change of variables, k = AK’, for A an arbitrary (proper, orthochronous) Lorentz trans-
formation. In parts (a)-(b), we showed that d'k = d*kK’, 0(w;) = 0(wp,), and §(k* + m?) = §(k" + m?).
Hence,

(2711_)3 /d4k0(w;§)5(k2+m2)f(kﬂ) - (27::-)3 /d4k'0(w,—€»,)5(k’2—i—m?)f((Ak’)ﬂ)
Pk 1
:/szzf(/\k)

where the last equality is obtained using the reverse sequence of operations that led to (4).
Putting everything together, we have the desired result,

/d?’z%’ 1 f(k):/ Bk 1 AR

(2m)3 2wy (2m)3 2wy



Question 3: A complex scalar field (20 points)
Consider the field theory of a complex valued scalar field ¢(z) with action

S = / Az (- 8,806 — V(o). |62 = 6"

One could either consider the real and imaginary parts of ¢, or ¢ and ¢* as independent dynamical
variables. The latter is more convenient in most situations.

(a) Check that the action is Lorentz invariant, and find the equations of motion.

A Lorentz transformation acts as ¢ — ¢/, such that ¢'(z) = ¢(A~'z). The action transforms as:

S = / iz ( — 8,8 (2)0" () — V(1§ (@) )
- / dhx( — 9,67 (A ') $(A1x) — V(|o(A 1))

Now we make the change of variable 2’ = A~'2z. We showed in 2(a) that d*z = d*2’. Furthermore, by
the chain rule we have 9, = (A~1),"d,,. Here 9, and &/, denote differentiation with respect to  and .

8= [t/ (— (et @) (A7) 00la!) - V(o))
= [t/ (= 50,07 )0 0l ~ V(o))
B / d*a’ (= 06" (@) (') = V(|o@)) = S

where in the second line we use

(AR (AT, = (WD) WA, = (M) u(ATHH, = 5

To find the equations of motion, we use the Euler-Lagrange equations, treating ¢ and ¢* as independent:

oL oL oL oL

O 5(0,8) ~ 96 % 50,6 ~ 29"

The left-hand side can be confusing to evaluate due to the contracted indices, so we do one calculation

very explicitly:

8£ _ a * QU _ o xSVl 92 1k
aum = O 8(8,@)( 0y9*0"d)| = 0u[-0,9"0,] = —07¢
Hence, the equations of motion are
O*¢" = V'(1¢]*)¢" =0, 06— V'(|¢*)¢ =0

Note that these are conjugate equations, as expected.

(b) Find the canonical conjugate momenta for ¢ and ¢*, and the Hamiltonian H.
We write the Lagrangian density as

L =00~ Vo' Vo~ V(o)
The conjugate momenta are thus

oL . .. oL
I —8t¢, m™oi= a(8t¢*)—8t¢




The Hamiltonian is given by

H= /d3x(7r6t¢ 4O — L) = /d3a:<7r*7r +Vo" Vo +V(|g])

(¢) The action is invariant under the transformation
¢ — P, ¢F — e
for arbitrary constant «. When « is small, i.e. for an infinitesimal transformation, this becomes
0p = iag, 09" = —iag*

Use Noether’s theorem to find the corresponding conserved current j# and conserved charge .
By Noether’s theorem, the conserved current is given by

oL
= §5&, — FH SL — 0
Jj 0, Ba) F L=0,F

In this case, d¢ = iagp, d¢* = —ia¢*, and 6L = 0. We find
g = —0"¢"(iag) — OM¢(—iag") = ia(¢*0"¢ — ¢p0"¢")
One may remove the proportionality constant if desired, to get
=600 — 60
The corresponding charge is then
Q= [ @ = [dateos - 600"

(d) Use the equations of motion from part (a) to verify directly that j* is conserved.
We compute:

Bug" = Bu($* "¢ — pOF ") = ¢* 0% p — ¢p0*¢*
=V'(|¢|*)¢*¢ — V'(|¢]*)*¢ =0

where in the second line we use the equations of motion from part (a).



