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Probabili’fﬁ”'\cvm’ﬁ ons of RVs

There are variovs methods one can vse Yo fi qure ot The
distribution of a function of vandom variables. \Which
methods one can vse on a particdar problem depend on
whether the origival random variable is discrete or
continvovs, whether there is ;\vs’f ove random variable or a
random vector, and whether The funckion is invertible or
not. We will ot learn all of the methods here. Instead
well learn one important method and, also see a lot of
examples Tt can be applied somewhat generally.



Probabili’fﬁ”'\cvm’ﬁ ons of RVs

K'is a vandom variable with £(x) known. We want the
distribution of Y = WX). Then,

F\X-‘j) - S & () dx
i*p h(x)€ 515
1Y is also continous, then

\%ﬁ) = drdy)/dy



Probabili’fﬁ”'%m’ﬁ ons of RVs

K'is a vandom variable with £(x) known. We want the
distribution of Y = WX). Then,

F\M) § x —Qx () dx

PAION 53
1Y is also continous, then \

_._ First, find the CDF b
J{%ﬁ) OU:%.@/OM iV\‘\'CﬂYaﬁV\ﬂ over The !

awvo?ria’fe rcﬁimf\



onbabili’fﬁ'”%m’ﬁ ons of RVs

K'is a vandom variable with £(x) known. We want the
distribution of Y = WX). Then,

F\M) § x {ﬂ () dx

PAION 53
1Y is also continous, then \

_._ First, find the CDF b
¥$ﬁ> OU:%.@/O% 'm’feﬂm’ﬁnﬂ over The !
\ awropria’fc rcﬁ'\mf\

hen Yake the derivative
Yo \['md the PDF



Probabilit \j’”example
\fx(x) = { /2 \Cor <= x <
0

otherwise

Y = X2 What is 4,7



Probabilit \j’”example
\fx(x) = { /2 \Cor <= x <
0

oTherwise
Y = X2 What is 4,7
Recall we vneed Yo “'w\’(eﬁm’fe over the appropriate reﬂiovx."

Easier said than dove, perhaps, but we wil arque in steps
what 15 the appropriafe reﬁiovx.



Probabilit \j’”example
\fx(x) = { /2 \Cor <= x <
0

otherwise
Y = X2 What is 4,7

First vote that the support of Xis (-1,17, which implies That
the indueed support ot Y is (0,17,



Probabilit \j’”example
\fx(x) = { /2 for - <= x <= |
0

otherwise
Y = X2 What is 4,7

First vote that the support o\C Kis (1,17, which iwq;lies that
the indueed support ot Y is (0,17,

b,

Remember this——we will vse it
again in few slides.



Probabilit \j’”example
\fx(x) = { 1/2 \Cor <= x <
0

otherwise
Y = X2 What is 47
F\Lﬂ) = P(Y ¢ 5) bﬁ definition



Probabilit \j’”example
\fx(x) = { /2 for 1 ¢ x|
0

otherwise
Y = X2 What is 47
F\Xﬂ) = PCY <= ﬂ) b!j dz{ivﬂ’ﬁom (\f'\rs’f of e?)
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= POC? <= ﬁ) plugging in fnction
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\fx(x) = { 1/2 \for -1 ¢ x < |
O  otherwise
Y = X2 What is 47
F\Lﬂ) = P(Y ¢ 5) bﬁ dz{ivﬂ’ﬁom
= POC? <= ﬁ) plugging in fnction
= P(—w{j ¢« j) solving for X



Probabilit y~"example
\fx(x) = { 1/2 \for 1 ¢ x < |
O  otherwise
Y = X2 What is 47
F\Lﬂ) = P(Y ¢ 5) bﬁ dz{im’ﬁom
= POC? <= ﬁ) plugging in fnction
= P(—w(j ¢« j) solving for X

Vi
- S ) 7 infeqrating over appropriate area

*



Probabilit \j’”example
f(x) = {I/Z for - <= x <= |

0] otherwise
Y = X2 What is +7
F&p = P(Y ¢ ﬂ) b\j defnition
= POC? <= ﬂ) plugqing in fnction
- P(_.(j <X ¢ j) solv'mﬁ \Cor X

Y\
= S 'j '/id’x iw’feﬁra’ﬁnﬂ over appropriate area

*

\f}] {or0<=ﬂ<=l



Probabilit \j’”example

F\X-@: o) ¥0r5<0
_\fﬂ \for0<='3<=l

| for y > |

—

Since Y'is continvovs, we can \')vs’f Yake the derivative o¥ F
To get \fy.

