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1 Lecture 1 (Notes: K. Venkatram)

1.1 Smooth Manifolds

Let M be a f.d. C° manifold, and C*°(M) the algebra of smooth R-valued functions. Let T' = T'M be
the tangent bundle of M: then C°°(T) is the set of derivations Der(C*°(M)), i.e. the set of morphisms
X € End(C*(M)) s.t. X(fg) = (Xf)g+ f(Xg). Then C(T) is equilled with a Lie bracket [,] via the
commutator [X,Y]f=XYf-YX/f.

Note. Explicitly, [X,Y] can be obtained as lim;_,o Y_Ftlg(y, where Fly € Diff(M) is the flow of the vector
field on M.

Definition 1. The exterior derivative is the mapping
E k+1
d:Cc> (/\T) — > (/\ T*)

(Xo,...,Xk)I—>Z(—l)iXip(Xo,...,Xi,...,Xk) (1)

i

pl—)

3 (-1)p(Xs, X, Xoo - Xy X X

i<j

Since [,] satisfies the Jacobi identity, d* = 0, i.e.

k—1 k k+1
.._>00°</\T*>icm</\T*>icm</\T*>_>... (2)

is a differential complex of first-order differential operators. Set Q¥(M) = C=(A" T*). Letting my ={g—
fg} denote multiplication by f, one finds that [d, m|p = df A p, thus obtaining a sequence of symbols

k—1 k k+1

N1 iy AT " N1 (3)

which is exact for any nonzero 1-form n € C°°(T*). Thus, Q* is an elliptic complex. In particular, if M is

compact, H*(M) = Xt dlo* s finite dimensional.
’ Im d\Q*,l

Remark. d has the property d(a A 8) = da A dB + (—1)9% *a A dB. Thus, (Q°(M),d, A) is a differential
graded algebra, and H*(M) = @ H*(M) has a ring structure (called the de Rham cohomology ring).

We would like to express [X,Y] in terms of d. Now, a vector field X € C°°(T') determines a derivation
ix Q8 (M) — Q"L (M), p e [(Ya,. .., Ye) = p(X, Y7, .., YR (4)
of Q*(M). ix has degree —1 and order 0.
Definition 2. The Lie derivative of a vector field X is Lx = [ix,d].
Note that this map has order 1 and degree 0.

Theorem 1 (Cartan’s formula). i;x y] = [[ix,d],iy]



One thus obtains [,] as the derived bracket of d. See Kosmann-Schwarzbach’s “Derived Brackets” for
more information.

Problem. Classifly all derivations of Q°(M), and show that the set of such derivations has the structure of
a Z-graded Lie algebra.

One can extend the Lie bracket [,] on vector fields to an operator on all C*° (A" T).

Definition 3. The Shouten bracket is the mapping

p q ptq—1
[]:C>® </\T> x O (/\T) — > ( A T)
(Xi A AXp VI A AYy) = > ()M [X VI AXI A AXi A AXp AV A AV A A Y
()
with the additional properties [X, f] = —[f, X] = X(f) and [f,g] = OVf,g € C>°(M).
Note the following properties:
° [P7 Q] _ _(_1)(deg P—1)(deg Q_l)[Q,P]
e [P,QAR]=[P,Q] AR+ (—1){des P=1)deg Q) A [P, R]
o [P[Q R]] = [[P,Q], R] + (~1)(@e P=Dldes @=D[Q, [P, R]]

Thus, we find that C*°(AT) has two operations: a wedge product A, giving it the structure of a graded
commutative algebra, and a bracket [,], giving it the structure of the Lie algebra. The above properties
imply that it is a Gerstenhaber algebra.

Finally, for P = X; A--- A X, define i, = ix, o---oix, . Note that it is a map of degree —p

Problem. Show that [[ip, d]ig] = (—1)(dee P=Ddes @=1)j , o

1.2 Geometry of Foliations

Let A C T be subbundle of the tangent bundle (distribution) with constant rank k.

Definition 4. An integrating foliation is a decomposition M = | |S of M into “leaves” which are locally
embedded submanifolds with TS = A.

