RECURSION

(download slides and .py files to follow along)

6.100L Lecture 15
Ana Bell

ITERATIVE ALGORITHMS
SO FAR

" Looping constructs (while and for loops) lead to
iterative algorithms

= Can capture computation in a set of state variables that
update, based on a set of rules, on each iteration through
loop
= What is changing each time through loop, and how?
= How do | keep track of number of times through loop?
= When can | stop?
= Where is the result when | stop?

2
6.100L Lecture 15

MULTIPLICATION

" The * operator does this for us

= Make a function

def mult (a, b):

return a*b

MULTIPLICATION
THINK in TERMS of ITERATION

= Can you make this iterative?
" Define a*basa+a+ta+a... b times

= \Write a function

def mult (a, b):
total = 0
for n in range (b):
total += a

return total

MULTIPLICATION —
ANOTHER ITERATIVE SOLUTION

" “multiply a * b” is equivalent to “add b copies of a”

a +a + a + a + ..

= Capture state by i ..I.Ii —Ii -Ii -I

™ Aniteration number (1) starts at b resudisutresultrésultrasult: 43
i €& 1-1andstop whenO

= A current value of computation (result)startsatO
result € result + a

Update
rules <

def mult iter(a, b):
result = 0
while b > 0:
result += a
b =1
return result

5
6.100L Lecture 15

MULTIPLICATION
NOTICE the RECURSIVE PATTERNS

= Recognize that we have a problem we are solving many times

"fa=5andb=4
= 5%4 s 5+5+5+5
= Decompose the original problem into

= Something you know and
= the same problem again

* Original problem is using * between two numbers
\ " 5%*4|is 5+5*3

G\ R\
O‘\%}o\e«\ * But thisis 5+5+5*2 \\é@\\?«\o“e
<
o " And this is 5+5+5+5*1 N \e«\\N o
(00 o
AP\

6.100L Lecture 15

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

N ® 5*%4 :
. -\(\’6 ' 6\6
O(\(%o\e((\ m = | 54 5% 73) - Q4\’&‘(\
° "= 54(5+(5%2)) B
\)\\,\Q \QSS
== 5+ (5+(5+(5%1))) O, 08~

2

7
6.100L Lecture 15

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

= 5%4 W\ :
.(.(\\ < \O
" = 54 5% 3)5\9(0@?’ N\x‘\(’
== 5+(p+(52) S
" \)\\.\Q \e‘;’
"= 54 (5+(5+(5%1))) pe® el

2

8
6.100L Lecture 15

MULTIPLICATION
FIND SMALLER VERSIONS of the PROBLEM

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

m D * 2\ .
>"a G e 02 >
"= 5+ 5*3) o© o
S 2
= 5+ (5+([5*2])) \)\,&\Q\C o0
= 54+ (54+(5+(5*1)]))) pO 08~

6.100L Lecture 15

MULTIPLICATION
REACHED the END

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

= 5%4 "
"= 5+ 53) . 2 e
"= 54(5+(5%2)) %aé\gﬁ’a‘\j\e'd @\’i\\@w"
"= 5+ (5H(SH(5xL))) T e

10
6.100L Lecture 15

MULTIPLICATION
BUILD the RESULT BACK UP

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

m 5*%4 R
C)\(O\\O\e((\
= 5+(5*3) Q(O

m = 5+ (5+([5*2]))
"= 5+ (5+(5+(5)|))

A0

11
6.100L Lecture 15

MULTIPLICATION
BUILD the RESULT BACK UP

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

m 5%4 R
" S\“\\\o\ef‘\
= 5+ (5*3) Q(O

= = 54+ (5+(10) [)
" = 54+ (5+(5+(5)))

AS

12
6.100L Lecture 15

MULTIPLICATION
BUILD the RESULT BACK UP

= Recognize that we have a problem we are solving many times
" fa=5andb=4
= 5*%4 s 5+5+5+5

= Decompose the original problem into
= Something you know and
= the same problem again

* Original problem is using * between two numbers

\ " 5*4
Qy@
o)} 0\0\@((\' =| 5+ (15)
ot = = 5+(5+(10))