Mﬁ) = :I/(?. \fj) {or O <y« |

O otherwise

—




PV‘Obﬂbi i'\'ﬁ"'CXaW\P ‘C This is where we vse

Fly) = [0 fory <Ot foct we ofed
_ \@ for O < y < | earlier

| for y > |

—

Since Y'is continvovs, we can \')vs’f Yake the derivative o{ F
To get \Cy.

¥V(ﬁ> = :I/(?. \@ {or O <y« |

O otherwise

—




Probabilit \j’”example

F\X_5>= o) ¥0r5<0
_\fﬂ \for0<='3<=l

| for y > |

—

Since Y'is continvovs, we can \')vs’f Yake the derivative o¥ F
To get \fy.

ﬂ(ﬁ) = :I/(?. \fj) {or O <y« | k
O otherwise b 4

—

W



Probabili’ﬂ\'j”'im?or’mw’f examples well see

. Livear transtormation of a ¢ ngle vandom variable
2. Probability infeqra fransformation
3. Convolvtion

& Order stafistics



Probubilit y~~lvear ¥ ranstormation

There may be lots of veasons why we care about The
distribution of a linear transformation of a vandom
variable. Perhaps the vandom variable is measured in the
wrong or inconvevient units. (What's the distribution of
the lengtn of Steph Currys shots in meters, instead of
feet?) Perbaps some Formda dictates a livear
relafionship between Two variables, and we kvnow how one
is distribvted,  (The vumber of heafing degree days n
the wonth of Fcbvvar\j can be approximated as 26x(65-
average higl ’fem?).) Perlups some ’fheorlﬁ predicts a

linear relati onsw? between variables.



Probubilit y~~lvear ¥ ranstormation

Let X have PDF £(x). Let Y=aX +b a = 0. Howis
Y distribvted?

Fln) = LY < ) = Pkeb <= )



Probubilit y~~lvear ¥ ranstormation

Let X have PDF £(x). Let Y=aX +b a = 0. Howis
Y distribvted?

Fdy) = PLY <= y) = PlaXb <= o)
= | P(X ¢ lyb)/a) ifa>0
PO >= (tﬁ'b)/ n) ita<O




Probubilit y~~lvear ¥ ranstormation
Let X have PDF £(x). LetY=aX +b a7 0. Howis

Y distribvted?

Fln) = LY < ) = Pkeb <= )

| = P(X <= (tj’b)/ )

| POK »>= (tj’iﬁ/ a)

Nk

S £ (%) dx

0

jm F 0odx -

LYY

i{a>0
i{a(O

a> O
"
| = S £ (x)dx

a<O



Probubilit y~~lvear ¥ ranstormation

Let X have PDF £(x). LetY=aX +b a7 0. Howis
Y distribvted?

So Yake the devivative Yo 4et the PDF:
fylp- 48y i SCEORTITY
- v



Probubilit y~~lvear ¥ ranstormation

Let X have PDF £(x). LetY=aX +b a7 0. Howis
Y distribvted?

So Take the derivative to 4et the PDF:

T, 4Rl LU%) % aso
R : V

In other words,

WFY (j) ) \J_ril {( ( lj-lg/fl )



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?



Probab'\l'\’ﬂ\'j”'?robabili’fﬂ inteqra fransformat”

Let X, continvovs, have PDF £,(x) and CDF Fy(x). Let Y
= FOK). How is Y distributed?

S’ﬂromﬂe Hhat we would vse a CDF,
which deseribes the distribution of a

random variable, Yo fransform a vandom
variable. vt why not? ¥s a function.



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?

First vote that, whatever the support of X, Y lives on (0,17.
\/\/!/\3’.1



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?

First vote that, whatever the support of X, Y lives on (0,17.
\l\/hlﬁ? CDFs al ways have valves between O and |.



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?

First vote that, whatever the support of X, Y lives on (0,17.
\l\/hlﬁ? CDFs al ways have valves between O and |.

Also vote that Fy is invertible. (We noted earlier that Fy
is ion-decreasing.  In bact, i will be invertible if X is
continvovs over a connected, set.)



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?

