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ITERATIVE ALGORITHMS
SO FAR

 Looping constructs (while and for loops) lead to 
iterative algorithms
 Can capture computation in a set of state variables that 

update, based on a set of rules, on each iteration through 
loop
 What is changing each time through loop, and how?
 How do I keep track of number of times through loop?
 When can I stop?
 Where is the result when I stop?
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MULTIPLICATION

 The * operator does this for us
 Make a function
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def mult(a, b):

return a*b
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MULTIPLICATION
THINK in TERMS of ITERATION

 Can you make this iterative? 
 Define a*b as a+a+a+a... b times
 Write a function 
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def mult(a, b):

total = 0

for n in range(b):

total += a

return total
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MULTIPLICATION –
ANOTHER ITERATIVE SOLUTION

 “multiply a * b” is equivalent to “add b copies of a”

 Capture state by 
 An iteration number (i) starts at b

i  i-1 and stop when 0
 A current value of computation (result) starts at 0

result  result + a

def mult_iter(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result
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a + a + a + a + … + a

i
result: 0

i
result: a

i
result: 2a

i
result: 3a

i
result: 4a

Update 
rules
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MULTIPLICATION
NOTICE the RECURSIVE PATTERNS

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 is 5+5*3
 But this is 5+5+5*2
 And this is 5+5+5+5*1
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MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  5*2  ))
 = 5+(5+(5+(5*1)))
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MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  5*2  ))
 = 5+(5+(5+(5*1)))
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MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  5*2  ))
 = 5+(5+(5+(5*1)))
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MULTIPLICATION
REACHED the END

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  5*2  ))
 = 5+(5+(5+(5*1)))
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MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  5*2  ))
 = 5+(5+(5+( 5 )))
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MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    5*3    )
 = 5+(5+(  10   ))
 = 5+(5+(5+( 5 )))

6.100L Lecture 15
12



MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into 
 Something you know and 
 the same problem again

 Original problem is using * between two numbers
 5*4 
 = 5+(    15     )
 = 5+(5+(  10   ))
 = 5+(5+(5+( 5 )))
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a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce 

problem to a 
simpler/smaller version 
of same problem, plus 
simple operations 
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a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce

problem to a
simpler/smaller version
of same problem, plus
simple operations

 Base case
• Keep reducing problem

until reach a simple case
that can be solved
directly

• When b=1, a*b=a
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MULTIPLICATION – RECURSIVE 
CODE Python Tutor LINK

 Recursive step
• If b != 1, a*b = a + a*(b-1)

 Base case
• If b = 1, a*b = a
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def mult_recur(a, b):

if b == 1:

return a

else:

return a + mult_recur(a, b-1)
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REAL LIFE EXAMPLE 
Student requests a regrade: ONLY ONE function call

Iterative:
 Student asks the prof then the TA then the LA then the grader

one-by-one until one or more regrade the exam/parts
 Student iterates through everyone and keeps track of the new score
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Meme girl © source unknown. Woman image © 
2007 NBC Universal. Willy Wonka © 1971 Warner 
Bros. Entertainment Inc. Still from Bridesmaids © 
2011 Universal Studios. Still from Cocoon © 2011 
Universal Studios. All rights reserved. This 
content is excluded from our Creative Commons 
license. For more information, see https://
ocw.mit.edu/help/faq-fair-use/
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REAL LIFE EXAMPLE
Student requests a regrade: MANY function calls

Recursive:
 1) Student request(a function call to

regrade!):
 Asks the prof to regrade
 Prof asks a TA to regrade
 TA asks an LA to regrade
 LA asks a grader to regrade

 2) Relay the results (functions return
results to their callers):

 Grader tells the grade to the LA
 LA tells the grade to the TA
 TA tells the grade to the prof
 Prof tells the grade to the student
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Regrade 
please?

Regrade 
please?

Regrade 
please?

Here 
you go

Here 
you go

Here 
you go

Here 
you go
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BIG  IDEA
“Earlier” function calls 
are waiting on results 
before completing.

6.100L Lecture 15
19



WHAT IS RECURSION?

