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What is so special about us? 
• Some distributions are special because they are connected to 
others in useful ways 

• Some distributions are special because they can be used to 
model a wide variety of random phenomena. 

• This may be the case because of a fundamental underlying 
principle, or because the family has a rich collection of pdfs 
with a small number of parameters which can be estimated 
from the data. 

• Like network statistics, there are always new candidate special 
distributions! But to be really special a distribution must be 
mathematically elegant, and should arise in interesting and 
diverse applications 

• Many special distributions have standard members, 
corresponding to specified values of the parameters. 

• Today’s class is going to end up being more of a reference 
class than a conceptual one... 
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We have seen some of them -we may not 
have named them! 

• Bernouili 
• Binomial 

• Uniform 

• Negative binomial 

• Geometric 

• Normal 

• Log-normal 

• Pareto 
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Bernouilli 
Two possible outcomes (“success” or “failure”). The probability of 
success is p, failure is q (or: 1 − p) 

x 1−xf (x ; p) = p q for x ∈ {0, 1} 

0 otherwise 

E (X ) = p 

(because: E[X ] = Pr(X = 1) · 1 + Pr(X = 0) · 0 = p · 1+ q · 0 = p) 

E[X 2] = Pr(X = 1) · 12 + Pr(X = 0) · 02 = p · 12 + q · 02 = p 

and 

2Var[X ] = E[X 2] − E[X ]2 = p − p = p(1 − p) = pq 
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Binomial 
Results: If X1, . . . , Xn are independent, identically distributed 
(i.i.d.) random variables, all Bernoulli distributed with successPnprobability p, then X = Xk ∼ B(n, p) (binomial k=1 
distribution). The Bernoulli distribution is simply B(1, p) 
The binomial distribution is number of successes in a sequence of n 
independent (success/failure) trials, each of which yields success 
with probability p. � � nf (x ; n, p) = Pr(X = x) = px (1 − p)n−x for x = 0, 1, 2, 3, . . . , n x 
f (x ; n, p) = 0 otherwise.� � n n!where = x x!(n−x)! 
Since the binomial is a sum of i.i.d Bernoulli, the mean and 
variance follows from what we know about these operators: 

E (X ) = np 

Var(X ) = npq 
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Could be...

Does the number of Steph Curry’s 
successful shot follows a binomial 

distribution? 
Shots made in first 20 attempts (over 56 games)

Number of shots made

C
ou

nt

0 5 10 15 20

0
2

4
6

8

7



But it is not likely–3pt success 
Three−point shots made in first 10 attempts (over 56 games)
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But it is not likely–2pt success 
Two−point shots made in first 10 attempts (over 56 games)
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Hypergeometric 
• The binomial distribution is used to model the number of 
successes in a sample of size n with replacement 

• If you sample without replacement, you get the 
hypergeometric distribution (e.g. number of red balls taken 
from an urn, number of vegetarian toppings on pizza) 

let A be the number of successes and B the number of failure (you 
may want to define N = A + B), n the number of draws, then: �A�� B � 

x n−xf (X |A, B, n) = � � ,
A+B 
n 

nA A BE (X ) = and V (X ) = n( )( )(A+B−n )A+B A+B A+B A+B−1 
ANotice the relationship with the binomial, with p = A+B and 

B q = A+B . 

• Note that if N is much larger than n, the binomial becomes a 
good approximation to the hypergeometric distribution 
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Negative Binomial 

Consider a sequence of independent Bernouilli trials, and let X be 
the number of trials necessary to achieve r successes� � x−1 r x−rfX (x) = r−1 p q if x = r , r + 1 . . . , and 0 otherwise. 
r−1 x−rp q is the probability of any sequence with r − 1 success and 

x − r failures. 
p is the probability of success after r − 1 failures.� x−1� 
r−1 is the number of possibility of sequences where r − 1 are 
success 

rq
E (X ) = 

p 
rq

V (X ) = 
2p 

(Alternatively, some textbooks/people can define is at the number 
of failures needed to achieve r successes.) 
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Geometric 

• A negative binomial distribution with r = 1 is a geometric 
distribution [number of failures before the first success] 

x• f (x ; p) = pq if x = 0, 1, 2, 3, .. ; 0 otherwise 
E (X ) = q V (X ) = q 

p p2 

• The sum of r independent Geometric (p) random variables is 
a negative binomial (r , p) random variable 

• By the way, if Xi are iid, and negative binomial (ri , p), thenP P 
Xi is distributed as a negative binomial ( ri , p) 

• Memorylessness: Suppose 20 failures occured on first 20 
trials. Since all trials are independent, the distribution of the 
additional failures before the first success will be geometric. 
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Poisson 