Note that such leaves all have dimension k.
Theorem 2 (Frobenius). An integrating foliation exists < A is involutive, i.e. [A, A] C [A].

A distribution is equivallently determined by Ann A C T* or the line det Ann A C Q"~*(M). That is,
for locally-defined 1-forms (61,...,0,—x) s.t. A =), Ker 0;, @ =01 A--- A6, generates a line bundle. If A
is involutive, ixiydQ = [[ix,d],iy]Q2 = ijx y)2 = 0 for all X,Y s.t. ixQ =iyQ = 0. That is, d2 =nAQ
for some 1-form n € Q.

Remark. More generally, let A C T be a distribution on non-constant rank spanned by an nvolutive C* (M)
module D C C*°(T) at each point. Sussmann showed that such a D gives M as a disjoint union of locally
embedding leaves S with T'S = A everywhere.



1.3 Symplectic Structure

Definition 5. An symplectic structure on M is a closed, non-degenerate two-form w : T — T*.
Let (M,w) be a symplectic manifold: note that det w € det T* @ det T*.
Problem. Show that det w = Pf w ® Pf w, where Pf is the Pfaffian.

Theorem 3 (Darboux). Locally, 3C*° functions pi1,...,Pnsq1,---,qn S-t. {dp;,dg;} span T* and w =
S dp; Adg;. That is, (M,w) is locally diffeomorphic to (R?™,>" dx; A dy;).

Moreover, by Stokes’ theorem, one finds that [, wA---Aw#0 = [w]" # 0 for all i.

Corollary 1. Neither S* nor S' x S have a symplectic structure.

2 Lecture 2 (Notes: A. Rita)

2.1 Comments on previous lecture
(0) The Poincaré lemma implies that the sequence
L o CR (AR L oo (AR —L oo (ARFIT)
is an exact sequence of sheaves, even though it is not an exact sequence of vector spaces.

(1) We defined the Lie derivative of a vector field X to be Lx = [tx,d]. Since tx € Der™*(Q(M)) and
d € Der™ (Q(M)), we have

[tx,d] =txd— (—1)(1)‘(_1)dLX =1xd+dix
(2) w:V — V* w* = —w If w is an isomorphism, then for any X € V we have w(X, X) = 0, so that
X € X¥ =Ker w(X) =w 'Ann X
Thus, we have an isomorphism w* : X*/(X) =, Amn X/ (wX) and

Am X (X)" (X“’)

(WwX) (X2 \(X)

Then using induction, we can prove that V' must be even dimensional.

2.2 Symplectic Manifolds

(continues the previous lecture)

For a manifold M, consider its cotangent bundle T*M equipped with the 2-form w = df, where 6 €
QY (T*M)is such that 0,(v) = a(m.(v)). In coordinates (z',...,2" a1,...,a,), we have § = Y, a;dx’ and
therefore df = )", da; A dx’, as in the Darboux theorem. Thus, T*M is symplectic.

Definition 6. A subspace W of a symplectic 2n— dimensional vector space (V,w) is called isotropic if w|w =
0.

W is called coisotropic if its w-perpendicular subspace W* is isotropic.

W is called Lagrangian if it is both isotropic and coisotropic.



There exist isotropic subspaces of any dimension 0, 1,...,n, and coisotropic subspaces of any dimension
n,n~+1,...,2n. Hence, Lagragian subspaces must be of dimension n.
We have analogous definitions for submanifolds of a symplectic manifold (M, w):

Definition 7. L 4, (M,w) is called isotropic if f*w = 0. When dim(L) = n it is called Lagrangian.

The graph of 0 € C*° (M, T*M), which is the zero section of T* M, is Lagrangian.

More generally, I'¢, the graph of £ € C*°(M,T*M) is a Lagrangian submanifold of T*M if and only if
d¢ = 0. It is in this sense that we say that Lagrangian submanifolds of T*M are like generalized functions:
f € C>(M) gives rise to df, which is a closed 1—form, so I'qy C T*M is Lagrangian.

