
8.323 Problem Set 3 Solutions

February 28, 2023

Question 1: Lorentz Transformations for Operators and States (15 points)

(a) From the commutation relation of creation and annihilation operators ak and a†k

[ak, a
†
k′ ] = (2π)3δ(3)(k− k′)

and the result of Problem 2(b) of Problem Set 1, argue that ak, a†k should transform under a Lorentz
transformation as

ak → ãk =

√
ωΛk

ωk
aΛk, a†k → ã†k =

√
ωΛk

ωk
a†Λk

We start with the commutator

[ak, a
†
k′ ] = (2π)3δ(3)(k− k′)

The left-hand side transforms to [ãk, ã
†
k′ ]. Furthermore, since ωkδ

(3)(k−k′) is Lorentz-invariant (Problem
2 of PS1), the right-hand side transforms to

ωΛk

ωk
(2π)3δ(3)(Λk− Λk′) =

ωΛk

ωk
[aΛk, a

†
Λk′ ]

The transformations of the two sides must be equal, which is satisfied by imposing

ak → ãk =

√
ωΛk

ωk
aΛk, a†k → ã†k =

√
ωΛk

ωk
a†Λk

(b) Bonus. Using the expression of Mµν of Problem 4(c) of Problem Set 2, compute

1

2
[ωµνM

µν , ak],
1

2
[ωµνM

µν , a†k]

where ωµν = −ωνµ are infinitesimal constants. Show that this indeed generates an infinitesimal

Lorentz transformation in ak and a†k which is consistent with part (a).
From Problem Set 2 we quote the result

Mµν = − i
2

∫
d̄3kkµ

(
a†k(∂kνak)− (∂kνa

†
k)ak

)
− (µ↔ ν), ∂k0ak = 0, k0 = ωk

By antisymmetry, we have

ωµνM
µν = −i

∫
d̄3kkµ

(
a†k(∂kνak)− (∂kνa

†
k)ak

)
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Now we are ready to compute

[ωµνM
µν , ak] = −iωµν

∫
d̄3k′k′µ

(
[a†k′ , ak](∂k′νak′)− [∂k′νa

†
k′ , ak]ak′

)
δν 6=0

= iωµν

∫
d̄3k′k′µ

(
[ak, a

†
k′ ](∂k′νak′)− [ak, ∂k′νa

†
k′ ]ak′

)
δν 6=0

We append the δν 6=0 for convenience because the integrand is zero when ν = 0 (as we have used the
convenient shorthand δk0ak := 0). This does nothing at the moment, but it will prevent confusion when
we use the ladder-operator commutators, which will give factors like ∂k′0δ

(3)(k− k′). Moving on,

[ωµνM
µν , ak] = iω0i

∫
d̄3k′ωk′

(
δ(3)(k− k′)(∂k′iak′)− (∂k′iδ

(3)(k− k′))ak′
)

+ iωij

∫
d̄3k′k′i

(
δ(3)(k− k′)(∂k′jak′)− (∂k′jδ

(3)(k− k′))ak′
)

= (I) + (II)

Note that the δν 6=0 added in the last step kills any ωi0 term. We first compute the second term:

(II) = iωij

∫
d̄3k′

(
k′iδ(3)(k− k′)(∂k′jak′) + ∂k′j (k

′iak′)δ
(3)(k− k′)

)
= iωij(k

i∂kjak + ∂kj (k
iak)) = 2iωijk

i∂kjak + iωijδ
ijak = 2iωijk

i∂kjak

where in the last equality, the second term vanishes because ωij is antisymmetric, but δij is symmetric.
We also have the first term:

(I) = iω0i

∫
d̄3k′

(
ωk′δ

(3)(k− k′)(∂k′iak′) + ∂k′i(ωk′ak′)δ
(3)(k− k′)

)
= iω0i (ωk(∂kiak) + ∂ki(ωkak)) = 2iω0iωk∂kiak + iω0i

ki

ωk
ak

Adding these together gives (where again we define δk0ak := 0)

[ωµνM
µν , ak] = 2iωµνk

µ∂kνak + iω0i
ki

ωk
ak (1)

Similarly, one can show that

[ωµνM
µν , a†k] = 2iωµνk

µ∂kνa
†
k + iω0i

ki

ωk
a†k (2)