So Fly) = PLY <= ) = PIROQ) < )
= P(K <= FX"(.ﬂ))
. FXQFX"%))
Y O ¢ y < I



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Let X, continvows, have PDF £(x) and CDF F(x). Let Y
= F(X). How is Y distributed?

So Fly) = PLY <= ) = PIROQ) < )
= P(K «= FX"(.ﬂ))
. FXQFX"%))
Y O ¢ y < I

What random variable has a CDF that looks like that?



Probabili’fﬂ”'?robabili’fﬂ infeqra fransformat”
% 1




Probabili’fﬁ”'yrobabili’fﬂ infeqra fransformat”
% 1

A V(0,17 random variable!

So a continvous random variable Transtormed by its own CDF
will always have a V(0,17 distribtion.



Probabili’fﬂ”'yrobabili’fﬂ infeqra fransformat”
% 1

A V(0,17 random variable!

So a confinvovs random variable Transtormed by s own CDF
will always have a V(0,17 distribtion.

Pre’f’% cool.



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

How about the other waﬁ? Can we Franstorm a (O,
ravdom variable by the inverse of a CDF and 4t a
random variable with that CDF?



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

How about the other waﬁ? Can we Franstorm a (O,
ravdom variable by the inverse of a CDF and 4t a
random variable with that CDF?

Yes' (assumi ny Yhe random variable 1 continvovs and meets
certain reﬂvlm’ﬂj conditions )



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

How about the other waﬁ? Can we Franstorm a (O,
ravdom variable by the inverse of a CDF and 4t a
random variable with that CDF?

Yes' (assumi ny Yhe random variable 1 continvovs and meets
certain reﬁvlm’ﬂj conditions )

Aﬂam, pretty cod.



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”
lw’(eres’ﬁvxﬁ, perhaps, but how covld, this be vsetul?



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”
lw’(eres’ﬁvxﬁ, perhaps, but how covld, this be vsetul?

Ove example: ?er\cowv{mﬂ computer simulations



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

vaose we were wr'\’ﬁvxﬁ a com?\)’fer program Yo simulate, S,
The spread of some Virvs over Yime in a schod population.
To ?er\form the simulation, we would need random dyaws
brom o witorm distribvkion To model the proportion of the
school population that was infected nifially, random draws
from an exponential distribution Yo model the phusica
proximity og childyen during a PE dass, and mw?om
draws from a beta distvibution Yo model hoidity inside
the school on ditrerent gy,



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

vaose we were wr'\’ﬁvxﬁ a com?\)’fer program Yo simulate, S,
The spread of some Virvs over Yime in a schod population.
To ?er\form the simulation, we would need random dyaws
brom o witorm distribvkion To model the proportion of the
school population that was infected nifially, random draws
from an exponential distribution Yo model the phusica
proximity og childyen during a PE dass, and mw?om
draws from a beta distvibution Yo model hoidity inside
the school on ditrerent gy,

Dt the compuier lanquage yov were vsing only 3cwem’fed
random draws $rom V(0,11



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Note that vandom vumber generators, ¥ ables of vandom di 4ifs,
and, many other sources of vandom (and psevdo-random )
numbers are qiving you wiform vandom wimbers.



Probabili’ﬂ\'j”'yrobabili’fﬂ infeqra fransformat”

Note that vandom vumber generators, ¥ ables of vandom di 4ifs,
and, many other sources of vandom (and psevdo-random )
numbers are qiving you wiform vandom wimbers.

So, it you kiew Lor could look vp) the CDFs of exponentiol
and beta random variables, you could, compute The inverses
of those CDFs and then se those functions Yo transtorm
the random draws trom the VIO,1T into random draws
brom exponential and beta distribvtions.



Probabilit 3"'covwolv’ﬁon

A convalution in the context of ?robabih’fﬁ refers Yo the sum
of independent random variables. We have aready seen
one example where we cared abovt the sum of independent

random variables (althovah we didnt know ’d/\aj were
ivwlz?ewdzw’f at the ’ﬁme%.
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A convalution in the context of ?robabih’fﬁ refers Yo the sum
of independent random variables. We have aready seen
one example where we cared abovt the sum of independent
random variables (althovqh we didnt kinow They were
'w\olzpewdm’f at the ’ﬁme%’”’dne headache example. We
were interested in the sum there becavse | could Take the
Two pills scctvew’ﬁalhﬁ, 50 The distvibution of the sum of
their etfective lives was of interest.