Proposition 1. Suppose we have a diffeomorphism between two symplectic manifolds, ¢ : (My,wo) —
(My,w1) and let w; : My x My — M;, i = 0,1 be the projection maps.
Then, Graph(p) C (Mo x My, mjwo — mjwi) is Lagrangian if and only if ¢ is a symplectomorphism.

2.3 Poisson geometry

Definition 8. A Poisson structure on a manifold M is a section m € C*°(A*(TM)) such that [r,7] = 0,
where [-, -] is the Shouten bracket.

Remark. [r,7] € C®(A3(TM)), so for a surface (2, all 7 € C®(A%(TM)) are Poisson.
This defines a bracket on functions, called the Poisson bracket:

Definition 9. The Poisson bracket of two functions f,g € C*°(AY(TM)) is

{f,9} =m(df,dg) = (df Ndg) = [[m, f], 4]

Proposition 2. The triple (C*°(M),-,{,}) is a Poisson algebra, i.e., it satisfies the properties below. For
f,9.h € C=(\UTM)),

o Leibniz rule {f,gh}t ={f, 9} h+ g{f, h}
o Jacobi identity: {f,{g,h}} + {g,{h, f}} +{h,{f,9}} =0

8/\8

Problem. Write {f, g} in coordinates for m = 7% 575 A 575.

A basic example of a Poisson structure is given by w™!, where w is a symplectic form on M, since
whw!]=0sdv=0 (6)
Problem. Prove @ by testing dw(Xy, X4, Xp), for f,g,h € C°(M).

Poisson manifolds are of interest in physics: given a function H € C°°(M) on a Poisson manifold (M, ),
we get a unique vector field Xy = n(dH) and its flow Flg(H. H is called Hamiltonian, and we usually think
about it as energy.

We have Xy (H) = n(dH,dH) = 0, so H is preserved by the flow. What other functions f € C*(M)
are preserved by the flow? A function f € C°°(M) is conserved by the flow if and only if Xg(f) = 0,
equivalently {H, f} =0, f commutes with the Hamiltonian.

If we can find k conserved quantities, Hy = H, Hy, Ha, ..., Hy such that {Hy, H;} = 0, then the system
must remain on a level surface Z = {z : (Hy,..., Hy) = ¢} for all time. Moreover, if {H;, H;} for all ¢, j
then we get commutative flows F’ l}HY . If Z is compact, connected, and k = n, then Z is a torus T", and the
trajectory is a straight line in these coordinates. Also, T™ is Lagrangian.



Problem. Describe the Hamiltonian flow on T*M for H = «* f, with f € C*°(M) and 7 : T*M — M.
Show that a coordinate patch for M gives a natural system of n commuting Hamiltonians.

Let us now think about a Poisson structure, m : T* — T and consider A = Imw. A is spanned at each
point = by 7(df) = X, Hamiltonian vector fields. The Poisson tensor is always preserved:

LXfW = [ﬂ—?Xf} = [7Ta [7‘—7 f]] = [[W’ﬂ ’f] + (_1)1.1 [Wv [Wa fH = - [777 ["Tv fH
- LXfﬂ' =0

If Ay = (X4,,...,Xy,), then Fl_t,é1 0...0 Fl%k (xg) sweeps out S 3 zy submanifold of M such that
TS = A.
Example (of a generalized Poisson structure). Let M = g*, for g a Lie algebra, [,-] € A%g* ® g. Then
TM =M x g* and T*M = M x g, and also A2(TM) = M x A%g, so [-,] € C®°(A*Tg*).

Given f1, fo € C°°(M), their Poisson bracket is given by {f1, fo} (x) = ([df1, df2] , x).

For f,g € g linear functions on M, we have

X¢(9) = ([f,9],7) = (adyg,z) = (g, —ad}z)

Thus Xy = fad;‘l, so the the leaves of A = Im7 are coadjoint orbits. If S is a leaf, then

0 — N§f —T*g —T|s —0

T"|s

is a short exact sequence and we have an isomorphism 7, : T*S = =3 = TS, which implies that the leaf
S is symplectic.