Finally, we want to show that this generates an infinitesimal Lorentz transformation consistent with (a).
From part (a), we have

UΛakU
†(Λ) =

√
ωΛk

ωk
aΛk, UΛa

†
kU
†(Λ) =

√
ωΛk

ωk
a†Λk

We can expand these for infinitesimal transformations

UΛ = e
i
2
ωµνMµν

, (Λk)i = ki + ωi
νkν , ωΛk = (Λk)0|k0=ωk

= ωk − ω0
νkν

Substituting these expressions into the ones above yield

ak +
i

2
[ωµνM

µν , ak] =

(
1− 1

2ωk
ω0

νkν

)
(ak + ωi

νkν∂kiak)

i

2
[ωµνM

µν , ak] =

(
− 1

2ωk
ω0

νkν + ωi
νkν∂ki

)
ak = −1

2

(
2ωµνk

µ∂kν + ω0
ν ki
ωk

)
ak

Multiplying both sides by −2i gives precisely (1). Replacing all instances of ak with a†k in this calculation
gives (2), as desired. Therefore, Mµν generates an infinitesimal Lorentz transformation acting on ak and

a†k via commutation.
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(c) Bonus. Now consider a unitary operator generating finite Lorentz transformations,

UΛ = e
i
2
ωµνMµν

where ωµν are finite constants. Show that

UΛ|0〉 = |0〉

i.e. the vacuum is Lorentz invariant. Assuming the Lorentz transformations of ak and a†k in part (a),
show that

UΛ|k〉 = |Λk〉

Note that the expression for Mµν in part (b) in terms of ladder operators is already normal ordered, with
a lowering operator to the right in each term. Therefore, Mµν |0〉 = 0 and

UΛ|0〉 =
∑
n≥0

1

n!

(
i

2
ωµνM

µν

)n
|0〉 = 1|0〉 = |0〉

where in the second equality, only the n = 0 term does not vanish.

We can also act UΛ on a momentum eigenstate |k〉 =
√

2ωka
†
k|0〉:

UΛ|k〉 =
√

2ωkUΛa
†
kU
†
ΛUΛ|0〉 =

√
2ωk

√
ωΛk

ωk
aΛk|0〉 = |Λk〉

as desired. In the second equality we use the result from (a).
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Question 2: Spatially Localized States of a Scalar Particle (25 points)
In a quantum field theory there is no natural way to define a position eigenvector |x〉, as x is now simply
a label, not an operator. Also, there is a fundamental conflict: a perfectly localized state in space is not
a Lorentz covariant concept, as it picks out a reference frame (we cannot perfectly localize in time at the
same time, as simultaneity is relative).

In this problem we will make these abstract statements concrete. Consider states of the form

|r, t〉f :=

∫
d3kf(k)|k〉e−ik·r+iωkt

where f(k) is a function to be determined, and |k〉 =
√

2ωka
†
k|0〉 is the 1-particle state of momentum k

and energy ωk.
(a) Determine f(k) by the condition of perfect localization,

f 〈r1, t|r2, t〉f = δ(3)(r1 − r2)

We compute:

f 〈r1, t|r2, t〉f =

∫
d3kd3k′f(k)f∗(k′)〈k′|k〉e−i(k·r1−k′·r2)+it(ωk−ωk′ )

=

∫
d3kd3k′f(k)f∗(k′)e−i(k·r1−k′·r2)+it(ωk−ωk′ )2ωk(2π)3δ(3)(k− k′)

= (2π)3

∫
d3k 2ωk|f(k)|2e−ik·(r1−r2)

We see that expression is equal to δ(3)(r1 − r2) =
∫
d̄3keik·(r1−r2)

|f(k)|2 =
1

(2π)6

1

2ωk
, f(k) =

1

(2π)3
√

2ωk

where in going from |f |2 to f the phase is not fixed, but we set it to 1 for simplicity. Therefore, using the
notation rµ = (t, r) we have

|r, t〉 =

∫
d̄3k

1√
2ωk
|k〉e−ik·r (3)

(b) By acting the unitary operator UΛ for a Lorentz transformation on the result in part (a), show that
|r, t〉 is not Lorentz invariant, i.e.

