RECURSION
 (download slides and .py files to follow along) 6.100L Lecture 15
 Ana Bell

ITERATIVE ALGORITHMS
 SO FAR

- Looping constructs (while and for loops) lead to iterative algorithms
- Can capture computation in a set of state variables that update, based on a set of rules, on each iteration through loop
- What is changing each time through loop, and how?
- How do I keep track of number of times through loop?
- When can I stop?
- Where is the result when I stop?

MULTIPLICATION

- The * operator does this for us
- Make a function

```
def mult(a, b):
    return a*b
```


MULTIPLICATION THINK in TERMS of ITERATION

- Can you make this iterative?
- Define a *b as $\mathrm{a}+\mathrm{a}+\mathrm{a}+\mathrm{a}$. . . b times
- Write a function

```
def mult(a, b):
    total = 0
    for n in range(b):
        total += a
    return total
```


MULTIPLICATION ANOTHER ITERATIVE SOLUTION

- "multiply a * b " is equivalent to "add b copies of a "
- Capture state by
$\begin{aligned} & \text { Update } \\ & \text { rules }\end{aligned}=$

$$
\begin{gathered}
\text { def mult iter }(\mathrm{a}, \mathrm{~b}): \\
\text { result }=0 \\
\text { while } b>0: \\
\text { result }+=\mathrm{a} \\
\mathrm{~b}-=1
\end{gathered}
$$

return result

MULTIPLICATION NOTICE the RECURSIVE PATTERNS

- Recognize that we have a problem we are solving many times
- If a = 5 and b = 4
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- $5 * 4$ is $5+5 * 3$
- But this is $5+5+5 * 2$
- And this is $5+5+5+5 * 1$

MULTIPLICATION FIND SMALLER VERSIONS of the PROBLEM

- Recognize that we have a problem we are solving many times
- If a = 5 and b = 4
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers

MULTIPLICATION FIND SMALLER VERSIONS of the PROBLEM

- Recognize that we have a problem we are solving many times
- If a = 5 and b = 4
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- 5*4
- $=5+$
- $=5+(5+(5 * 2))$
- = $5+(5+(5+(5 * 1)))$

MULTIPLICATION FIND SMALLER VERSIONS of the PROBLEM

- Recognize that we have a problem we are solving many times
- If a = 5 and b = 4
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- $5 * 4$
- $=5+(5 * 3)$
- $=5+(5+(5 * 2))$
- $=5+(5+(5+(5 * 1)))$

MULTIPLICATION REACHED the END

- Recognize that we have a problem we are solving many times
- If $\mathrm{a}=5$ and $\mathrm{b}=4$
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- 5 * 4
- $=5+(\quad 5 * 3 \quad)$
- $=5+(5+(5 * 2))$
- $=5+(5+(5+(5 * 1)))$

MULTIPLICATION BUILD the RESULT BACK UP

- Recognize that we have a problem we are solving many times
- If $\mathrm{a}=5$ and $\mathrm{b}=4$
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- 5 * 4
- $=5+(5 * 3)$
- $=5+(5+(5 * 2))$
- $=5+(5+(5+(5)))$

MULTIPLICATION BUILD the RESULT BACK UP

- Recognize that we have a problem we are solving many times
- If $\mathrm{a}=5$ and $\mathrm{b}=4$
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers
- $5 * 4$
$\mathbf{-}=5+\left(\begin{array}{|c}5 * 3\end{array}\right)$
$\mathbf{-}=5+\left(\begin{array}{r}5+(10,\end{array}\right)$
- = $5+(5+(5+(5)))$

MULTIPLICATION BUILD the RESULT BACK UP

- Recognize that we have a problem we are solving many times
- If a = 5 and b = 4
- $5 * 4$ is $5+5+5+5$
- Decompose the original problem into
- Something you know and
- the same problem again
- Original problem is using * between two numbers

MULTIPLICATION RECURSIVE and BASE STEPS

- Recursive step
- Decide how to reduce problem to a simpler/smaller version of same problem, plus simple operations

$$
a \star b=a+a+a+a+\ldots+a
$$

$$
\begin{aligned}
& =a+\underbrace{a+a+a+\ldots+a} \\
& =a+\underbrace{a *(b-1)} \quad \begin{array}{c}
\text { recursive } \\
\text { reduction }
\end{array}
\end{aligned}
$$