Question 4: The energy-momentum tensor (20 points)
In this problem we work out the energy-momentum tensor of the complex scalar theory in Question 3.
(a) Under a spacetime translation

ot — P =P + ot
a scalar field transforms as
¢'(z') = ¢(x)

Show that the action is invariant under the transformation ¢(z) — ¢'(z).
Under the transformation, the scalar field satisfies ¢'(z) = ¢(x — a). The action transforms as:

S8 = [ dto( = 8,6" @0" ) - V(¢ (@))
= [ 060 — 00 - ) ~ V(6(e - a))
:/fﬂ—@wwwwm—vwmwn=5

where in the last line we change variables from z# — x* 4 a/, which does not change the integration
measure.

(b) Write down the transformation of the scalar fields ¢ and ¢* for an infinitesimal translation, and use
Noether’s theorem to find the corresponding conserved currents T+,
An infinitesimal translation acts on the fields as:

0¢ = ¢ (x) — ¢(z) = ¢(z — a) — ¢(x) = —a"Oue(2)
06" = ¢ (2) = ¢"(x) = ¢"(x — a) — ¢"(2) = —a" 09" (2)

We also need the change in the Lagrangian density under translations:

0L =L~ L=-0,(¢"(z) — a"0u¢"(2)) ”(¢($)—-a“au¢( z))
— V((¢"(x) — a0y (2))(¢(x) — a"ui(2))) —
= a"(0,0,9" (2)0" ¢(x) + 0,¢" ()0 0 ¢(x D+a”ﬂ@H@(u¢¢+¢*uwﬁ4ﬂwﬁﬂ
= —a"0,L = a,0,(—n"" L) := (au,0,)F"

The translations are parameterized by a 4-vector a*, and we have a Noether current (itself a 4-vector) for
each. Hence, we can encode the conserved currents from translations into a rank-2 tensor, T#. In the
following, we let the first index pick out the direction of the translation a*.

The Noether current is

oL oL
SHWH SOFVH — FHv
53,9 %"+ a,en 07V =T

= —0"¢" (—0M¢) — 0" P(—0"9") + L
= 0" 0 d+ 0”9 " — ' (0,00 d + V (|6]*))

T = () =

(¢) The conserved charge for a time translation

H:/fﬂm



should be identified with the total energy of the system, while that for a spatial translation

P’ = / d*2xT"

is identified with the total momentum. Thus T*" is referred to as the energy-momentum tensor.
Write down the explict expressions for H and P?. Compare H obtained here with the Hamiltonian in
problem 3(b).

We compute:

= [ @1 = [ (200600 + (-0'006 + Fo - Fo + V(6P))
— [ @ (v 0+ Fo - Fo V(o)
/ Pz = / Px (0'¢*0'¢+ 09 0'p) = / d*z (0:0"0;¢ + 0" )
The expression for the Hamiltonian is equal to the Hamiltonian obtained in problem 3(b).

(d) Use the equations of motion of problem 3(a) to verify directly that T#" is conserved.

Recall that the first index of T*” picks out the direction of the translation a*, so formally Noether
conservation should tell us 9,7*" = 0. However, from part (c) it can be seen that TH” is symmetric, so
we can contract the derivative with respect to either index.

We compute:
QT = 8,(8"6"0") + 8”97 0" §) — 0"(8,6"0°9) — 0"V (|¢]*)
= 0% ¢ + 0" ¢* 0% — 0"V (|6[?)
= ¢* 0" V'(|6°) + ¢0"¢™ V'(|¢]*) — ¢*0"¢ V'(|¢]*) — ¢0” 6" V'(|¢|*) =

where we use the equations of motion in the 3rd equality. Thus the Noether currents are conserved.
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