UΛ|r, t〉f 6= |Λr,Λt〉f

Proof by contradiction. Suppose that we had UΛ|r, t〉f = |Λr,Λt〉f . Then,

f 〈Λr2,Λt|Λr1,Λt〉f = f 〈r2, t|U †U |r1, t〉f = f 〈r2, t|r1, t〉f

By part (a), the left-hand side is δ(3)(Λr1 − Λr2), while the right-hand side is δ(3)(r1 − r2). One has:

δ(3)(Λr1 − Λr2) =
ωk

ωΛk
δ(3)(r1 − r2)

so clearly the left and right-hand sides cannot be equal for generic Λ (a boost will change ωk). This gives
us our desired contradiction, therefore |r, t〉 cannot be Lorentz-invariant.
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(c) With f(k) given by (a), consider the overlap C(r1 − r2, t1 − t2) = f 〈r2, t2|r1, t1〉f . Evaluate C(r, t)
for a spacelike separation |r| > t.
Suppose we interpret | f 〈r2, t2|r1, t1〉f |2 as the probability for the particle originally at time r1 and
time t1 to transition to time t2. Would the propagation be causal (confined to the forwards light-cone)?

Using (3), we immediately have

C(r1 − r2, t1 − t2) =

∫
d̄3keik·(r2−r1)e−iωk(t2−t1)

This can be slickly evaluated by writing it as the derivative of a Lorentz-invariant integral:

C(r1 − r2, t1 − t2) = 2i∂t2−t1

∫
d̄3k

2ωk
eik·(r2−r1)e−iωk(t2−t1)

The integral is now Lorentz-covariant, hence we can evaluate it any frame. We are interested in spacelike-
separated points (r1, t), (r2, t), hence there exists a Lorentz transformation that makes these points
simultaneous, i.e. Λt1 = Λt2. The integral can then be evaluated in spherical coordinates.∫

d̄3k

2ωk
eik·(r2−r1)e−iωk(t2−t1) =

∫
d̄3Λk

2ωΛk
eiΛk·(Λr2−Λr1)e−iωΛk(Λt2−Λt1) =

∫
d̄3k′

2ωk′
eik
′·(Λr2−Λr1)

=
1

2(2π)3

∫ ∞
0

d|k| |k|2√
|k|2 +m2

∫ π

0
dφ

∫ 2π

0
dθ sin θeik|r1−r2| cos θ

=
1

2(2π)2

∫ ∞
0

dk
k2

√
k2 +m2

2 sin(k|r2 − r1|)
k|r2 − r1|

=
m

4π2|r2 − r1|
K1(m|r2 − r1|)

where K1(x) is the modified Bessel function of the second kind.

To compute C(r1−r2, t1−t2), we need to take the ∂t1−t2 on this object. But this is a bit unclear: we have
chosen a frame where t1 = t2. To restore the time-dependence of this object, we use the fact that it is a
Lorentz-invariant. This means that our integral can only depend on |r2− r1| =

√
−(t2 − t1)2 + (r2 − r1)2

(using the notation r = (r, t)), which in the specified frame reduces to |r1 − r2|. Therefore,

C(r1 − r2, t1 − t2) = 2i∂t2−t1

[
m

4π2|r2 − r1|
K1(m|r2 − r1|)

]
=
im2

2π2

t2 − t1
(r1 − r2)2

K2(m|r2 − r1|)

Interpreting | f 〈r2, t2|r1, t1〉f |2 as a probability, we have:

| f 〈r2, t2|r1, t1〉f |2 =

∣∣∣∣m2

2π2

t2 − t1
(r1 − r2)2

K2(m|r2 − r1|)
∣∣∣∣2

This is non-zero, meaning that the propagator is non-zero for generic spacelike separated points, i.e.
propagation is non-causal.

(d) Compare your resulting state |r, t〉f in part (a) with the state

|x〉 := φ(x)|0〉

where x = (x, t). Are the states |x〉 perfectly localized? Show that |x〉 is Lorentz covariant, i.e.

