8.323 Problem Set 9 Solutions

April 18, 2023

Question 1: Some Identities (10 points)
Define 7° as

A5 = 0y 23
Show it has the following properties: (a) (v°)" =~° and (7°)? =1
We compute:
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= — (=D’ = —i(=1)% 0y =
In the 2nd equality we use that (y°)2 = —1. In the 4th equality we use the anticommutation properties
of the gamma matrices.

Furthermore,
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In the 3rd equality we use (y*)? = %{V“,'y" } =1 (no sum over p).

(b) {°,7*} =0 and Try> = 0
This is not difficult to compute for each = 0,1, 2,3. Using the anticommutation relations, we have:
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Furthermore,
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Try° = Tr(v°7%0) = §(Tr(’v57°'yo) + Tr(107°7?))
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= ~(Tr(v"v%70) + Tr(v"9° %)) = s Tr({*, 710} = 0
2 2

In the 3rd equality we use the cyclicity of the trace, and in the last equality we use the previous result
that {7°,7°} = 0. Note that instead of 4* we could have chosen any * matrix.



Question 2: Feynman Propagator for Dirac Spinors (10 points)
Show that the Feynman Green function

D3 (@ = y) = (0| T¢a(@)ts(y)|0) = i(@ + m)asGr(z —y)

where G is the Feynman propagator for a free complex scalar of the same mass m.
We start by computing the Wightman function using the mode expansion of .
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In the 3nd equality we use the identity
Zu =A} s(k) = i(if 4+ m)ap
In the last equality we identify G4 (z —y) = gil: ik (2 =),
Similarly, we have:
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Now we compute the Feynman Green’s function:

D3 (e — y) = 0(2° — ) (014 ()97 (4)[0) — 6 — 2°) (01" (1) (2)]0)
= 0(a” = y")i(@y +m)* Gy (z —y) +0(y" — 2)i(@, +m)* Gy — )
= i(J +m)*Cr(z —y) - 2(3 0(2° — )Gy (x —y) —i(@,0(y° — 2°)) Gy — )
= i(Ps +m)*PGr(z —y) — i7" (6(z° =) G (z —y) = 6(2° = ¢*)G1(y — @)
= i(d, +m)*Gr(z - y)
In the second last line we use that 9,00(2® — %) = —0,00(y° — 2°) = §(2° — ¢%). In the last line, we use

that G4+(0,x —y) = G4(0,y — x), which can easily be seen from the formula for G4 above. This leaves
us with the resired result.



Question 3: Chiral and Majorana Fermions. (50 points)
We consider the chiral representation, and write a Dirac spinor in terms of 2 chiral spinors ¥y, ¥g as

_ 1/1L>
4 <¢R
a) Show that under a rotation with parameters w;; = €;10%, ¥ g transform as
] j b
Vi (a') = e2® 7y (a), Yp(a) = 3%y (x)

A Dirac fermion transforms as

In the chiral basis,

wij _ L [( 0 id 0 dol\]_i[(lo",6’] 0
T4 |\ict 0 ) \io? 0 )] 4 0 (0%, 0]

Therefore for a rotation,

Yr(al) =e
Ur(z') =e

wij[Uian]¢L(x) = e%%jk%(?iqﬂﬂl)wL(@ = e%O'GQpL(;p)

willr' () = e29%p(x)
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(b) Show that under a boost with parameters wo; = 3;, ¥, g transform as

W (2') = e3P (a), Wr(a!) = et 1P p(x)

Proceeding analogously, in the chiral basis,
0i _ L [0 i 0 do’\]_ ifo" 0\ _ <o
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Therefore for a boost,

(c) The Lagrangian density fo the Dirac theory contains a mass term of the form

L= timpp = —m@r + i)

Using the transformations in (a), (b), show that the mass term is Lorentz invariant, while a term of
the form mszLwL or mw};z/JR is not.
We expand the Lagrangian into chiral spinors, in the chiral representation:

e =it = my =ik (] o) (g, T ) (12)
= ith} oDy, + i} 51O, — m(bl R + W hr)



Under a rotation, (¢, 1¥r) — (eéo"’@bL, eée"’wR), and (wTL,Q/)}L%) — (1%26_%0'0,14};6_%9'0) by Hermiticity.
The mass terms are both invariant. Under a boost, (¢r,v¥r) — (€727, et2P7¢yp), and (1%,1”%) —
(wze_%ﬁ 7, ¢};e+%ﬁ ‘7). The mass terms are again invariant, establishing full Lorentz invariance.
However, under a boost wTL@Z)L or M;@Z) r are not invariant:

Wiy = le Py, whip = Yhe™Popp

(d) The discussion in (c¢) may give the impression that it is not possible to write down a mass term with
1, or i alone. This is possible, with some more sophistication. For this purpose, first show that

o2Go? = —G*

From this, show that 021/12 transforms under Lorentz transformations in the same was as ¥g.