The poisson distribution expresses the probability of a given 
number of events occuring in a fixed interval of time if (1) the 
event can be counted in whole numbers (2) the occurences are 
independent and (3) the average frequency of occurrence for a 
time period is known. 
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[arrival are
independent in disjoint intervals]

3 Ns and Nt+s − Nt have identical distribution [the number of
arrivals depend only on period length]

4 limt→0
P(Nt=1)

t = γ [γ is the arrival rate, and it is constant for
small interval]

5 limt→0
P(N>1)

t = 0 No simultaneous arrival

Poisson 

Formally, for t ≥ 0, let Nt be an integer-valued random variables. 
If it satisfies the following properties 

1 

2 

N0 = 0 

for s < t, Ns and Nt − Ns are independent 
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5 limt→0
P(N>1)

t = 0 No simultaneous arrival

Poisson 

Formally, for t ≥ 0, let Nt be an integer-valued random variables. 
If it satisfies the following properties 
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Poisson 

Formally, for t ≥ 0, let Nt be an integer-valued random variables. 
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Poisson 

If Nt satisfies: 

N0 = 0 

fors < t, Ns and Nt − Ns are independent 

Ns and Nt+s − Nt have identical distribution 

1 

2 

3 
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5 

P(Nt =1)limt→0 = γt 
P(N>1)limt→0 = 0t 

then for any non-negative integer k 

−γt(γt)k e 
P(Nt = k) = 

k! 

Note: γ and t always appear together so we combine them into 
one parameter, λ = γt. γ is the propensity to arrive per unit of 
time. t is the number of units of time, and λ is the propensity to 
arrive in some amount of time. 
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Some properties 

• E [Nt ] = λ 

• V [Nt ] = λ 

• It is asymetrical –skewed–(it cannot be negative!), but closer 
and closer to being symmetric as λ increases 
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Relationship between Poisson and 
Binomial 

• Divide the interval [0, t] into n subintervals so small that the 
probability of two occurences in each subinterval is 
approximately zero. 

• The probability of success in each subinterval is now γt n = λ ,n 
and the probability of nt = k successes in [0, t] is 
approximately binomial� � n (λ )n−k• P(Nt = k) ≈ )k (1 − λ 

k n n 
• we could prove that the limit of this as the number of 

−λesubintervals goes to infinity is λ
k 

k! 
• In other words, for each nonnegative integer k, 

lim p k (1 − p)n−k 
n→∞ 

= 
λk −λe

k! 

where p = 1 
λ , λ is fixed, n is positive. 

• For small values of p, the Poisson distribution can simulate 
the Binomial distribution and it is easier to compute.... 25



When do we use a Poisson distribution? 

• Poisson distributions are useful with count data: Number of 
goals in a soccer match; Number of ideas that a researcher 
has in a month; number of accidents 

• The parameter λ governs both the mean and the variance, so 
some times that it not what you want (you cannot increase 
the mean without increasing the variance) 

• The negative binomial can be thought of as a generalization 
that does not have this property 

• Some count data won’t work well with Poisson: e.g. number 
of students who arrive at the coop (students arrive together; 
the events are not independent). 
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Two−point shots made in game
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Exponential 

Waiting time between two events in a Poisson process: 
−λxfx = λe if x > 0 and 0 otherwise 

1 
E (X ) = 

λ 
1 

V (X ) = 
λ2 

The exponential distribution is Memoryless:(P(X ≥ t) = e−λt 

therefore P(X ≥ t + h|X ≥ t) = P(X ≥ h) 
It is a special case of an Gamma distribution the “waiting time” 
before a number (not necessary an integer number ) of occurences. 
We are skipping the mathematical description of the gamma 
distribution for now... 
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Continuous distributions 

• Uniform 

• Normal 
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⎪⎪⎪
⎪⎪⎪

Uniform distribution 

The probability that X is in a certain sub-interval [a; b] depends 
only on the length of that interval. ⎧ 

1⎨ 
b−a for a ≤ x ≤ b, 

fx (x) = ⎩
0 for x < a or x > b ⎧ 

0 for x < a⎪⎨ 
F (x) = x−a for a ≤ x ≤ bb−a ⎪⎩1 for x > b 
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Uniform distribution: density 

fX (x) 

1 
b−a 

xa b 
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Properties 

• Mean 
1 

E (X ) = (a + b)
2 

• 
b3 − a3 

E (X 2) = 
1 
3 b − a 

• Variance 

V (X ) = 
1
(b − a)2 

12 
• Set a = 0 and b = 1. The resulting distribution U(0, 1) is 
called standard uniform distribution. Note that if u1 is 
standard uniform, so is 1 − u1. 
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• ... or you can just directly sample from the relevant
distribution in R. [note that R does not always use the inverse
transform method...]