UΛ|x〉 = |Λx〉
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We compute

|x〉 = φ(x)|0〉 =

∫
d̄3k

1√
2ωk

e−ik·xa†k|0〉 =

∫
d̄3k

2ωk
e−ik·x|k〉

Note that this last expression is written entirely of objects transforming simply under Lorentz transfor-
mations. The equal-time overlap is

〈x|x′〉 =

∫
d̄3kd̄3k′

1

2ωk2ωk′
eik·x−ik

′·x〈k′|k〉

=

∫
d̄3kd̄3k′

1

2ωk2ωk′
eik·x−ik

′·x2ωk(2π)3δ(3)(k− k′)

=

∫
d̄3k

2ωk
e−ik·(x−x

′) =
m

2π2|x− x′|
K1(m|x− x′)

The integral in the second last equality has already been performed in part (c). The final expression is
not equal to δ(3)(x− x′), which would be the result if the states |x〉 were perfectly localized.

Lastly, we check Lorentz invariance.

UΛ|x〉 =

∫
d̄3k

2ωk
e−ik·xUΛ|k〉 =

∫
d̄3k

2ωk
e−ik·x|Λk〉 =

∫
d̄3Λk

2ωΛk
e−iΛk·Λx|Λk〉 = |Λx〉

(e) Consider a state

|Ψ〉 =

∫
d̄3kh(k)|k〉

with the corresponding ‘wavefunction’ defined as

Ψ(x) = 〈0|φ(x)|Ψ(x)〉

Find h(k) so that at t = 0, the single-particle wavefunction Ψ(x) corresponding to |Ψ〉 is a Gaussian
wave-packet centered around x0, with width a and momentum p.

Given |Ψ〉 defined this way, at t = 0 its wavefunction is given by

Ψ(x) = 〈0|φ(x)|Ψ〉 =

∫
d̄3kh(k)eik·x

This is just a 3D-Fourier transform. Therefore, choosing

h(k) = (2π1/2a)3/2e−
a2

2
(k−p)2

e−ik·x0 =⇒ Ψ(x) =
1

(π1/2a)3/2
e−

1
2a2 (x−x0)2

eip·x

which is a Gaussian centered around x0, with width a and momentum p.
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Question 3: Normal Ordering and Smeared Fields (25 points)
Consider the free real scalar field theory discussed in lecture.
(a) First show that

〈0|φ(x, t)|0〉 = 0

Evaluate the vacuum expectation value

σ2 := 〈0|φ2(x, t)|0〉

Express σ2 as an integral over a single variable, and show that the integral is divergent. This result
signifies that the vacuum is not empty! While the expectation value of φ is zero, the fluctuations of
φ, as measured by σ2, are non-zero, and in fact are infinitely large. This is a reflecton of that a QFT
has an infinite number of degrees of freedom.

The expectation value of φ is

〈0|φ(x, t)|0〉 =

∫
d̄3k√
2ωk

(
〈0|ak|0〉eik·x + 〈0|a†k|0〉e

−ik·x
)

= 0 + 0 = 0

Where we have used ak|0〉 = 0, and 〈0|a†k = 0.

The variance of φ has 4 sets of terms when we take the mode expansion, corresponding to combinations
of creation/annihilation operators. The only set of terms that does not vanish is 〈0|aka†k′ |0〉, hence:

σ2 = 〈0|φ(x, t)|0〉 =

∫
d̄3k√
2ωk

d̄3k′√
2ωk′
〈0|aka†k′ |0〉e

i(k−k′)·x

=

∫
d̄3k√
2ωk

d̄3k′√
2ωk′

(2π)3δ(3)(k− k′)ei(k−k
′)·x

=

∫
d̄3k

2ωk
=

4π

2(2π)3

∫ ∞
0

dk
k2

k2 +m2
=∞

(b) The general philosophy of QFT is to regard operators like φ2(x, t) as ‘bad’ operators. One then can
introduce ‘good’ operators which do not suffer divergences, a procedure referred to as renormalization.
One way to remove the divergence in part (a) is to introduce normal-ordered operators. The rule of

normal ordering is whenever one has products of ak’s and a†k’s, to move all the ak’s to the right of the

a†k’s. We denote the normal ordered version of an operator O by :O:. For example,

:ak1a
†
k2
ak3a

†
k4

:= a†k2
a†k4

ak1ak3

Express the normal-ordered operator :φ2(x, t): in terms of ak and a†k. Show 〈0| :φ2(x, t): |0〉 = 0, and