Probabilit 3"'covwolv’ﬁon

A convalution in the context of ?robabih’fﬁ refers Yo the sum
of independent random variables. We have aready seen
one example where we cared abovt the sum of independent
random variables (althovqh we didnt kinow They were
'w\olzpewdm’f at the ’ﬁme%’”’dne headache example. We
were interested in the sum there becavse | could Take the
Two pills scctvew’ﬁalhﬁ, 50 The distvibution of the sum of
their etfective lives was of interest.

Such questions can arise may contexts: the Total valve of
fwo investiments, The Yotal number of suecesses in two
independent sefs of trils, efc.



Probabilit 3"'covwolv’ﬁon

Convalvtions generalize vafurally in Two ways
sm of N, not 2, independent random variables
liear fwnction of independent vandom variables



Probabilit 3"'covwolv’ﬁon

Convolutions ﬂewemliu V\a’fwallﬂ n Two ways:
som of N, not 2, independent random variables

liear fwnction of independent vandom variables

Well do the simple version, sum of two independent random
variables.



Probabilit 3"'covwolv’ﬁon

Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7
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Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

We will proceed similarlcj To the headache example.



Probabilit 3"'covwolv’ﬁon

Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

We will proceed similarlcj To the headache example.

Ove difference: in the headache example, we were given The
\oint PDF and. bhere weve wof.



Probabilit 3"'covwolv’ﬁon

Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

We will proceed similarlcj To the headache example.

Ove ditference: i the headache example, we were given The
jo'm’( PDF and here we're vot. But we can easilcj ﬁe’( the
ot PDF becavse we know The random variables are

independent: fdx, Yy) - \Cx(x)\%g)



Probabilit 3"'covwolv’ﬁon

Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

Recall That, in the headache example, we st set up the
double infeqral Yo 4et the POK+Y <= 2), e, the CDF
of Z, and then Yook the derivative of that Yo get The
PDF.



Probabilit 3"'covwolv’ﬁon

Let X be continous with PDF £, Y continvovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

Recall That, in the headache example, we st set up the
double infeqral Yo 4et the POK+Y <= 2), e, the CDF
of Z, and then Yook the derivative of that Yo get The
PDF.

That method works, as well as some others.



Probabilit 3"'covwolv’fion

Let X be contivuovs with PDF {y, Y contivuovs with PDF
fr. Kand Y are independent. Let Z be their sum.
What is the PDF of Z7

Recall That, in the headache example, we st set up the
double infeqral Yo 4et the POK+Y <= 2), e, the CDF
of Z, and then Yook the derivative of that Yo get The

PDF.
That method works, as we

= 0o rIFj
So, we ﬁe’f Fz(l> E ‘, {jx(?‘)‘rf(j)d’“’tj

| as some others.

ﬂ-m -



Probabilit \j'”covwolv’ﬁon

F(2) - r} j}j_{)“(x)ﬂ(j)dxdj

-ll-m -

o {:Z(l>= S- Qx(bﬂ)wtﬁ,(j):iﬁ ~<Z< 00



Probability=—order statistics
| ’folé\;)ov fhat the wiform was W\J? favorite distribvion.

ell, order stafistics are my favorite fnction of vandom
variables. 1€ that's vot enovglh motivation For you, keep
i mind that order stafistics can be very vseful in
€CONOMIC W\odzlivxﬂ (well see an example in avctions) and
They also are the basis tor some important estimators.



Probabili’fﬁ'”ordzr sTafistics

Let X, . . . K, be confinvous, independent, identically
dxs’mbv’fed, with PDF 4. (We often dbbreviate
wwlz?ewolm’f identically distribvted” as “iid” A group
of i.i.d vandom variables is also called a mmlmuamﬂz)
Let Y, = maxdX, . . . K3 This is called the w
leLLsimﬁsj’JL



Probabili’fﬁ'”ordzr sTafistics

Let X, . . . K, be confinvous, independent, identically
dxs’mbv’fed, with PDF 4. (We often dbbreviate
wwlz?ewolm’f identically distribvted” as “iid” A group
of i.i.d vandom variables is also called a mmlmuamﬂz)
Let Y, = maxdX, . . . K3 This is called the w'
QLachsiaﬁsj]L (\l\/e can also define the 147 order
stafistic as the smallest valve, the 2 order statistic as
the second smallest valve, and 5o forth.)



