
RECURSION
(download slides and .py files to follow along)

6.100L Lecture 15
Ana Bell

1

ITERATIVE ALGORITHMS
SO FAR

 Looping constructs (while and for loops) lead to
iterative algorithms
 Can capture computation in a set of state variables that

update, based on a set of rules, on each iteration through
loop
 What is changing each time through loop, and how?
 How do I keep track of number of times through loop?
 When can I stop?
 Where is the result when I stop?

6.100L Lecture 15
2

MULTIPLICATION

 The * operator does this for us
 Make a function

6.100L Lecture 15

def mult(a, b):

return a*b

3

MULTIPLICATION
THINK in TERMS of ITERATION

 Can you make this iterative?
 Define a*b as a+a+a+a... b times
 Write a function

6.100L Lecture 15

def mult(a, b):

total = 0

for n in range(b):

total += a

return total

4

MULTIPLICATION –
ANOTHER ITERATIVE SOLUTION

 “multiply a * b” is equivalent to “add b copies of a”

 Capture state by
 An iteration number (i) starts at b

i  i-1 and stop when 0
 A current value of computation (result) starts at 0

result  result + a

def mult_iter(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

6.100L Lecture 15

a + a + a + a + … + a

i
result: 0

i
result: a

i
result: 2a

i
result: 3a

i
result: 4a

Update
rules

5

MULTIPLICATION
NOTICE the RECURSIVE PATTERNS

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4 is 5+5*3
 But this is 5+5+5*2
 And this is 5+5+5+5*1

6.100L Lecture 15
6

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15
7

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15
8

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15
9

MULTIPLICATION
REACHED the END

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5*1)))

6.100L Lecture 15
10

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(5*2))
 = 5+(5+(5+(5)))

6.100L Lecture 15
11

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(5*3)
 = 5+(5+(10))
 = 5+(5+(5+(5)))

6.100L Lecture 15
12

MULTIPLICATION
BUILD the RESULT BACK UP

 Recognize that we have a problem we are solving many times
 If a = 5 and b = 4

 5*4 is 5+5+5+5

 Decompose the original problem into
 Something you know and
 the same problem again

 Original problem is using * between two numbers
 5*4
 = 5+(15)
 = 5+(5+(10))
 = 5+(5+(5+(5)))

6.100L Lecture 15
13

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce

problem to a
simpler/smaller version
of same problem, plus
simple operations

6.100L Lecture 15
14

a*b = a + a + a + a + … + a

= a + a + a + a + … + a

= a + a * (b-1)

MULTIPLICATION –
RECURSIVE and BASE STEPS

 Recursive step
• Decide how to reduce

problem to a
simpler/smaller version
of same problem, plus
simple operations

 Base case
• Keep reducing problem

until reach a simple case
that can be solved
directly

• When b=1, a*b=a

6.100L Lecture 15
15

MULTIPLICATION – RECURSIVE
CODE Python Tutor LINK

 Recursive step
• If b != 1, a*b = a + a*(b-1)

 Base case
• If b = 1, a*b = a

6.100L Lecture 15

def mult_recur(a, b):

if b == 1:

return a

else:

return a + mult_recur(a, b-1)

16

https://pythontutor.com/visualize.html#code=def%20mult_recur%28a,%20b%29%3A%0A%20%20%20%20if%20b%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%20a%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20a%20%2B%20mult_recur%28a,%20b-1%29%0A%0Aprint%28mult_recur%285,4%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

REAL LIFE EXAMPLE
Student requests a regrade: ONLY ONE function call

Iterative:
 Student asks the prof then the TA then the LA then the grader

one-by-one until one or more regrade the exam/parts
 Student iterates through everyone and keeps track of the new score

6.100L Lecture 15

Meme girl © source unknown. Woman image ©
2007 NBC Universal. Willy Wonka © 1971 Warner
Bros. Entertainment Inc. Still from Bridesmaids ©
2011 Universal Studios. Still from Cocoon © 2011
Universal Studios. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see https://
ocw.mit.edu/help/faq-fair-use/

17

https://ocw.mit.edu/help/faq-fair-use/

REAL LIFE EXAMPLE
Student requests a regrade: MANY function calls

Recursive:
 1) Student request(a function call to

regrade!):
 Asks the prof to regrade
 Prof asks a TA to regrade
 TA asks an LA to regrade
 LA asks a grader to regrade

 2) Relay the results (functions return
results to their callers):

 Grader tells the grade to the LA
 LA tells the grade to the TA
 TA tells the grade to the prof
 Prof tells the grade to the student

6.100L Lecture 15

Regrade
please?

Regrade
please?

Regrade
please?