We can check directly, either by explicit multiplication or using {o*, 07} = 2§", that
o2olo? = ol = —(al)*, 720302 = —03 = —(o
Now consider the transformation properties of 021/}2.
Under rotations,
o* P (o)) = 0*(e297) Y (2) = o%e 297 %0y (z) = €277 Py (w)

In the last equality we make use of the above identity. This can be made more precise by expanding the
exponential as a power series, inserting 1 = 0202 between powers of o, using said identity, and resumming

the series.
Under boosts,

o2 (') = o (e POyt (o) = o%e TP o202 (a) = T3P oy (o)
Therefore, Usz transforms like 9 g.

(e) From the observation in (d), construct a mass term using 1, alone, which is both Lorentz invariant
and real. This is called the Majorana mass term. Show that it is identically zero if v, consists of
ordinary functions, while it is non-zero if ¢, are anticommuting variables.

Consider the mass term mzﬁ}a%ﬁi. This is Lorentz invariant, as we showed in (c) that wTLz/) R is invariant,

and in (d) that J2wz transforms in the same way as 1¢g. To make it real, we add its Hermitian conjugate,

which must also be Lorentz invariant. Therefore, consider

1 * 1 * 0\ %k *
Lo = —3mufo*} — 5 (mofo™vi)" = — T (6L} +vlo™vr)

To see whether this vanishes, we write the second term in components:

VLoPr = ¥1a(0®) 0] = (~1)VL(0°) Wra = —(~1) WL (0% e = —(—1)PLo%r
Here we introduce the notation (—1)¢, where € = 0 for regular functions, and € = —1 for Grassmann
functions. When ¢ = 0 we see that the term is the negative of itself, and vanishes. The same holds for its
Hermitian conjugate, thus the Lagrangian vanishes identically. If the field is Grassmann, we get no such
constraint.

(f) Now write down a Lorentz invariant full action using 17, alone, including both kinetic and mass terms.
Write down equations of motion.



Consider now the Lagrangian
. m .
L= ipfot b, — 5 (WLoV] + vl o L)
Treating 17, and 9} as independent variables, the equations of motion are

it Oyuabr, — ma*i . =0

—idl ot — myplo? =0

(g) Does the theory of part (f) have a conserved charge? Argue that such a theory can only describe
neutral particles.

The theory has the usual conserved charges corresponding to spacetime and Poincaré symmetry. However,

there are no internal symmetries, as the mass term is not invariant under a U(1) rotation ¢ — ™.

Therefore, there is no U(1) conserved charge, and particle number is not conserved. This cannot describe

charged particles, as it would violate charge conservation.



Question 4: Majorana Fermions (10 points)

In the Majorana representation, v* are real, and thus 1 can be chosen to be real. Such a spinor is called a
Majorana spinor. This has important physical consequences. Upon quantization, being real, a Majorana
particle should not have an antiparticle (or equivalently, it is its own antiparticle).

We discussed in lecture that the concept of a Majorana spinor can be generalized to any representation
of 7. If we can find a matrix B satisfying

By"B™h = ()"
the Majorana condition is
Yt = By

(a) In lecture we showed that in the chiral representation we can choose B = 42. Solve the Majorana
condition in the chiral representation. Show that in this representation a Majorana spinor i can be
expressed in terms of 7, alone.

For B = ~2, the Majorana condition in the chiral representation is

. 0 _iUQ wL . W o
po= (e 5 ) (i) = ()

This gives us ¢} = —io?r, and g = ioc?y. Therefore g = —i(0?)*} = io?y}, and we can write v

in terms of purely ¢:
_( YL
o= (it

(b) Plug in the expression (in terms of 1) for the Majorana spinor ¢ from (a) into the Dirac action.
Show it reduces to the action in part 3(f).
The Dirac Lagrangian becomes:

L = —itp(@ — m)p = i} o0 pr, + i Oubr — m(Pl r + Yiar)
= i} P Oupr, + i) 025 a0l — im(y] o) — Yl oy

To write this in a more familiar form we integrate the second term by parts and discarding the boundary
contribution.

Wl o5 a0, = —i(0u])a?a oMy = —i((0uy] )%t ay;)T = il (o%5+ ) T oy
= iw2(026“02)*8u¢L = MLJMWL

In the third equality, we pick up a sign when we take the transpose because the fermionic fields anticom-
mute. In the 4th equality we use the Hermiticity of the o#’s. In the last equality we use the relation from
3(d) that (o26+0?)* = ot

Therefore, the Lagrangian becomes:
L =2 o"Opr, — im (Y] o™y} — L o)

This is identical to the Majorana action from problem 3(f) with the field redefinition 7, — v/2e~""/%4)y.
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