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OBJECTS

 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 Each is an object, and every object has:
• An internal data representation (primitive or composite)
• A set of procedures for interaction with the object

 An object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instance of a str
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OBJECT ORIENTED 
PROGRAMMING (OOP)

 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)
 Can create new objects of some type
 Can manipulate objects
 Can destroy objects

 Explicitly using del or just “forget” about them
 Python system will reclaim destroyed or inaccessible objects –

called “garbage collection”
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WHAT ARE OBJECTS?

 Objects are a data abstraction
that captures…

(1) An internal representation
 Through data attributes

(2) An interface for
interacting with object
 Through methods

(aka procedures/functions)
 Defines behaviors but

hides implementation
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 (1) How are lists represented internally?
Does not matter for so much for us as users (private representation)

L =
or L =
 (2) How to interface with, and manipulate, lists?

• L[i], L[i:j], +
• len(), min(), max(), del(L[i])
• L.append(),L.extend(),L.count(),L.index(),
L.insert(),L.pop(),L.remove(),L.reverse(),
L.sort()

 Internal representation should be private
 Correct behavior may be compromised if you manipulate internal

representation directly

EXAMPLE: 
[1,2,3,4] has type list
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1   -> 2     -> 3     -> 4     ->

1   -> 2     -> 3  
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REAL-LIFE EXAMPLES

 Elevator: a box that can change floors
 Represent using length, width, height, max_capacity, current_floor
 Move its location to a different floor, add people, remove people

 Employee: a person who works for a company
 Represent using name, birth_date, salary
 Can change name or salary

 Queue at a store: first customer to arrive is the first one helped
 Represent customers as a list of str names
 Append names to the end and remove names from the beginning

 Stack of pancakes: first pancake made is the last one eaten
 Represent stack as a list of str
 Append pancake to the end and remove from the end
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ADVANTAGES OF OOP

 Bundle data into packages together with procedures that
work on them through well-defined interfaces
 Divide-and-conquer development

• Implement and test behavior of each class separately
• Increased modularity reduces complexity

 Classes make it easy to reuse code
• Many Python modules define new classes
• Each class has a separate environment (no collision on function

names)
• Inheritance allows subclasses to redefine or extend a selected

subset of a superclass’ behavior
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BIG  IDEA

You write the class so you 
make the design decisions.
You decide what data represents the class.
You decide what operations a user can do with the class.
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 Make a distinction between creating a class and
using an instance of the class
 Creating the class involves

• Defining the class name
• Defining class attributes
• for example, someone wrote code to implement a list class

 Using the class involves
• Creating new instances of the class
• Doing operations on the instances
• for example, L=[1,2] and len(L)
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Implementing the class Using the class

CREATING AND USING YOUR 
OWN TYPES WITH CLASSES
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A PARALLEL with FUNCTIONS

 Defining a class is like defining a function
 With functions, we tell Python this procedure exists
 With classes, we tell Python about a blueprint for this new data type

 Its data attributes
 Its procedural attributes

 Creating instances of objects is like calling the function
 With functions we make calls with different actual parameters
 With classes, we create new object tinstances in memory of this type

 L1 = [1,2,3]
L2 = [5,6,7]
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COORDINATE TYPE
DESIGN DECISIONS
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(3 , 4)

(1 , 1)

 Decide what to do with
coordinates

• Tell us how far away the
coordinate is on the x or y axes

• Measure the distance between
two coordinates, Pythagoras

Can create instances of a 
Coordinate object

 Decide what data elements
constitute an object

• In a 2D plane
• A coordinate is defined by

an x and y value
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DEFINE YOUR OWN TYPES

 Use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 Similar to def, indent code to indicate which statements are
part of the class definition
 The word object means that Coordinate is a Python

object and inherits all its attributes (will see in future lects) 
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Implementing the class Using the class
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WHAT ARE ATTRIBUTES?

