
PYTHON CLASSES
(download slides and .py files to follow along)

6.100L Lecture 17
Ana Bell

1

OBJECTS

 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 Each is an object, and every object has:
• An internal data representation (primitive or composite)
• A set of procedures for interaction with the object

 An object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instance of a str

6.100L Lecture 17
2

OBJECT ORIENTED
PROGRAMMING (OOP)

 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)
 Can create new objects of some type
 Can manipulate objects
 Can destroy objects

 Explicitly using del or just “forget” about them
 Python system will reclaim destroyed or inaccessible objects –

called “garbage collection”

6.100L Lecture 17
3

WHAT ARE OBJECTS?

 Objects are a data abstraction
that captures…

(1) An internal representation
 Through data attributes

(2) An interface for
interacting with object
 Through methods

(aka procedures/functions)
 Defines behaviors but

hides implementation

6.100L Lecture 17
4

 (1) How are lists represented internally?
Does not matter for so much for us as users (private representation)

L =
or L =
 (2) How to interface with, and manipulate, lists?

• L[i], L[i:j], +
• len(), min(), max(), del(L[i])
• L.append(),L.extend(),L.count(),L.index(),
L.insert(),L.pop(),L.remove(),L.reverse(),
L.sort()

 Internal representation should be private
 Correct behavior may be compromised if you manipulate internal

representation directly

EXAMPLE:
[1,2,3,4] has type list

6.100L Lecture 17

1 -> 2 -> 3 -> 4 ->

1 -> 2 -> 3

5

REAL-LIFE EXAMPLES

 Elevator: a box that can change floors
 Represent using length, width, height, max_capacity, current_floor
 Move its location to a different floor, add people, remove people

 Employee: a person who works for a company
 Represent using name, birth_date, salary
 Can change name or salary

 Queue at a store: first customer to arrive is the first one helped
 Represent customers as a list of str names
 Append names to the end and remove names from the beginning

 Stack of pancakes: first pancake made is the last one eaten
 Represent stack as a list of str
 Append pancake to the end and remove from the end

6.100L Lecture 17
6

ADVANTAGES OF OOP

 Bundle data into packages together with procedures that
work on them through well-defined interfaces
 Divide-and-conquer development

• Implement and test behavior of each class separately
• Increased modularity reduces complexity

 Classes make it easy to reuse code
• Many Python modules define new classes
• Each class has a separate environment (no collision on function

names)
• Inheritance allows subclasses to redefine or extend a selected

subset of a superclass’ behavior

6.100L Lecture 17
7

BIG IDEA

You write the class so you
make the design decisions.
You decide what data represents the class.
You decide what operations a user can do with the class.

6.100L Lecture 17
8

 Make a distinction between creating a class and
using an instance of the class
 Creating the class involves

• Defining the class name
• Defining class attributes
• for example, someone wrote code to implement a list class

 Using the class involves
• Creating new instances of the class
• Doing operations on the instances
• for example, L=[1,2] and len(L)

6.100L Lecture 17

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

9

A PARALLEL with FUNCTIONS

 Defining a class is like defining a function
 With functions, we tell Python this procedure exists
 With classes, we tell Python about a blueprint for this new data type

 Its data attributes
 Its procedural attributes

 Creating instances of objects is like calling the function
 With functions we make calls with different actual parameters
 With classes, we create new object tinstances in memory of this type

 L1 = [1,2,3]
L2 = [5,6,7]

6.100L Lecture 17
10

COORDINATE TYPE
DESIGN DECISIONS

6.100L Lecture 17

(3 , 4)

(1 , 1)

 Decide what to do with
coordinates

• Tell us how far away the
coordinate is on the x or y axes

• Measure the distance between
two coordinates, Pythagoras

Can create instances of a
Coordinate object

 Decide what data elements
constitute an object

• In a 2D plane
• A coordinate is defined by

an x and y value

11

DEFINE YOUR OWN TYPES

 Use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 Similar to def, indent code to indicate which statements are
part of the class definition
 The word object means that Coordinate is a Python

object and inherits all its attributes (will see in future lects)

6.100L Lecture 17

Implementing the class Using the class

12

WHAT ARE ATTRIBUTES?

 Data and procedures that “belong” to the class
 Data attributes

• Think of data as other objects/variables that make up the class
• for example, a coordinate is made up of two numbers

 Methods (procedural attributes)
• Think of methods as functions that only work with this class
• How to interact with the object
• for example you can define a distance between two coordinate

objects but there is no meaning to a distance between two list
objects

6.100L Lecture 17
13

DEFINING HOW TO CREATE AN INSTANCE OF A
CLASS

 First have to define how to create an instance of class
 Use a special method called __init__ to initialize some

data attributes or perform initialization operations
class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

 self allows you to create variables that belong to this object
 Without self, you are just creating regular variables!

6.100L Lecture 17

Implementing the class Using the class

14

WHAT is self?
ROOM EXAMPLE

 Think of the class definition as a
blueprint with placeholders for
actual items
 self has a chair
 self has a coffee table
 self has a sofa

6.100L Lecture 17

 Now when you create ONE instance
(name it living_room), self becomes
this actual object
 living_room has a blue chair
 living_room has a black table
 living_room has a white sofa

 Can make many instances using
the same blueprint

15

Image © source unknown. All rights
reserved. This content is excluded from
our Creative Commons license. For more
information, see https://ocw.mit.edu/
help/faq-fair-use/

https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA
When defining a class,
we don’t have an actual
tangible object here.
It’s only a definition.