Given f,g € C*(S), we can extend them to f,.geCc™ (M). The Poisson bracket {f,g} is independent
of choice of f, g, so {f,9}.. = {f,g} is well defined.

Therefore, giving a Poisson structure on a manifold is the same as giving a “generalized” folliation with
symplectic leaves.

When 7 is Poisson, [, 7] = 0, we can define
dp = [10,-] : C°(ANFT) — C°(AFTIT)
Note that [r, ] is of degree (2 — 1), so it makes sense to cal it d,. Also,
dz(A) = [m, [, A]] = [[r, 7], A] =[x, [r, A]] = — [m, [r, A]]

™
—=d>=0
Thus, we have a chain complex

s C®(AFTLT) L oo (ART) L oo (AR LT —

Moreover, if my denotes multiplication by f € C* (M),

[dr,ms] = de(fY) = fdatp = [, fb] = flm, ] = [m, fIN Y = v Ao

But for any £ € T, € £ 0, (tem)A : AFT — AFHLT is exact only for tem # 0. So, if 7 is not invertible, d
is not an elliptic complex, and the Poisson cohomology groups, H*(M) = Ker dy|sxr/Im dy|sx-17 could be
infinite dimensional on a compact M.

Let us look at the first such groups:

HY(M)={f:d.f =0} ={f: X; = 0} = {Casimir functions, i.e. functions s.t.{f, g} = 0 for all g}
HX(M)={X:d,X =0} /Im d, = {infinitesimal symmetries of Poisson vector fields} /Hamiltonians
H2(M) = {P € C*°(A°T) : [z, P] = 0} = tangent space to the moduli space of Poisson structures



3 Lecture 3 (Notes: J. Bernstein)

3.1 Almost Complex Structure

Let J € C>°(End(T)) be such that J? = —1. Such a J is called an almost complex structure and makes the
real tangent bundle into a complex vector bundle via declaring iv = J(v). In particular dim g M = 2n. This
also tells us that the structure group of the tangent bundle reduces from Gi(2n,R) to Gl(n,C). Thus T is
an associated bundle to a principal Gi(n,C) bundle. In particular we have map on the cohomology,

H*(M,Z) — H*(M,Z/27)
o(T,J) — w(T)

Where ¢(T,J) are the Chern classes of T (with complex structure given by J) and w(T) are the Stiefel-
Whitney classes. Here the map is reduction mod 2. In particular wg;+1 = 0 and ¢; — we, the later fact
implies that M is Spin®.

Recall that the Pontryagin classes of a vector bundle are p; € H* such that p;(E) = (—1)co;(E®C). We
study p;(T) = (—1)%c2;(T®C). Since the eigenvalues of J : T — T are +i we have the natural decomposition

T®C=(Ker (J—1)® (Ker (J+14)=T10®To1

Here T1 and Tp,1 are complex subbundles of T'® C and on has the identifications (T4 ,4) = (T, J) and
(To1,%) = (T, —J). Hence if we choose a hermitian metric h on T' we get a non degenerate pairing,

TioxTp1 —C

and hence T o = (Tp1)*. We now compute

Z(—l)kpk(T) = Zc2k(T1,0 ®©Toq) = Z Zci(Tl,O) U cop—i(To,1) = (Z ci(Ti0)) U (Z c;j(To,1)
k ki j

k

K2

where the last equality comes from rearranging the sum. Now we have ¢;(Tp1) = (—1)c;(T1,0) and since we
can identity 77 o with (7, J) we have

Y D (T = Qe ) U QY (~1) (T, )
K i i

Thus the existence of an almost complex structure implies that one can find classes ¢; € H?(M,Z) that
when taken mod 2 give the Stiefel-Whitney class and that satisfy the above Pontryagin relation.

Problem. Show that S** does not admit an almost complex structure.

Remark. Topological obstructions to the existence of an almost complex structure in general are not known.