φ2(x, t) =:φ2(x, t): +σ21

The mode expansion for φ2(x, t) is given by

φ2(x, t) =

∫
d̄3k√
2ωk

d̄3k′√
2ωk′

(
akake

i(k+k′)·x + a†ka
†
ke
−i(k+k′)·x + aka

†
ke
i(k−k′)·x + a†kake

−i(k−k′)·x
)

Of the 4 sets of terms composing the integrand, only the third is not normal ordered. Therefore,

:φ2(x, t):=

∫
d̄3k√
2ωk

d̄3k′√
2ωk′

(
akake

i(k+k′)·x + a†ka
†
ke
−i(k+k′)·x + a†kake

i(k−k′)·x + a†kake
−i(k−k′)·x

)
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Observe that each term in this expression has a lowering operator to the right, or a raising operator to
the left. Therefore, when acting on the vaccum we have that 〈0| :φ2(x, t): |0〉 = 0.

Lastly we have seem that :φ2(x, t): differs from the original φ2(x, t) by just a single commutator:

φ2(x, t)− :φ2(x, t): =

∫
d̄3k√
2ωk

d̄3k′√
2ωk′

[ak, a
†
k′ ]e

i(k−k′)·x

=

∫
d̄3k√
2ωk

d̄3k′√
2ωk′

(2π)3δ(3)(k− k′)ei(k−k
′)·x = σ1

where in the last line we quote the result from (a).

(c) Another way to introduce ‘good’ operators is to consider the ‘smeared’ field

φ̃(x, t) := N

∫
d3yφ(y, t)e−

1
a2 (x−y)2

, N =
1

π3/2a3

The definition is motivated from the fact that the divergence in part (a) comes from having 2 φ’s at
the same spacetime point. Here we thus smear φ in a region of radius a. N is a normalization factor,
chosen so that

lim
a→0

φ̃(x, t) = φ(x, t)

Show that

〈0|φ̃(x, t)|0〉 = 0

Now consider the fluctuations of φ̃,

σ̃2 := 〈0|φ̃2(x, t)|0〉

Express σ̃2 as an integral over a single variable, and show that it is finite.
We first compute the expectation, using the result from (a) that 〈0|φ(y, t)|0〉 = 0.

〈0|φ̃(x, t)|0〉 = N

∫
d3ye−

1
a2 (x−y)2

〈0|φ(y, t)|0〉 = 0

Next, the variance.

σ̃2 := 〈0|φ̃2(x, t)|0〉 = N2

∫
d3yd3z

d̄3k√
2ωk

d̄3k′√
2ωk′
〈0|aka†k′ |0〉e

−(x−y)2/a2
e−(x−z)2/a2

eik·y−ik
′·z

= N2

∫
d̄3kd3yd3z

1

2ωk
e−(x−y)2/a2

e−(x−z)2/a2
eik·(y−z)

=

∫
d̄3k

2ωk
e−

1
2
a2k2

=
4π

2(2π)3

∫ ∞
0

dk
k2

√
k2 +m2

e−
1
2
a2k2

This last integral can be evaluated in terms of hypergeometric or Bessel functions. Note to marker:
student gets full credit if the integral is not evaluated. We find

σ̃2 =
1

8a2π3/2
U

(
1

2
, 0,

a2m2

2

)
=

m2

16π2
ea

2m2/4
(
K1(a

2m2

4 )−K0(a
2m2

4 )
)
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(d) Without evaluated the integral in part (c), show that in the limits of small and large a, the leading
term in σ̃2 may be written as

σ̃2 ≈ αaγ

Compute α and γ for each of these 2 limits. One should discover that at large a the average field
approaches a classical variable, whereas at small a it is dominated by fluctuations.