6.100L Lecture 17
16

ACTUALLY CREATING
AN INSTANCE OF A CLASS

 Don’t provide argument for self, Python
does this automatically

c = Coordinate(3,4)

origin = Coordinate(0,0)

 Data attributes of an instance are called instance variables
 Data attributes were defined with self.XXX and they are

accessible with dot notation for the lifetime of the object
 All instances have these data attributes, but with different values!

print(c.x)

print(origin.x)

6.100L Lecture 17

Implementing the class Using the class

Recall the __init__ method in the class def:
def __init__(self, xval, yval):

self.x = xval
self.y = yval

17

VISUALIZING INSTANCES

 Suppose we create an instance of
a coordinate
c = Coordinate(3,4)

 Think of this as creating a
structure in memory
 Then evaluating
c.x
looks up the structure to which
c points, then finds the binding
for x in that structure

6.100L Lecture 17

c
Type: Coordinate

x: 3
y: 4

18

VISUALIZING INSTANCES:
in memory

 Make another instance using
a variable
a = 0

orig = Coordinate(a,a)

orig.x

 All these are just objects in
memory!
 We just access attributes of

these objects

6.100L Lecture 17

orig
Type: Coordinate

x: 0
y: 0

a 0

c
Type: Coordinate

x: 3
y: 4

19

VISUALIZING INSTANCES:
draw it

6.100L Lecture 17

(3 , 4)

(0 , 0)
origin

c

class Coordinate(object):
def __init__(self, xval, yval):

self.x = xval
self.y = yval

c = Coordinate(3,4)
origin = Coordinate(0,0)
print(c.x)
print(origin.x)

20

WHAT IS A METHOD?

 Procedural attribute
 Think of it like a function that works only with this class

 Python always passes the object as the first argument
 Convention is to use self as the name of the first argument of all

methods

6.100L Lecture 17
21

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate(object):

def __init__(self, xval, yval):

self.x = xval

self.y = yval

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 Other than self and dot notation, methods behave just

like functions (take params, do operations, return)

6.100L Lecture 17

Implementing the class Using the class

22

HOW TO CALL A METHOD?

 The “.” operator is used to access any attribute
 A data attribute of an object (we saw c.x)
 A method of an object

 Dot notation
<object_variable>.<method>(<parameters>)

 Familiar?
my_list.append(4)
my_list.sort()

6.100L Lecture 17
23

HOW TO USE A METHOD

Using the class:
c = Coordinate(3,4)

orig = Coordinate(0,0)

print(c.distance(orig))

 Notice that self becomes the object you call the
method on (the thing before the dot!)

6.100L Lecture 17

Implementing the class Using the class

Recall the definition of distance method:

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

24

VISUALIZING INVOCATION

 Coordinate class is an object in
memory
 From the class definition

 Create two Coordinate objects
c = Coordinate(3,4)

orig = Coordinate(0,0)

6.100L Lecture 17

c
Type: Coordinate

x: 3
y: 4

Coordinate

self.x
self.y
__init__: some code
distance: some code

orig
Type: Coordinate

x: 0
y: 0

25

VISUALIZING INVOCATION

 Evaluate the method call
c.distance(orig)

 1) The object is before the dot
 2) Looks up the type of c
 3) The method to call is after the

dot.
 4) Finds the binding for
distance in that object class
 5) Invokes that method with

c as self and
orig as other

6.100L Lecture 17

c
Type: Coordinate

x: 3
y: 4

Coordinate

self.x
self.y
__init__: some code
distance: some code

orig
Type: Coordinate

x: 0
y: 0

26

HOW TO USE A METHOD

 Conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

c.distance(zero)

6.100L Lecture 17

 Equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0)

Coordinate.distance(c, zero)

Implementing the class Using the class

27

BIG IDEA
The . operator accesses
either data attributes or
methods.
Data attributes are defined with self.something

Methods are functions defined inside the class with self as the first parameter.

6.100L Lecture 17
28

THE POWER OF OOP

 Bundle together objects that share
• Common attributes and
• Procedures that operate on those attributes

 Use abstraction to make a distinction between how to
implement an object vs how to use the object
 Build layers of object abstractions that inherit behaviors

from other classes of objects
 Create our own classes of objects on top of Python’s

basic classes

6.100L Lecture 17
29

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

	PYTHON CLASSES�(download slides and .py files to follow along)
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE: �[1,2,3,4] has type list
	REAL-LIFE EXAMPLES
	ADVANTAGES OF OOP
	You write the class so you make the design decisions.
	Slide Number 9
	A PARALLEL with FUNCTIONS
	COORDINATE TYPE�DESIGN DECISIONS
	DEFINE YOUR OWN TYPES
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	WHAT is self?�ROOM EXAMPLE
	When defining a class, we don’t have an actual tangible object here.
	ACTUALLY CREATING �AN INSTANCE OF A CLASS
	VISUALIZING INSTANCES
	VISUALIZING INSTANCES:�in memory
	VISUALIZING INSTANCES:�draw it
	WHAT IS A METHOD?
	DEFINE A METHOD �FOR THE Coordinate CLASS
	HOW TO CALL A METHOD?
	HOW TO USE A METHOD
	VISUALIZING INVOCATION
	VISUALIZING INVOCATION
	HOW TO USE A METHOD
	The . operator accesses either data attributes or methods.
	THE POWER OF OOP
	cover-slides.pdf
	cover_h.pdf
	Blank Page