 Data and procedures that “belong” to the class
 Data attributes

• Think of data as other objects/variables that make up the class
• for example, a coordinate is made up of two numbers

 Methods (procedural attributes)
• Think of methods as functions that only work with this class
• How to interact with the object
• for example you can define a distance between two coordinate 

objects but there is no meaning to a distance between two list 
objects
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DEFINING HOW TO CREATE AN INSTANCE OF A 
CLASS

 First have to define how to create an instance of class
 Use a special method called __init__ to initialize some

data attributes or perform initialization operations
class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

 self allows you to create variables that belong to this object
 Without self, you are just creating regular variables!
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Implementing the class Using the class
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WHAT is self?
ROOM EXAMPLE

 Think of the class definition as a
blueprint with placeholders for
actual items
 self has a chair
 self has a coffee table
 self has a sofa
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 Now when you create ONE instance
(name it living_room), self becomes
this actual object
 living_room has a blue chair
 living_room has a black table
 living_room has a white sofa

 Can make many instances using
the same blueprint
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BIG  IDEA
When defining a class, 
we don’t have an actual 
tangible object here. 
It’s only a definition.
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ACTUALLY CREATING 
AN INSTANCE OF A CLASS

 Don’t provide argument for self, Python
does this automatically

c = Coordinate(3,4)

origin = Coordinate(0,0)

 Data attributes of an instance are called instance variables
 Data attributes were defined with self.XXX and they are

accessible with dot notation for the lifetime of the object
 All instances have these data attributes, but with different values!

print(c.x)

print(origin.x)
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Implementing the class Using the class

Recall the __init__  method in the class def:
def __init__(self, xval, yval):

self.x = xval
self.y = yval
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VISUALIZING INSTANCES

 Suppose we create an instance of
a coordinate
c = Coordinate(3,4)

 Think of this as creating a
structure in memory
 Then evaluating
c.x
looks up the structure to which
c points, then finds the binding
for x in that structure
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c
Type: Coordinate

x: 3
y: 4
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VISUALIZING INSTANCES:
in memory

 Make another instance using
a variable
a = 0

orig = Coordinate(a,a)

orig.x

 All these are just objects in
memory!
 We just access attributes of

these objects
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orig
Type: Coordinate

x: 0
y: 0

a 0

c
Type: Coordinate

x: 3
y: 4
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VISUALIZING INSTANCES:
draw it
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(3 , 4)

(0 , 0)
origin

c

class Coordinate(object):
def __init__(self, xval, yval):

self.x = xval
self.y = yval

c = Coordinate(3,4)
origin = Coordinate(0,0)
print(c.x)
print(origin.x)
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WHAT IS A METHOD?

 Procedural attribute
 Think of it like a function that works only with this class

 Python always passes the object as the first argument
 Convention is to use self as the name of the first argument of all

methods
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DEFINE A METHOD 
FOR THE Coordinate CLASS

class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 Other than self and dot notation, methods behave just 

like functions (take params, do operations, return)
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Implementing the class Using the class
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HOW TO CALL A METHOD?

 The “.” operator is used to access any attribute
 A data attribute of an object (we saw c.x)
 A method of an object

 Dot notation
<object_variable>.<method>(<parameters>)

 Familiar?
my_list.append(4)
my_list.sort()
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HOW TO USE A METHOD

Using the class:
c = Coordinate(3,4)

orig = Coordinate(0,0)

print(c.distance(orig))

 Notice that self becomes the object you call the 
method on (the thing before the dot!)
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Implementing the class Using the class

Recall the definition of distance method:

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5
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VISUALIZING INVOCATION

 Coordinate class is an object in 
memory
 From the class definition

 Create two Coordinate objects
c = Coordinate(3,4)

orig = Coordinate(0,0)
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c
Type: Coordinate

x: 3
y: 4

Coordinate

self.x
self.y
__init__: some code
distance: some code

orig
Type: Coordinate

x: 0
y: 0
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VISUALIZING INVOCATION

 Evaluate the method call
c.distance(orig)

 1) The object is before the dot
 2) Looks up the type of  c
 3) The method to call is after the

dot.
 4) Finds the binding for
distance in that object class
 5) Invokes that method with

c as self and
orig as other
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c
Type: Coordinate

x: 3
y: 4

Coordinate

self.x
self.y
__init__: some code
distance: some code

orig
Type: Coordinate

x: 0
y: 0
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HOW TO USE A METHOD

 Conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

c.distance(zero)

6.100L Lecture 17

 Equivalent to 
c = Coordinate(3,4)

zero = Coordinate(0,0)

Coordinate.distance(c, zero)

Implementing the class Using the class
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BIG  IDEA
The . operator accesses 
either data attributes or 
methods.
Data attributes are defined with self.something

Methods are functions defined inside the class with self as the first parameter.
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THE POWER OF OOP

 Bundle together objects that share 
• Common attributes and 
• Procedures that operate on those attributes

 Use abstraction to make a distinction between how to 
implement an object vs how to use the object
 Build layers of object abstractions that inherit behaviors 

from other classes of objects
 Create our own classes of objects on top of Python’s 

basic classes
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