We seek to compute the integral

σ̃2 =
1

4π2

∫ ∞
0

dk
k2

√
k2 +m2

e−
1
2
a2k2

=
1

4π2a2

∫ ∞
0

du
u2

√
u2 +m2a2

e−u
2/2

First we expand for small a. The prefactor to the exponential can be expanded as:

u2

√
u2 +m2a2

=
u2

u
(

1 + m2a2

2u2 + · · ·
) ≈ u

Hence, the integral

σ̃2 ≈ 1

4π2a2

∫ ∞
0

duue−u
2/2 =

1

4π2a2

For large a, the prefactor to the exponential can be expanded as:

u2

√
u2 +m2a2

=
u2

ma
(

1 + u2

2m2a2 + · · ·
) ≈ u2

ma

Hence, the integral

σ̃2 ≈ 1

4π2ma3

∫ ∞
0

duu2e−u
2/2 =

1√
32π3ma3

We see that σ̃2 →∞ for small a, meaning that the field is dominated by fluctuations. On the other hand,
σ̃2 → 0 for large a, meaning that the field behaves like a classical variable.
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Question 4: Correlation Functions for a Complex Scalar (15 points)
Consider a theory of a complex scalar field φ which is invariant under a phase rotation of φ. The unitary
operator Uα generating a phase rotation is

Uα = e−iαQ, Q = i

∫
d3x(πφ∗φ

∗ − πφφ)

We also assume that the vacuum of the theory is invariant under the phase rotation,

Uα|0〉 = |0〉

The theory can be interacting. That is, in this problem, you should not use the mode expansion for φ
discussed in lecture, which applies only to a free field theory.
(a) Show that

Uαφ(x)U †α = eiαφ(x), Uαφ
∗(x)U †α = e−iαφ∗(x)

First consider the case where Q and φ(x) are evaluated at the same time t. Using Baker-Campbell-
Hausdorff we compute

Uαφ(x)U †α = φ(x) + α

∫
d3x′[−φ(x′)πφ(x′), φ(x)]

+
α2

2!

∫
d3x′d3x′′[−φ(x′′)πφ(x′′), [−φ(x′)πφ(x′), φ(x)]] + · · ·

Note that [−φ(x′)πφ(x′), φ(x)] = iφ(x′)δ(3)(x − x′), whose
∫
d̄3x-integral yields iφ(x). Therefore, doing

this process n times for the n-th order term yields inφ(x), and

Uαφ(x)U †α =

(
1 + iα+ · · ·+ (iα)n

n!
+ · · ·

)
φ(x) = eiαφ(x)

If instead, Q is computed at some time t′ = x′0 which is different from t = x0, we can time-evolve φ(x)
to the timeslice t′, and use that [H,Q] = 0:

Uαφ(x, t)U †α = e−iαQ(t′)eiH(t−t′)φ(x, t′)e−iH(t−t′)eiαQ(t′)

= eiH(t−t′)e−iαQ(t′)φ(x, t′)eiαQ(t′)e−iH(t−t′)

= eiH(t−t′)eiαφ(x, t′)e−iH(t−t′) = eiαφ(x, t)

where in the 3rd equality we quote the result we have just shown above.
An almost identical calculation yields

Uαφ
∗(x)U †α = e−iαφ(x)

(b) Show that

〈0|φ(x)φ(x′)|0〉 = 0

Using the result of part (a), along with the invariance of the vacuum, we have

〈0|φ(x)φ(x′)|0〉 = 〈Uα0|φ(x)U †αUαφ(x′)U †α|0〉 = e2iα〈0|φ(x)φ(x′)|0〉

If we choose α not a multiple of 2π, then the equality is not satisfied unless 〈0|φ(x)φ(x′)|0〉 = 0.

10



(c) Now consider a general n-point function of products of φ’s and φ∗’s inserted at different spacetime
points between the vacuum, i.e

〈0|φ(x1) · · ·φ∗(xi) · · ·φ(xn)|0〉

Show that this vanishes whenever the numbers of φ’s and φ∗’s are not the same.
Consider a general n-point function with M instances of φ and N instances of φ∗’, with n = M + N .
Similarly to (b), we have

〈0|φ(x1) · · ·φ∗(xi) · · ·φn(xn)|0〉 = 〈0|Uαφ(x1)U †αUα · · ·U †αUαφ∗(xi)U †αUα · · ·U †αUαφ(xn)U †α|0〉

= ei(M−N)α〈0|φ(x1) · · ·φ∗(xi) · · ·φ(xn)|0〉

By picking again α arbitrary (e.g. irrational), we see that the equality is not satisfied for M 6= N unless
〈0|φ(x1) · · ·φ∗(xi) · · ·φ(xn)|0〉 = 0.
That is, the n-point function may only be non-vanishing is the numbers of φ’s and φ∗’s are the same.
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