"= 5+ (5+(5+(5)))

13
6.100L Lecture 15

MULTIPLICATION —
RECURSIVE and BASE STEPS

= Recursive step = atat+at+adt .. +a
* Decide how to reduce N bx’\((‘es
problem to a ¢
simpler/smaller version matatatrad.ta
of same problem, plus lY e ©
simple operations oS 500

= a +|la * (b-1)

14
6.100L Lecture 15

MULTIPLICATION —
RECURSIVE and BASE STEPS

= Recursive step

* Decide how to reduce
problem to a
simpler/smaller version
of same problem, plus
simple operations

= Base case

* Keep reducing problem
until reach a simple case
that can be solved
directly

* Whenb=1, a*b=a

15
6.100L Lecture 15

[4

a

*

(b-1)

o
S
+ a X
Y \OA"\«\
&
(eC\) (,\.,\O(\
(66

MULTIPLICATION — RECURSIVE
CODE Python Tutor LINK

= Recursive step
e If b !'=1, a*b = a + a*(b-1)

= Base case
e If b =1, a*b = a

def mult recur(a, b):

1f b == . \0658

return a

else:

return a + mult recur(a, b-1)

16
6.100L Lecture 15

https://pythontutor.com/visualize.html#code=def%20mult_recur%28a,%20b%29%3A%0A%20%20%20%20if%20b%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%20a%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20a%20%2B%20mult_recur%28a,%20b-1%29%0A%0Aprint%28mult_recur%285,4%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

REAL LIFE EXAMPLE
Student requests a regrade: ONLY ONE function call

Iterative:

= Student asks the prof then the TA then the LA then the grader
one-by-one until one or more regrade the exam/parts

= Student iterates through everyone and keeps track of the new score

Meme girl © source unknown. Woman image ©
2007 NBC Universal. Willy Wonka © 1971 Warner
Bros. Entertainment Inc. Still from Bridesmaids ©
2011 Universal Studios. Still from Cocoon © 2011
Universal Studios. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see https://
ocw.mit.edu/help/fag-fair-use/

e
& xS

6.100L Lecture 15

https://ocw.mit.edu/help/faq-fair-use/

Meme girl © source unknown. Woman image © 2007 NBC Universal. Willy Wonka
© 1971 Warner Bros. Entertainment Inc. Still from Bridesmaids © 2011 Universal
Studios. Still from Cocoon © 2011 Universal Studios. All rights reserved. This 18
content is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/

REAL LIFE EXAMPLE
Student requests a regrade: MANY function calls

Here

i you go

Recursive:

= 1) Student request(a function call to
regrade!):
= Asks the prof to regrade

Here
you go

Regrade

= Prof asks a TA to regrade
please?

= TA asks an LA to regrade

= LA asks a grader to regrade Here

you go

Regrade
please?

= 2) Relay the results (functions return
results to their callers):
= Grader tells the grade to the LA
= LA tells the grade to the TA
= TA tells the grade to the prof
= Prof tells the grade to the student

Here
you go

Regrade
please?

6.100L Lecture 15

https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA

“Earlier” function calls
are waiting on results
before completing.

WHAT IS RECURSION?

= Algorithmically: a way to design solutions to problems by
divide-and-conquer or decrease-and-conquer

= Reduce a problem to simpler versions of the same problem or to
problem that can be solved directly

= Semantically: a programming technique where a function
calls itself

" |n programming, goal is to
NOT have infinite recursion

= Must have 1 or more base cases
that are easy to solve directly

= Must solve the same problem on
some other input with the goal of
simplifying the larger input
problem, ending at base case

20
6.100L Lecture 15

YOU TRY IT!

=" Complete the function that calculates nP for variables n and p

def power recur(n, p):
if

return
elif

return
else:

return

21

FACTORIAL
n! = n*(n-1)*(n-2)*(n=-3)* ... * 1

= For what n do we know the factorial?
n= 1 9 lf n == . \0656
return 1

cﬂ&

" How to reduce problem? Rewrite in terms of something simpler
to reach base case
n*(n-1)! > else:
return n*fact (n-1)
S"'Q’Q
e
e

22
6.100L Lecture 15

RECURSIVE def factli_ \
FUNC |ON return 1

else:

SCOPE return n*fact(n-1)

- J

EXA I_E print (fact (4))

Global scope fact scope fact scope fact scope fact scope
(call w/ n=4) (call w/ n=3) (call w/ n=2) (call w/ n=1)

fact Some

6.100L Lecture 15

BIG IDEA

In recursion, each
function call is
completely separate.

