PYTHON CLASSES

(download slides and .py files to follow along)

6.100L Lecture 17
Ana Bell



OBJECTS

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}

= Each is an object, and every object has:

* Aninternal data representation (primitive or composite)
e A set of procedures for interaction with the object

= An object is an instance of a type
e 1234 isaninstance ofan int
e "hello"isaninstanceofastr

2
6.100L Lecture 17



OBJECT ORIENTED
PROGRAMMING (OOP)

= EVERYTHING IN PYTHON IS AN OBIJECT (and has a type)
= Can create new objects of some type
= Can manipulate objects

= Can destroy objects
= Explicitly using del or just “forget” about them

= Python system will reclaim destroyed or inaccessible objects —
called “garbage collection”

3
6.100L Lecture 17



WHAT ARE OBJECTS?

= Objects are a data abstraction
that captures...

(1) An internal representation
= Through data attributes

(2) An interface for
interacting with object

= Through methods
(aka procedures/functions)

= Defines behaviors but
hides implementation

4
6.100L Lecture 17



EXAMPLE:
[1,2,3,4] has type list

. . ey
" (1) How are lists represented internally? & /%0
Does not matter for so much for us as users (private representation) @/7@4? 0/}72(@
Ney ¢
L = O,@* o

or L= — - -

= (2) How to interface with, and manipulate, lists?
* L[i], L[i:3], +
* len(), min(), max (), del(L[1])

* L.append(),L.extend(),L.count (), L.index (),
L.insert(),L.pop(),L.remove(),L.reverse(),
L.sort ()

" [nternal representation should be private

= Correct behavior may be compromised if you manipulate internal
representation directly

5
6.100L Lecture 17



REAL-LIFE EXAMPLES

= Elevator: a box that can change floors
= Represent using length, width, height, max_capacity, current_floor
= Move its location to a different floor, add people, remove people

= Employee: a person who works for a company
= Represent using name, birth_date, salary
= Can change name or salary

" Queue at a store: first customer to arrive is the first one helped

= Represent customers as a list of str names
= Append names to the end and remove names from the beginning

= Stack of pancakes: first pancake made is the last one eaten

= Represent stack as a list of str
= Append pancake to the end and remove from the end

6



ADVANTAGES OF OOP

= Bundle data into packages together with procedures that
work on them through well-defined interfaces

= Divide-and-conquer development
* Implement and test behavior of each class separately
* Increased modularity reduces complexity

= Classes make it easy to reuse code
* Many Python modules define new classes

* Each class has a separate environment (no collision on function
names)

* |Inheritance allows subclasses to redefine or extend a selected
subset of a superclass’ behavior

7
6.100L Lecture 17



BIG IDEA

You write the class so you
make the design decisions.

You decide what data represents the class.

You decide what operations a user can do with the class.



CREATING AND USING YOUR
OWN TYPES WITH CLASSES

= Make a distinction between creating a class and
using an instance of the class

= Creating the class involves
* Defining the class name
* Defining class attributes
* for example, someone wrote code to implement a list class

= Using the class involves
e Creating new instances of the class
* Doing operations on the instances
 forexample, L=[1,2] and 1en (L)

9
6.100L Lecture 17



A PARALLEL with FUNCTIONS

= Defining a class is like defining a function
= With functions, we tell Python this procedure exists

= With classes, we tell Python about a blueprint for this new data type
= |ts data attributes
= |ts procedural attributes

= Creating instances of objects is like calling the function
= With functions we make calls with different actual parameters

= With classes, we create new object tinstances in memory of this type

" 11=[1,2,3]
L2 =[5,6,7]

10
6.100L Lecture 17



COORDINATE TYPE
DESIGN DECISIONS

Can create instances of a
Coordinate object

11
6.100L Lecture 17

Decide what data elements
constitute an object

Ina 2D plane

A coordinate is defined by
an x and y value

Decide what to do with
coordinates

Tell us how far away the
coordinate is on the x or y axes
Measure the distance between
two coordinates, Pythagoras



DEFINE YOUR OWN TYPES

= Use the class keyword to define a new type

e
C\@S:\d\,{'\o(\ a((\e\\,\\q
de A\

class||Coordinateg (object]) :

#define attributes here

= Similar to de £, indent code to indicate which statements are
part of the class definition

" The word object means that Coordinate is a Python
object and inherits all its attributes (will see in future lects)

12
6.100L Lecture 17



WHAT ARE ATTRIBUTES?