Probabili’fﬁ'”ordzr sTafistics

Let X, . . . K, be confinvous, independent, identically
dxs’mbv’fed, with PDF 4. (We often dbbreviate
wwlz?ewolm’f identically distribvted” as “iid” A group
of i.i.d vandom variables is also called a mmlmuamﬂz)
Let Y, = maxdX, . . . K3 This is called the w
leLLsimﬁsj’JL

How is the n'" order <tatistic distributed?



Probabili’fﬁ'”ordzr stafistics

How is the ™ order statistic distribvted?

Fv\(wﬁ) = PY <= y) = POK < g Ky <o,
by defivition of Y,



Probabili’fﬁ'”ordzr stafistics
How is the ™ order statistic distribvted?
Fv\(ﬁ) = PY <= y) = POK < g Ky <o, K<)
by defivition of Y,
= PG e POK, = ) L PUK <= y)
de Yo independence
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Fv\(wﬁ) = PY <= y) - POK < Y X, < Yoo X, < Y)
by defivition of Y,
= PG e POK, = ) L PUK <= y)
dve Yo independence
_ Fx(‘j)"
dve to identical distribution



Probabili’fﬁ'”ordzr statistics
How is the n order statistic distribvted?
Fv\(wﬁ) = PY <= y) - POK < Y X, < Yoo X, < Y)
by defivition of Y,
= PG e POK, = ) L PUK <= y)
dve Yo independence
_ Fx(‘j)"
dve to identical distribution

So, \Cn(-‘j) = dF (w)/dy = V\(.FX(.@)""&(@



Probabili’fﬁ'”ordzr sTafistics

How is the 15" order statistic distributed?
A similar caleviation will lead Yo this:

\C,(ﬂ) =l 'Fx(ﬂ>>w|\[x(ﬂ>



Probabili’fﬁ'”ordzr stafistics
S0 we have the \Collowmﬂ"

\Cm(p = V\(FX(.@)W' \fx(ﬂ)

\CM) = v 'Fx(ﬁ))“" \fx(ﬂ)

What do these distributions look like it we have a random
sample brom, S, & V(0,17 distribution?



Probabili’fﬁ'”ordzr stafistics
S0 we have the \Collowmﬂ"

\Cm(p = V\(FX(.@)W' \fx(ﬂ)

\CM) = v 'Fx(ﬁ))“" \fx(ﬂ)

What do these distributions look like it we have a random
sample brom, S, & V(0,17 distribution? Deyevwls on W,

Forn =5 \[n('j) = 53”‘ O < W <& |
{,(5) = 5] '5)”“ 0 <y < I



onbabili’fﬁ'”ordzr sTafistics
{,(5) = 5( ﬂj)‘“ 0 <y < I
\fn('j) - 55”“ 0 <y«

"_-'—-—.-.\_-__-_




Probability=—order statistics
Think. of it like this:
You have a vandom sample of size 5 from a V(O,I]

distribution.  How is the smallest vealization from that
random sample distributed?

What is the PDF of these qys!

o o R ee Rl e M
i o R v R B e

_,

_,




Probabili’ﬂj”'ordzr sTafistics

Youll qet something with the same support, (0,17, but with
?robabili’% concentrated vear O.

%

5




Probability=—order statistics
Think. of it like this:
You have a vandom sawq)le of size 5 from a V(O,I]

distribution. How is the largest realizafion brom that
random sample distributed?

What is the PDF of these qys!

Lﬂg 2 B D B
w S e e R v R B




Probabili’ﬂj”'ordzr sTafistics

Youll qet something with the same support, (0,17, but with
?robabih’% concentrated vnear |.

yt
5

s, . e —

=
-,



Probabili’fﬁ'”ordzr stafistics
What if v is larger then 57



onbabili’ﬂj”'ordzr stafistics
What if n i larger then 57




Probability=—order statistics
What if n i larger then 57

This 4w is more l'\keM Yo
be vear |---ifs distribvtion
will be more concentrated

g 3%’( below 1.




Probability=—order statistics
What if n i really large?



Probability=—order statistics
What if n i really large?




onbabili’f“”'ordzr sTafistics

What if v is really large?

This 4UM is even more likel\j Yo
be vear |---ifs distribvtion

will be even more concentrated
g 3%’( below 1.

il s>
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