Applications 

• Many many: very useful in hypothesis testing for example. 

• An important one: Quasi-random number generators. 
Computers don’t really know random numbers... Many 
programming languages have the ability to generate 
pseudo-random numbers, which are really draw from a 
standard uniform distribution 

• So the uniform distribution is very useful for example when 
you want to create a sample of treated and control 
observations (an example in R follows in one slide). 

• As we have learnt, from a uniform distribution, you can use 
the inverse CDF method to get a sample for many (not all) 
distributions you are interested in 
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sampling from an exponential using the 
inverse sampling method 
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sampling from an exponential using the 
inverse sampling method 
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OR... 
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Simulated Poisson Distribution
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Random variable drawn from Poisson distribution
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Choosing a random sample 
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Choosing a random sample 
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Continuous distributions 

• Uniform 

• Normal 
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The Normal distribution 

Theorem 
Lex X ∼ B(n, p), for any number c and d: 

X − np 
Z d 1 x 2 

lim P(c ≤ p < d) = √ e 2 dx 
n→∞ np(1 − p) c 2π 

X −np√ is the standardized version of the binomial. Keeps mean 
np(1−p) 

at zero and variance at 1. 
√1We note: fz (y) = φ(y) = e 

x 
2

2 

and FZ (y) = Φ(y) = for 
2π 

−∞ < y < ∞ 
E (Z ) = 0 and V (Z ) = 1 
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Binomial 
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Binomial 
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Binomial 
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Binomial 
now standardize 
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now standardize 
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now standardize 
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Standard Normal distribution 

0 

0.2 

0.4 

0.6 

0.8 

−2 −1 0 1 2 3 

57



X distributed normal with parameters µ
and σ2

E (X ) = E (Z ) + µ = µ

Var(X ) = σ2 ∗ Var(Z ) = σ2

Normal distributions 

We call any random variable X = µ + σZ where Z is standard 
normal with σ 6= 0 normal as well. � � 

1 x − µ 1 − 1 ( x−µ )2 
f (x | µ, σ) = φ = √ e 2 σ 

σ σ 2πσ 

for −∞ < x < ∞ 
Notation: X ∼ N (µ, σ2) 
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Normal distributions 

We call any random variable X = µ + σZ where Z is standard 
normal with σ 6= 0 normal as well. � � 

1 x − µ 1 − 1 ( x−µ )2 
f (x | µ, σ) = φ = √ e 2 σ 

σ σ 2πσ 

for −∞ < x < ∞ 
Notation: X ∼ N (µ, σ2) X distributed normal with parameters µ 
and σ2 

E (X ) = E (Z ) + µ = µ 

Var(X ) = σ2 ∗ Var(Z ) = σ2 

59



Some properties 

• If X1 is normal, and X2 = a + bX1 is also normal, with mean 
a + bE (X1) and variance b2Var(X1) 

Theorem 
Let X1..Xn are iid and Xi ∼ N (µi , σ

2), theni X X X 
Y = Xi ∼ N ( µi , σi 

2) 
i i i 

We already knew the mean and the variance (by general 
properties of these operators) but we now also know that the 
pdf of a sum of normal remains normal. 

• Normal distribution are symmetric, unimodal, “bell-shaped”, 
have thin tails, and the support is R 
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Same mean, different variances 
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(courtesy: John Canning for the tikzpicture code!) 
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1.093

Finding the area under the curve 

• The integral of φ(x) over regions of R cannot be expressed in 
closed-form 

• Therefore we use tables (or software...) to figure out the 
answer we are looking for. 

• For example, from the standard normal table, suppose you 
want P(Z < −1.23). 

• go down the left column to -1.2 
• and the top row to 0.03 
• the answer is 
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• P(Z > −1.68) = 1− P(Z < −1.68)
• What if you wanted positive numbers and I had not given you
the positive numbers, e.g. P(Z < 1.45)

• Exploit symmetry:
P(Z < 1.45) = P(Z > −1.45) = 1− P(Z < −1.45)

• What if you wanted P(−1.23 < Z < 1.45)
• P(−1.23 < Z < 1.45) = P(Z < 1.45)− P(Z < −1.23)

• what if you had a non standard normal?
• First normalize it. Then use the table.

Finding the area under the curve 

• what if you wanted P(Z > −1.68) 
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Finding the area under the curve 
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Useful R command about the Normal 
distribution 
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Sampling from a normal distribution in R 

• In theory you can use the inverse sampling methods. 

• In practice this would take much longer than using the built in 
command in R that uses a different algorithm. 
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