= Data and procedures that “belong” to the class

= Data attributes
* Think of data as other objects/variables that make up the class
* for example, a coordinate is made up of two numbers

* Methods (procedural attributes)
* Think of methods as functions that only work with this class
* How to interact with the object

* for example you can define a distance between two coordinate
objects but there is no meaning to a distance between two list
objects

13



Implementing the class

DEFINING HOW TO CREATE AN INSTANCE OF A
CLASS

= First have to define how to create an instance of class

" Use a special method called __init__ toinitialize some
data attributes or perform initialization operations .\‘-\3\’\1‘;@0&
W
class Coordinate (object) : 6‘6’6@06&@
— NN
def init (self} |xval, yval)): o \Ncoox’/é
— — X
‘\(\06’&05 self.x |= xval \ ,a((\e\.e((\
eé\»a\((\(\-\(\s’@ self.y|= yval ° e&@}‘ e ot X
o) O \00 S \S e
€ oV WV e oW o3
\S ot 20 N® \2° @
~ 6@(50 63‘ O\)( ¢ NN
ol N o0 A\CRENTS
& QO
° 0

= self allows you to create variables that belong to this object

= Without self, you are just creating regular variables!

14
6.100L Lecture 17



Image © source unknown. All rights
\‘ reserved. This content is excluded from
Na our Creative Commons license. For more

. . (\\‘, S information., see https://ocw.mit.edu/
WHAT is self? Qo e v
XX
ROOM EXAMPLE o 00 ot
Se\‘\ CGSS\(\ ((\e\,\(\o
P
0 2
. . s .
= Think of the class definition as a 0 Now when you create ONE instance
blueprint with placeholders for (name it living_room), self becomes
actual items this actual object
= self has a chair * living_room has a blue chair
= self has a coffee table = |living_room has a black table
= self has a sofa = |iving_room has a white sofa
= Can make many instances using

< 3 | | |Ee=—==

i PR S A the same blueprint

COFFEE
TAALE

S0FA

6.100L Lecture 17


https://ocw.mit.edu/help/faq-fair-use/

BIG IDEA

When defining a class,
we don’t have an actual
tangible object here.

It’s only a definition.




Recall the __init__ method in the class def: ACT UA |_ LY C R EAT' N G

def init (self, xval, yval):

self.x = xval AN INSTANCE OF A CLASS

self.y = yval

X
’ . \0'\8(’
" Don’t provide argument for self, Python e \
does this automatically S
c = |Coordinate (3,4) Ocooi 5 o0
WO O
. ' . ) 356\ &0&
origin = Coordinate (0,0) 9‘\\6/

» Data attributes of an instance are called instance variables

= Data attributes were defined with self.XXX and they are
accessible with dot notation for the lifetime of the object

= All instances have these data attributes, but with different values!

. 60\' QCQ’SS
print (c.x|) Se«\"' (\&o’do,\
L\ e
: . . X2V ALY
print (origin.x) o ,aw\\)e ¢
) C

6.100L Lecture 17



VISUALIZING INSTANCES

= Suppose we create an instance of
a coordinate

c = Coordinate (3,4) Type: Coordinate

x: 3

= Think of this as creating a v: 4

structure in memory

= Then evaluating
C.X

looks up the structure to which
c points, then finds the binding
for x inthat structure

18
6.100L Lecture 17



VISUALIZING INSTANCES:
In memory

= Make another instance using
a variable

a =20 Type: Coordinate

. . xX: 3
orlg = Coordinate(a, a) v: 4
0rig.x 0

= All these are just objects in

Type: Coordinate

memory! x: 0
y: 0O

= We just access attributes of
these objects

19
6.100L Lecture 17



VISUALIZING INSTANCES:

' 2
draw it o
“ng \NQQ
e fa’ﬂ.e
3\ (6§\
o°
é&$ class Coordinate (object) :
i é6ﬂ def _ init_(self, xval, yval):
‘ / ° self.x = xval
x/// self.y = yval
(3,4)
C

c = Coordinate(3,4)
origin = Coordinate (0,0)
print (c.x)

print (origin.x)

N \
2 Sé&ﬂ ¥93C6f;;

) - IR =)
(0, 0) O 08 e
origin \d\ec’ﬁ

o)

20
6.100L Lecture 17



WHAT IS A METHOD?

" Procedural attribute
= Think of it like a function that works only with this class

* Python always passes the object as the first argument

= Convention is to use self as the name of the first argument of all
methods

21
6.100L Lecture 17



Implementing the class

DEFINE A METHOD
FOR THE Coordinate CLASS

class Coordinate (object) :

(o)
0
def  1nit (self, xvakw yval) : ‘Qwéb &gé ,@ﬂ
€7 N el o 5O
self.x = xval m“’-\d§ et dﬁ* s*o
0 o 00 g0t gaf® 2T
1f.y = 1 0T 007 et (O x0?
Se .Y yval X 6 e 6(\0 0‘6‘\0 3’&‘\0(\
. © ¢ ot
def distance (self|, [other]) : o° 3ot ©
x diff sg = (self.xFother.x|) **2

y diff sgq = (self.y-other.y)**2
return (x diff sqg + y diff sqg)**0.5

= Other than self and dot notation, methods behave just

like functions (take params, do operations, return)

22
6.100L Lecture 17



HOW TO CALLA METHOD?