Separate scope/environments.
Separate variable names.
Fully I-N-D-E-P-E-N-D-E-N-T

SOME OBSERVATIONS
Python Tutor LINK for factorial

®» Fach recursive call to a function

creates its own scope/environment

. N
= Bindings of variables in a scope are

not changed by recursive call to
same function

= Values of variable binding shadow
bindings in other frames

® Flow of control passes back to

previous scope once function call e P ot
returns value \)é\“,%b\e 03_“\6(@0&
Jor\e e aite S
’(,\\e_l ‘o 0O 5@9
ob\?ﬁeS

25
6.100L Lecture 15

https://pythontutor.com/visualize.html#code=def%20fact%28n%29%3A%0A%20%20%20%20if%20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n*fact%28n-1%29%0A%0Aprint%28fact%284%29%29%0A&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

ITERATION VS.

def factorial iter(n):
prod = 1
for 1 1in range(l,n+1):
prod *= 1

return prod

RECURSION

©
6§&\
S\ \\x\ RN

Q@@

def fact recur(n):
_ Q\\‘\(\

1f n ==
return 1
else:

return n*fact recur (n-1)

= Recursion may be efficient from programmer POV
= Recursion may not be efficient from computer POV

26

6.100L Lecture 15

WHEN to USE RECURSION?
SO FAR WE SAW VERY SIMPLE CODE

= Multiplication of two numbers did not need a recursive
function, did not even need an iterative function!

" Factorial was a little more intuitive to implement with recursion
= We translated a mathematical equation that told us the structure

= MOST problems do not need recursion to solve them
= |f iteration is more intuitive for you then solve them using loops!

= SOME problems yield far PEMDAS
simpler code using recursion) mﬂ_f N N

. . T,
= Searching a file system ‘Division " Addition
for a specific file @

Exponents Subtraction

= Evaluating mathematical ' R

v
expressions that use parens [_D\‘—] m m TLI

for order of ops I |] o
FE 2R

6.100L Lecture 15

SUMMARY

= Recursion is a
= Programming method
= Way to divide and conquer

= A function calls itself

= A problem is broken down into a base case and a recursive step

= A base case
= Something you know
= You'll eventually reach this case (if not, you have infinite recursion)

= A recursive step
" The same problem
= Just slightly different in a way that will eventually reach the base case

28
6.100L Lecture 15

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

29

https://ocw.mit.edu
https://ocw.mit.edu/terms

	RECURSION�(download slides and .py files to follow along)
	ITERATIVE ALGORITHMS�SO FAR
	MULTIPLICATION
	MULTIPLICATION�THINK in TERMS of ITERATION
	MULTIPLICATION – �ANOTHER ITERATIVE SOLUTION
	MULTIPLICATION�NOTICE the RECURSIVE PATTERNS
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�FIND SMALLER VERSIONS of the PROBLEM
	MULTIPLICATION�REACHED the END
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION�BUILD the RESULT BACK UP
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – �RECURSIVE and BASE STEPS
	MULTIPLICATION – RECURSIVE CODE Python Tutor LINK
	REAL LIFE EXAMPLE �Student requests a regrade: ONLY ONE function call
	REAL LIFE EXAMPLE�Student requests a regrade: MANY function calls
	“Earlier” function calls are waiting on results before completing.
	WHAT IS RECURSION?
	Slide Number 24
	FACTORIAL
	RECURSIVE �FUNCTION �SCOPE �EXAMPLE
	In recursion, each function call is completely separate.
	SOME OBSERVATIONS�Python Tutor LINK for factorial
	ITERATION		vs. 	 RECURSION
	WHEN to USE RECURSION?�SO FAR WE SAW VERY SIMPLE CODE
	SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

