
Quantum Field Theory I (8.323) Spring 2023
Assignment 9

Apr. 11, 2023

• Please remember to put your name at the top of your paper.

Readings

• Peskin & Schroeder Chap. 3

Notes: conventions and some useful formulae

1. Conventions of γ matrices:

{γµ, γν} = 2ηµν (1)

and
(γµ)† = γ0γµγ0 . (2)

2. The Dirac equation has the form

(γµ∂µ −m)ψ = 0 (3)

and the action is given by

S = −i
∫
d4x ψ̄(/∂ −m)ψ . (4)

3. A spinor ψ transforms under a Lorentz transformation Λ as

ψ′α(x′) = Sα
β(Λ)ψβ(x), x′µ = Λµ

νx
ν (5)

with
Λµ

ν =
(
e−

i
2
ωλρJ λρ

)µ
ν , S(Λ) = e−

i
2
ωλρΣλρ , (6)

and (
J λρ

)µ
ν = i

(
ηλµδρν − ηρµδλν

)
, Σλρ =

i

4
[γλ, γρ] . (7)

Also note
S(Λ)γµS−1(Λ) = (Λ−1)µνγ

ν . (8)
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4. us(~k)eik·x and vs(~k)e−ik·x, s = 1, 2 denote respectively a basis of positive and
negative energy solutions to the Dirac equation, with k2 = −m2.

5. We normalize us(~k) and vs(~k) as

ūr(~k)us(~k) = 2miδrs, v̄r(~k)vs(~k) = −2miδrs . (9)

us(~k) and vs(~k) are orthogonal

ūr(~k)vs(~k) = 0, v̄r(~k)us(~k) = 0 . (10)

6. With normalization (9), we have

u†r(
~k)us(~k) = 2Eδrs, v†r(

~k)vs(~k) = 2Eδrs , (11)

and the orthogonal relations (10) can also be written as

u†r(
~k)vs(−~k) = 0, v†r(

~k)us(−~k) = 0 . (12)

These relations are valid for any choices of basis and any representation of
gamma matrices once the normalizations are fixed as in (9).

7. With normalization (9), one can also show that

Λ+(~k) =
∑
s=1,2

us(~k)⊗ ūs(~k) = i(i/k +m), (13)

Λ−(~k) =
∑
s=1,2

vs(~k)⊗ v̄s(~k) = −i(−i/k +m) . (14)

8. An operator solution ψ(x) to the Dirac equation can be expanded as

ψ(x) =

∫
d3~k

(2π)3

1√
2ω~k

[
a

(s)
~k
us(~k)eik·x +

(
c

(s)
~k

)†
vs(~k)e−ik·x

]
. (15)

where the operators a
(s)
~k
, (a

(s)
~k

)† and c
(s)
~k
, (c

(s)
~k

)† satisfy the relations

{a(r)
~k
, (a

(s)
~k′

)†} = {c(r)
~k
, (c

(s)
~k′

)†} = δrs(2π)3δ(3)(~k − ~k′), (16)

{a(r)
~k
, a

(s)
~k′
} = {c(r)

~k
, c

(s)
~k′
} = 0 . (17)

9. In the chiral representation, the gamma matrices are given by

γ0 =

(
0 i
i 0

)
, γi =

(
0 −iσi
iσi 0

)
. (18)
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10. In this course we will not be able to talk about applications of Majorana
fermions, which have played important roles in models for neutrinos. During
the last decade, it has also received wide interests in condensed matter physics
and quantum computing as a possible avenue for topological quantum comput-
ing. Ettore Majorana came up with the idea of Majorana fermions in 1937, at
the age of 31. Less than one year later he mysteriously disappeared; he boarded
a ship from Palermo to Naples, but never got off it.

Fermi once said:

“There are several categories of scientists in the world; those of second or third
rank do their best but never get very far. Then there is the first rank, those
who make important discoveries, fundamental to scientific progress. But then
there are the geniuses, like Galilei and Newton. Majorana was one of these.”

You can read more about Majorana at:

http://www.ccsem.infn.it/em/EM genius and mystery.pdf.

Problem Set 9

1. Some identities (10 points)

Define γ5 as
γ5 = iγ0γ1γ2γ3 . (19)

Show that it has the following properties:

(a) (γ5)† = γ5 and (γ5)2 = 1.

(b) {γ5, γµ} = 0 and Tr γ5 = 0.

2. Feynman propagator for Dirac spinors (10 points)

Show that the Feynman Green function

Dαβ
F (x− y) ≡

〈
0|Tψα(x)ψ̄β(y)|0

〉
= i(/∂ +m)αβGF (x− y) (20)

where GF is the Feynman propagator for a free complex scalar of the same mass
m.

3. Chiral and Majorana fermions (50 points)

In this problem we consider the chiral representation (18), and write a Dirac
spinor ψ in terms of two chiral spinors ψL and ψR as

ψ =

(
ψL
ψR

)
. (21)
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(a) Show that under a rotation with parameters ωij = εijkθk, ψL,R transform
as

ψ′L(x′) = e
i
2
~θ·~σψL(x), ψ′R(x′) = e

i
2
~θ·~σψR(x) . (22)

(b) Show that under a boost with parameters ω0i = βi, ψL,R transform as

ψ′L(x′) = e−
1
2
~β·~σψL(x), ψ′R(x′) = e

1
2
~β·~σψR(x) . (23)

(c) The Lagrangian density for the Dirac theory contains a mass term of the
form

L = · · ·+ imψ̄ψ = · · ·+ im(ψ†LψR + ψ†RψL) . (24)

Using the transformations of parts (a) and (b) show that the above mass
term is Lorentz invariant, while a term of the form

mψ†LψL or mψ†RψR (25)

is not.

(d) The discussion in part (c) might give the impression that it is not possible
to write down a mass term with ψL or ψR alone. In fact, it is possible,
with a bit more sophistication. For this purpose, first show that

σ2~σσ2 = −~σ∗ . (26)

From the above equation show that σ2ψ∗L transforms under Lorentz trans-
formation in the same way as ψR.

(e) From the observation of part (d), construct a mass term using ψL alone,
which is both Lorentz invariant and real. (This mass term is called the
Majorana mass term for reasons which will be clear in problem 4.)

Show that the mass term is identically zero if ψL consists of ordinary
functions, while it is nonzero if ψL are anti-commuting variables.

(f) Now write down a Lorentz invariant full action using ψL alone which in-
cludes both kinetic and mass terms. Write down equations of motion.

(g) Does the theory of part (f) has a conserved charge? Argue such a theory
can only describe neutral particles (thus cannot be a theory of electron).

4. Majorana fermions (10 points)

In the Majorana representation, γµ are real and thus ψ can be chosen to be
real. Such a spinor is call a Majorana spinor. This has important physical
consequences. Upon quantization, being real, a Majorana particle should not
have an anti-particle (or equivalently it is its own anti-particle).
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We discussed in lecture that the concept of a Majorana spinor can be generalized
to any representation of γ, if we could find a matrix B satisfying

BγµB−1 = γµ∗, (27)

and the Majorana condition is

ψ∗ = Bψ . (28)

(a) In lecture we showed that in the chiral representation (18) we can choose
B = γ2. Solve the Majorana condition (28) in the chiral representation.
Show that in this representation a Majorana spinor ψ can be expressed in
terms of ψL alone.

(b) Plug in the expression (in terms of ψL) for Majorana ψ you obtained in
part (a) into the Dirac action. Show that it reduces to the action you
found in part 3(f)! (That is why the mass term you found in part 3(e) is
called the Majorana mass term.)
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