=" The “.” operator is used to access any attribute
= A data attribute of an object (we saw c . x)

= A method of an object

= Dot notation

<object variable>.,<method>

<parameters>

N e
co O \
TSR RIS e©
RS 0™ o S NN
el ‘ ‘\(\e ((\e
g
= Familiar?

my list.append(4)
my list.sort ()

23
6.100L Lecture 17




Using the class

Recall the definition of distance method: H OW TO U S E A I\/I ET H O D

def distance(self|, |[other):

x diff sq = (self.x-other.x)**2
y _diff sq = (self.y-other.y)**2
return (x diff sq + y diff sq)**0.5

Using the class:

c = Coordinate(3,4)

orig = Coordinate (0,0) 6@\/&
o°®

print (. distancel(oriq|)) (\o‘.\(\do‘oe )
X

C’a\\ ot e’ﬁe(s Q\.\e6
Q’ﬂ." QO ((\e (o -c:.\((\
O B0 0 o0 0% 451
«\e‘\\ e \&

= Notice that sel f becomes the object you call the
method on (the thing before the dot!)

24
6.100L Lecture 17



VISUALIZING INVOCATION

= Coordinate class is an object in

memory self.x
oo d; self.y
* From the class definition Coordinate init : some code

distance: some code

= Create two Coordinate objects

Type: Coordinate
c = Coordinate(3,4) x: 3
y: 4
orig = Coordinate (0, 0)
Type: Coordinate
x: 0
y: 0

25
6.100L Lecture 17



VISUALIZING INVOCATION

= Evaluate the method call

| clldistance(oriqg) self.x
Coordinate — ISR nts

= 1) The object is before the dot R G

= 2) Looks up the type of ¢ fEs {[CooRdinGe

. 3L;Fhe method to call is after the y: 4

Type: Coordinate

= 4) Finds the binding for . 8
distance inthat object class

= 5) Invokes that method with
c asself and
origasother

26
6.100L Lecture 17



Using the class

HOW TO USE A METHOD

= Conventional way = Equivalent to
c = Coordinate(3,4) c = Coordinate (3,4)
zero = Coordinate (0, 0) zero = Coordinate (0, 0)
.distance zero|) Coordinatel/distance|(c, zerod)
xO ot ot < 20
0\0\ (\3 ‘\\06 ((\e‘e 6’&,%’ a«\e &O’\ (\3((\ 06 ‘ C\\)d\ ‘\\06
N e 2 (S ° N o ot N e ™ g
C e& ®) "o Q C\ \)6\(\ < Q\ C\a‘: \o,\ec,’ﬂ. « e‘e(Sv N ,&\\e 5@X
xS S 0 0 ° N o k0@ x0®
¢ (A0 XN \S \'\ed W% ,\(\axe Q \o\ec’ﬁ ] RIN
o - aet o0 (,00(6 00(\'(69

27
6.100L Lecture 17



BIG IDEA

The . operator accesses
either data attributes or
methods.

Methods are functions defined inside the class with sel f as the first parameter.



THE POWER OF OOP

= Bundle together objects that share
 Common attributes and
* Procedures that operate on those attributes

= Use abstraction to make a distinction between how to
implement an object vs how to use the object

= Build layers of object abstractions that inherit behaviors
from other classes of objects

= Create our own classes of objects on top of Python’s
basic classes

29
6.100L Lecture 17



MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

30


https://ocw.mit.edu
https://ocw.mit.edu/terms

	PYTHON CLASSES�(download slides and .py files to follow along)
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE: �[1,2,3,4] has type list
	REAL-LIFE EXAMPLES
	ADVANTAGES OF OOP
	You write the class so you make the design decisions.
	Slide Number 9
	A PARALLEL with FUNCTIONS
	COORDINATE TYPE�DESIGN DECISIONS
	DEFINE YOUR OWN TYPES
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	WHAT is self?�ROOM EXAMPLE
	When defining a class, we don’t have an actual tangible object here. 
	ACTUALLY CREATING �AN INSTANCE OF A CLASS
	VISUALIZING INSTANCES
	VISUALIZING INSTANCES:�in memory
	VISUALIZING INSTANCES:�draw it
	WHAT IS A METHOD?
	DEFINE A METHOD �FOR THE Coordinate CLASS
	HOW TO CALL A METHOD?
	HOW TO USE A METHOD
	VISUALIZING INVOCATION
	VISUALIZING INVOCATION
	HOW TO USE A METHOD
	The . operator accesses either data attributes or methods.
	THE POWER OF OOP
	cover-slides.pdf
	cover_h.pdf
	Blank Page