Here
you go

Here
you go

Here
you go

Here
you go

18

Meme girl © source unknown. Woman image © 2007 NBC Universal. Willy Wonka
© 1971 Warner Bros. Entertainment Inc. Still from Bridesmaids © 2011 Universal
Studios. Still from Cocoon © 2011 Universal Studios. All rights reserved. This
content is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA
“Earlier” function calls
are waiting on results
before completing.

6.100L Lecture 15
19

WHAT IS RECURSION?

 Algorithmically: a way to design solutions to problems by
divide-and-conquer or decrease-and-conquer
 Reduce a problem to simpler versions of the same problem or to

problem that can be solved directly

 Semantically: a programming technique where a function
calls itself
 In programming, goal is to

NOT have infinite recursion
 Must have 1 or more base cases

that are easy to solve directly
 Must solve the same problem on

some other input with the goal of
simplifying the larger input
problem, ending at base case

6.100L Lecture 15
20

YOU TRY IT!
 Complete the function that calculates np for variables n and p

def power_recur(n, p):
if _______:

return ______
elif _______:

return ______
else:

return _________________

6.100L Lecture 15
21

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* … * 1

 For what n do we know the factorial?
n = 1  if n == 1:

return 1

 How to reduce problem? Rewrite in terms of something simpler
to reach base case
n*(n-1)!  else:

return n*fact(n-1)

6.100L Lecture 15
22

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

Global scope

fact Some
code

fact scope
(call w/ n=4)

n
4

fact scope
(call w/ n=3)

n
3

fact scope
(call w/ n=2)

n
2

fact scope
(call w/ n=1)

n
1

6.100L Lecture 15

def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

print(fact(4))

23

BIG IDEA
In recursion, each
function call is
completely separate.
Separate scope/environments.
Separate variable names.
Fully I-N-D-E-P-E-N-D-E-N-T

6.100L Lecture 15
24

SOME OBSERVATIONS
Python Tutor LINK for factorial

 Each recursive call to a function
creates its own scope/environment
 Bindings of variables in a scope are

not changed by recursive call to
same function
 Values of variable binding shadow

bindings in other frames
 Flow of control passes back to

previous scope once function call
returns value

6.100L Lecture 15
25

https://pythontutor.com/visualize.html#code=def%20fact%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n*fact%28n-1%29%0A%0Aprint%28fact%284%29%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

ITERATION vs. RECURSION

def factorial_iter(n):

prod = 1

for i in range(1,n+1):

prod *= i

return prod

def fact_recur(n):

if n == 1:

return 1

else:

return n*fact_recur(n-1)

6.100L Lecture 15

 Recursion may be efficient from programmer POV
 Recursion may not be efficient from computer POV

26

WHEN to USE RECURSION?
SO FAR WE SAW VERY SIMPLE CODE

 Multiplication of two numbers did not need a recursive
function, did not even need an iterative function!
 Factorial was a little more intuitive to implement with recursion

 We translated a mathematical equation that told us the structure

 MOST problems do not need recursion to solve them
 If iteration is more intuitive for you then solve them using loops!

 SOME problems yield far
simpler code using recursion
 Searching a file system

for a specific file
 Evaluating mathematical

expressions that use parens
for order of ops

6.100L Lecture 15
27

SUMMARY

 Recursion is a
 Programming method
 Way to divide and conquer

 A function calls itself
 A problem is broken down into a base case and a recursive step
 A base case

 Something you know
 You’ll eventually reach this case (if not, you have infinite recursion)

 A recursive step
 The same problem
 Just slightly different in a way that will eventually reach the base case

6.100L Lecture 15
28

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

29

https://ocw.mit.edu
https://ocw.mit.edu/terms

	RECURSION�(download slides and .py files to follow along)
	ITERATIVE ALGORITHMS�SO FAR
	MULTIPLICATION
	MULTIPLICATION�THINK in TERMS of ITERATION
	MULTIPLICATION – �ANOTHER ITERATIVE SOLUTION
	MULTIPLICATION�NOTICE the RECURSIVE PATTERNS
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�REACHED the END
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – RECURSIVE CODE Python Tutor LINK
	REAL LIFE EXAMPLE �Student requests a regrade: ONLY ONE function call
	REAL LIFE EXAMPLE�Student requests a regrade: MANY function calls
	“Earlier” function calls are waiting on results before completing.
	WHAT IS RECURSION?
	Slide Number 24
	FACTORIAL
	RECURSIVE �FUNCTION �SCOPE �EXAMPLE
	In recursion, each function call is completely separate.
	SOME OBSERVATIONS�Python Tutor LINK for factorial
	ITERATION		vs. 	 RECURSION
	WHEN to USE RECURSION?�SO FAR WE SAW VERY SIMPLE CODE
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