3.2 Hermitian Structure
Definition 10. A hermitian structure or a real vector space V' consists of a triple
e J an almost complex structure
o w:V = V*w symplectic (i.e. w* =—-w)
e g:V = V* g ametric (i.e. g* =g and if we write x — g(x,-) then g(z,z) > 0 for x #0)

with the compatibility
goJ=w



Now pick (J, g) this determines a hermitian structure if and only if
—(9))=(gJ)" =Tg" =J"yg
. On the other hand (J,w) determines a hermitian structure if and only if
—(wJ) = (WY = —Jw = J'w
that is if and only if J*w + wJ = 0. Then we have (J*w + wJ)(v)(w) = w(Jz,y) + w(z, Jy) = 0 which is
equivalent to w of type (1,1). We get three structure groups
g — OV,g)={A:A"gA =g}
w — Sp(V,w) ={A"wA = w}
J — GUV,J)={A:AJ=JA}
Now if we form h = g + iw we obtain a hermitian metric on V. And we have structure group
Stab(h) = U(V,h) = O(v,h) N Sp(V,w) = GU(V, J) N O(V,g) = Sp(V,w) NGI(V, J)
we note U(V, h) is the maximal compact subgroup of GI(V, J).

Problem. 1. Show Explicitly that given J one can always find a compatible w (or g)
2. Show similarly that givne w can find compatible g.

3.3 Integrability of J

Since we have a Lie bracket on T we can tensor it with C and obtain a Lie bracket on T'® C. The since
T®C = Ti0® Tp,, integrability conditions are thus that the complex distribution 71 is involutive i.e.
[T1,0,T1,0) C T1,0. How far is this geometry from usual complex structure on C"? Idea is if one can form M ¢
the complexification of M (think of RP™ C CP"™ or R™ C C", indeed if M is real analytic it is always possible
to do this. Then M has two transverse foliations by the integrabrility condition (from Ty and Tp1). Say

functions z* : M© — C cut out the leaves of Th o (i.e. the leaves are given by 2! = 22 = ... = 2" = ¢).
Then when one restricts the z% to a neighborhood U C M, obtains maps z!,...,2z" : U — C such that
<dz',...,dz" >= 1Yo = Ann(Tp,1. That is one obtains a holomorphic coordinate chart. Moreover in this

chart one has 5
Remark. This is similar to the Darboux theorem of symplectic geometry

More generally we have

Theorem 4. (Newlander-Nirenberg) If M is a smooth manifold with smooth almost complex structure J
that s integrable then M is actually complex.

Note. This was most recently treated by Malgrange.

Now T o closed under [, ] happens if and only if for X € T, X —iJX € T} g one has [X —iJX,Y —iJY]| =
Z —iJZ. That is [X,Y] — [JX,JY ]|+ J[X,JY]+ J[JX,Y] =0

Definition 11. We define the Nijenhuis tensor as Ny(X,Y) = [X,Y] - [JX,JY ]+ J[X,JY] + J[JX,Y]
Problem. Show that N is a tensor in C®(A\*T* @ T).

Thus one has J integrable if and only if N; = 0.



Remark. N;=0 is the analog of dw € C=(\*T*)

Now if we view J € End(T) = QYT) = Y. ¢ @ v; then J acts on differential forms, p € Q (M) by
17(p) = D& Ny,p = > (€gi - 15,,)p. And one computes

wanpB)=1(a) A+ (1)@ A0
thus 1 € Der’(Q'(M)) and we may form Lj = [1;,d] € Der' (' (M)).
Note. L; is denoted d°
Definition 12. We define the Nijenhuis bracket [,]: Q¥ x Q' — Q¥+ by Lj; 5y = [L;, L]
One checks [Lj, Lj] = Ly, hence Ny = [J, J].

3.4 Forms on a Complex Manifold

In a manner similar with our treatment of foliations, we wish to express integrability in terms of differentiable
forms. Let Tp 1 (or T1,0) be closed under the complexified Lie bracket. Since Ann Tpq = Ty =< o, ....0m >
(Amn Ty = T7p), @ = 0" A...0" is a generator for det Ty, = K. Where here K is a complex line
bundle. The condition for integrability is then dQ™°? = ¢%1 A Q™0 for some £. Taking d again one obtains
0=déAQW0 —ENdQ =dENQ, hence IE = 0. We call K = \" TYy the canonical bundle.