MULTIPLICATION RECURSIVE and BASE STEPS

- Recursive step
- Decide how to reduce problem to a simpler/smaller version of same problem, plus simple operations
- Base case
- Keep reducing problem until reach a simple case that can be solved directly
- When $b=1$, $a * b=a$

MULTIPLICATION - RECURSIVE CODE Python Tutor LINK

- Recursive step
- If b ! $=1, a^{*} b=a+a^{*}(b-1)$
- Base case
- If $b=1, a * b=a$

else:

$$
\text { return } a+m u l t _r e c u r(a, b-1)
$$

REAL LIFE EXAMPLE

Student requests a regrade: ONLY ONE function call

Iterative:

- Student asks the prof then the TA then the LA then the grader one-by-one until one or more regrade the exam/parts
- Student iterates through everyone and keeps track of the new score

[^0]
REAL LIFE EXAMPLE

Student requests a regrade: MANY function calls

Recursive:

- 1) Student request(a function call to regrade!):
- Asks the prof to regrade
- Prof asks a TA to regrade
- TA asks an LA to regrade
- LA asks a grader to regrade
- 2) Relay the results (functions return results to their callers):
- Grader tells the grade to the LA
- LA tells the grade to the TA
- TA tells the grade to the prof
- Prof tells the grade to the student

BIG IDEA

"Earlier" function calls
are waiting on results before completing.

WHAT IS RECURSION?

- Algorithmically: a way to design solutions to problems by divide-and-conquer or decrease-and-conquer
- Reduce a problem to simpler versions of the same problem or to problem that can be solved directly
- Semantically: a programming technique where a function calls itself
- In programming, goal is to NOT have infinite recursion
- Must have 1 or more base cases that are easy to solve directly
- Must solve the same problem on some other input with the goal of simplifying the larger input problem, ending at base case

YOU TRY IT!

- Complete the function that calculates n^{p} for variables n and p

```
def power_recur(n, p):
if 
elif return__
else:
    return
```


FACTORIAL

$$
n!=n *(n-1) *(n-2) *(n-3) * \ldots * 1
$$

- For what n do we know the factorial?
$\mathrm{n}=1$

$$
\rightarrow \quad \text { if } \mathrm{n}=1:
$$

$$
\text { return } 1
$$

- How to reduce problem? Rewrite in terms of something simpler to reach base case
$\mathrm{n} *(\mathrm{n}-1)!\quad \rightarrow \quad$ else:
return $n *$ fact $(n-1)$

BIG IDEA

In recursion, each function call is completely separate.

Separate scope/environments.
Separate variable names.
Fully I-N-D-E-P-E-N-D-E-N-T

SOME OBSERVATIONS
 Python Tutor LINK for factorial

- Each recursive call to a function creates its own scope/environment
- Bindings of variables in a scope are not changed by recursive call to same function
- Values of variable binding shadow bindings in other frames
- Flow of control passes back to previous scope once function call returns value

ITERATION vs. RECURSION

```
def factorial_iter(n):
    prod = 1
    for i in range(1,n+1):
        prod *= i
    return prod
```

 def fact_recur(n):
 if \(n==1:\)
 return 1
 else:
 return \(n * f a c t _r e c u r(n-1)\)
 - Recursion may be efficient from programmer POV
- Recursion may not be efficient from computer POV

WHEN to USE RECURSION? SO FAR WE SAW VERY SIMPLE CODE

- Multiplication of two numbers did not need a recursive function, did not even need an iterative function!
- Factorial was a little more intuitive to implement with recursion
- We translated a mathematical equation that told us the structure
- MOST problems do not need recursion to solve them
- If iteration is more intuitive for you then solve them using loops!
- SOME problems yield far simpler code using recursion
- Searching a file system for a specific file
- Evaluating mathematical expressions that use parens for order of ops

SUMMARY

- Recursion is a
- Programming method
- Way to divide and conquer
- A function calls itself
- A problem is broken down into a base case and a recursive step
- A base case
- Something you know
- You'll eventually reach this case (if not, you have infinite recursion)
- A recursive step
- The same problem
- Just slightly different in a way that will eventually reach the base case

MITOpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

[^0]: 6.100L Lecture 15