 Algorithmically: a way to design solutions to problems by
divide-and-conquer or decrease-and-conquer
 Reduce a problem to simpler versions of the same problem or to

problem that can be solved directly

 Semantically: a programming technique where a function
calls itself
 In programming, goal is to

NOT have infinite recursion
 Must have 1 or more base cases

that are easy to solve directly
 Must solve the same problem on

some other input with the goal of
simplifying the larger input
problem, ending at base case
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YOU TRY IT!
 Complete the function that calculates np for variables n and p

def power_recur(n, p):
if _______:

return ______
elif _______:

return ______
else:

return _________________

6.100L Lecture 15
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FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* … * 1

 For what n do we know the factorial?
n = 1  if n == 1:

return 1 

 How to reduce problem? Rewrite in terms of something simpler
to reach base case
n*(n-1)!  else:

return n*fact(n-1)

6.100L Lecture 15
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RECURSIVE 
FUNCTION 
SCOPE 
EXAMPLE

Global scope

fact Some 
code

fact scope
(call w/ n=4)

n
4

fact scope
(call w/ n=3)

n
3

fact scope
(call w/ n=2)

n
2

fact scope
(call w/ n=1)

n
1
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def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

print(fact(4))
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BIG  IDEA
In recursion, each 
function call is 
completely separate.
Separate scope/environments.
Separate variable names.
Fully I-N-D-E-P-E-N-D-E-N-T

6.100L Lecture 15
24



SOME OBSERVATIONS
Python Tutor LINK for factorial

 Each recursive call to a function
creates its own scope/environment
 Bindings of variables in a scope are

not changed by recursive call to
same function
 Values of variable binding shadow

bindings in other frames
 Flow of control passes back to

previous scope once function call
returns value

6.100L Lecture 15
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ITERATION vs. RECURSION 

def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def fact_recur(n):

if n == 1:

return 1

else:

return n*fact_recur(n-1)
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 Recursion may be efficient from programmer POV
 Recursion may not be efficient from computer POV
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WHEN to USE RECURSION?
SO FAR WE SAW VERY SIMPLE CODE

 Multiplication of two numbers did not need a recursive
function, did not even need an iterative function!
 Factorial was a little more intuitive to implement with recursion

 We translated a mathematical equation that told us the structure

 MOST problems do not need recursion to solve them
 If iteration is more intuitive for you then solve them using loops!

 SOME problems yield far
simpler code using recursion
 Searching a file system

for a specific file
 Evaluating mathematical

expressions that use parens
for order of ops

6.100L Lecture 15
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SUMMARY

 Recursion is a
 Programming method
 Way to divide and conquer

 A function calls itself
 A problem is broken down into a base case and a recursive step
 A base case

 Something you know
 You’ll eventually reach this case (if not, you have infinite recursion)

 A recursive step
 The same problem
 Just slightly different in a way that will eventually reach the base case

6.100L Lecture 15
28



 
 

 

            

MIT OpenCourseWare 
https://ocw.mit.edu 

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

29

https://ocw.mit.edu
https://ocw.mit.edu/terms

	RECURSION�(download slides and .py files to follow along)
	ITERATIVE ALGORITHMS�SO FAR
	MULTIPLICATION
	MULTIPLICATION�THINK in TERMS of ITERATION
	MULTIPLICATION – �ANOTHER ITERATIVE SOLUTION
	MULTIPLICATION�NOTICE the RECURSIVE PATTERNS
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�REACHED the END
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – RECURSIVE CODE Python Tutor LINK
	REAL LIFE EXAMPLE �Student requests a regrade: ONLY ONE function call
	REAL LIFE EXAMPLE�Student requests a regrade: MANY  function calls
	“Earlier” function calls are waiting on results before completing.
	WHAT IS RECURSION?
	Slide Number 24
	FACTORIAL
	RECURSIVE �FUNCTION �SCOPE �EXAMPLE
	In recursion, each function call is completely separate.
	SOME OBSERVATIONS�Python Tutor LINK for factorial
	ITERATION		vs. 	 RECURSION 
	WHEN to USE RECURSION?�SO FAR WE SAW VERY SIMPLE CODE
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page