Note. This definition is deserved since K C AT*®C and Ty 1 = AnnK = {X 1xQ = 0}, i.e. we can recover
the complex structure from K

More fully, there is a decomposition of forms

Aroc-@ (Ar@A. )

b,q
o =ari(m)
p,q

that is a Z x Z grading. ~
~ Since dQ™0 = £ A Q we have integrability if and only if d = d + 0, where here d = 7, 441 o d and
0 ="Tpt1,40d.

Problem. Show that without integrability
d=0+09+d"

where N; € A2T* @ T and d¥ = 1y,. Also determine the p, ¢ decomposition of d*.

3.5 Dolbeault Cohomology
Assuming Ny = 0 one has 9% = 52 = 00 + 00 = 0. Thus one gets a complex
9 : QPY(M) — QP (M),
The cohomology of this complex is called the Dolbeault cohomology and is denoted

Ker 5|Qp,q

tOlors _ praqyy),
Im 3|Qp,q71

B

10



This is a Z x Z graded ring. The symbol of d can be determined from the computation [3,m fl = €5 Now
given a real form £ € T* — {0} then

P.q p,q+1
p — &' ap

is elliptic, since £ = €80 4 €01 = ¢1.0 4 ¢0.1 (as & real) and so €21 # 0. Hence dim H2Y < 0o on M compact.
Now suppose E — M is a complex vector bundle, how does pone make E compatible with the complex
structure J on M?

Definition 13. E — M a complex vector bundle is a holomorphic if there exists a connection O : C*(E) —
C>(Tg, ® E) which is flat (i.e. 95 = 0).

This gives us a complex
C¥(T5,®E)— ... Q"E)=C*(\T*QE) — ...

The cohomology of this complex is called Dolbeault cohomology with values in E and is denoted Hg (M, E).
YE
Elliptic theory tells us that M compact implies Hg (M, E) is finite dimensional. We note that d|gn.0 is a
E
holomorphic structure on K and hence K is a holomorphic line bundle.

Problem. Find explicitly the O operator on E = Th,0

4 Lecture 4 (Notes: J. Pascaleff)

4.1 Geometry of V @ V*

Let V be an n-dimensional real vector space, and consider the direct sum V & V*. This space has a natural
symmetric bilinear form, given by

(X +6Y +0) = (E0) +0(X))

for X, Y € V, &, n € V*. Note that the subspaces V and V* are null under this pairing.
Choose a basis e, es,...,e, of V, and let e, e?,..., e™ be the dual basis for V*. Then the collection

1 2 1 2
er+e,eates, .. .,e,+e", e —e,ea—e, ..., e, —€"

is a basis for V @ V*, and we have ‘ ‘
(ei+e e +e)=1

(e; —e' e; —e') = —1,

whereas for i # j, _ _
(e; £e'ej£e)=0

Thus the pairing (-, -) is non-degenerate with signature (n,n), a so-called “split signature.” The symmetry
group of the structure consisting of V' @ V* with the pairing (-, -) is therefore

OV @V ={AcGLVa@V*): (A, A) = ()} = O(n,n).

Note that O(n,n) is not a compact group.
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We have a natural orientation on V & V* coming from the canonical isomorphisms
det (VoV*)=det Vdet V" =R.

The symmetry group of V @& V* therefore naturally reduces to SO(n,n).
The Lie algebra of SO(V @& V*) is

SO(V (5] V*) = {Q : <Qﬂ > + <7Q>}

By way of the non-degenerate bilinear form on V @ V*, we may identify V & V* with its dual, and so we
may write

so(VO V) ={Q:Q+Q" =0},
We may decompose @ € so(V @ V*) in view of the splitting V & V*:

A B

A: V-V pB:V*=>V
B:V-sV* D:V*->V*

The condition that @ + @* = 0 means now

«_ (DT BT _
or D" = —A, §* = —f3, and B* = —B. The necessary and sufficient conditions that A, 3, B, D give an
element of so(V @ V*) are therefore

where

AcEndV, BeA?V, BeAV* D=-A"
Thus we may identify so(V @ V*) with
End(V) @ A2V @ A2V*,

This decomposition is consistent with the fact that, for any vector space F with a non-degenerate sym-
metric bilinear form (,-), we have
so(E) = A’E.

In the case of E =V @ V* this gives
so(VaV)=A2(VaV*)=AVe (Ve V) e AV,

and the term V' ® V* is just End(V).

Of particular note is the fact that the “usual” symmetries End(V') of V' are contained in the symmetries
of V& V*. (Since V is merely a vector space with no additional structure, its symmetry group is GL(V),
with Lie algebra gl(V) = End(V).)

Now we examine how the different parts of the decomposition

so(V @ V*) =End(V) @ AV @ A2V*

acton Vo V™.
Any A € End(V) corresponds to the element

Qa= <gl _?4*> €so(V V™).
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Which acts on V @ V* as the linear transformation
A
Qa _ e 0 *
e = (0 ((6‘4)*)_1) €SO(V@V )

Since any transformation T € GL™ (V) of positive determinant is e?* for some A € End(V). We can regard
GLT (V) as a subgroup of SO(V @ V*). In fact the map

P 0
Pt 00
gives an injection of GL(V) into SO(V @ V*).
Thus, once again, the usual symmetries GL(V') may be regarded as part of a larger group of symmetries,
namely SO(V @ V*). This is the direct analog of the same fact at the level of Lie algebras.
Now consider a 2-form B € A2V*. This element corresponds to

Qp = (g 8) eso(VaoVvT,

which acts V @ V* as the linear transformation

0 0 10 0 0 10
B _ QB _ _ _
e =e eXp(B o)<o 1>+<B 0)+0<B 1)’

since Q% = 0. More explicitly, eg is the map

(?) - <£+JE§(X>> - (5 +)§XB)'

Thus B gives rise to a shear transformation which preserves the projection onto V. These transformations
are called B-fields.
The case of a bivector 3 € A2V is analogous to that of a 2-form: 3 corresponds to

o)
-3 (9= ()
- S \0 1)\ & 13 ’

or in other words a shear transformation preserving projection onto V*. These are called 3-field transfor-
mations.

In summary, the natural structure of V& V* is such that we may regard three classes of objects defined
on V, namely, endomorphisms, 2-forms, and bivectors, as orthogonal symmetries of V' & V*.

which acts on V@ V* as

4.2 Linear Dirac structures

A subspace L C V @ V* is called isotropic if
(x,y) =0 forall z,y € L.

If V has dimension n, then the maximal dimension of an isotropic subspace in V @ V* is n. Isotropic
subspaces of the maximal dimension are called linear Dirac structures on V.
Examples of linear Dirac structures on V are

13



1.V

2. V.

eBV ={X +ixB: X € V}, which is simply the graph I'g of the map B : V — V*.
PV =LiB+EEEVH)

In general, A -V, where A € O(V & V*).

orok W

Exercise. If D is a linear Dirac structure on V, such that the projection onto to V', my (D) =V, then there
is a unique B : V — V* such that D = eBV. Specifically B = my~ o (7| D)~ L.

A further example of a linear Dirac structure is given as follows: let A C V' be any subspace of dimension
d. Then the annihilator of A, Ann(A), consisting of all 1-forms which vanish on A is a subspace of V* of
dimension n — d. The space
D=A@®Am(A)CcVaoV”

is then isotropic of dimension n, and is hence a linear Dirac structure.
When we apply a B-field to a Dirac structure of this kind, we get

B(A®AM(A) ={X +&+ixB: X € A& € Ann(A)}

=eP(A) ® Ann(A).

We define the type of a Dirac structure D to be codim(my (D)). The computation above shows that a
B-field transformation cannot change the type of a Dirac structure.

What matters in this computation is not so much B itself as it is the pullback f*B of B under the
inclusion f : A — V. Indeed, if f*B = f*B’, then

0=ix(f*B— f*B') = f*(ixB — ix B).
This means that ix B —ix B’ € Ann(A), and so
eB(A) & Ann(A) = e (A) & Ann(A).

Generalizing this observation, let f : E — V be the inclusion of a subspace E of V, and let ¢ € A2E*.
Then define
L(B.e) = {X +£€ EaV": f*¢ = ixe},

which is a linear Dirac structure. Note that when € = 0,
L(E,0) = E @& Ann(E).

Otherwise, L(F,¢€) is a general Dirac structure.
Conversely, the subspace E and 2-form € may be reconstructed from a given Dirac structure L. Set

EZ?T\/(L) cV.

Then
LNV*={{: (L) =0}

={¢:&(mv(L)) = 0}
= Ann(FE).
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We can define a map from E to V*/L N V* by taking e € F first to (my|L)"!(e) € L, and then projecting
onto V*/L NV*; this yields
e:E—-V*/LNV*=V"/Ann(E) = E*.
Then we have € € A2E*, and L = L(E, ¢).
In an analogous way, we could consider Dirac structures L = L(F, ), where F' = wy« (L), and v : FF — F*.

Exercise. Let Dirg (V') be the space of Dirac structures of type k. Determine dim Dirg (V). Compare this to
the usual stratification of the Grassmannian Gry (V).

A B-field transformation cannot change the type of a Dirac structure, since
ePL(E,e) = L(E,e+ f*B).

However, a (-field transform can. Express a given Dirac structure L as L(F,v), with g : FF — V* an
inclusion, and v € A2F*. Let E = my (L), which contains LNV = Ann(F). Thus

E/LNV =E/Ann(F) =Im ~,

and so
dim F =dim LNV + rank ~.

Since rank -~y is always even, if we change v to v + ¢g*3, we can change dim F by an even amount.
The space Dir(V) of Dirac structures has two connected components, one consisting of those of even
type, and one consisting of those of odd type.

4.3 Generalized metrics

There is another way to see the structure of Dir(V). Let C1 C V @& V* be a maximal subspace on which
the pairing (-,-) is positive definite, e.g., the space spanned by e; + ¢, i = 1,...,n. Let C_ = C’j_‘ be the
orthogonal complement. Then (-, -) is negative definite on C_.

If L is a linear Dirac structure, then L N Cx = {0}, since L is isotropic. Thus L defines an isomorphism.

LICJF—)C,

such that —(Lz, Ly) = (z,y), since (x + Lz,y + Ly) = 0. By choosing isomorphism between Cy and R"
with the standard inner product, any L € Dir(V) may be regarded as an orthogonal transformation of R™,
and conversely. Thus Dir(V) is isomorphic to O(n) as a space. The two connected components of O(n)
correspond in some way to the two components of Dir(V') consisting of Dirac structures of even and odd
type.

Observe that because C} is transverse to V and V*, the choice of C is equivalent to the choice of a map
v :V — V* such that the graph I', is a positive definite subspace, i.e., for 0 #z € V,

(+7(z), v +v(x)) =~(z,z) > 0.

Thus if we decompose 7y into g + b, where ¢ is the symmetric and b the anitsymmetric part, then g must be
a positive definite metric on V. The form g + b is called a generalized metric on V. A generalized metric
defines a positive definite metric on V & V*, given by

<'a '>|C+ - <'7 '>|C,

Exercise. Given A € O(n), determine explicitly the Dirac structure L4 determined by the map O(n) —
Dir(V).
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5 Lecture 5 (Notes: C. Kottke)

5.1 Spinors
We have a natural action of V@ V* on A'V*. Indeed, if X +£ € V@ V*and pe A'V* let

(X+&-p=ixp+ENp.
Then

(X+8*p = ix(ixp+ENp) +EA(ixp+EAP)
= (ix&)p—&Nixp+ENixp
(X+&X+8p

where (,) is the natural symmetric bilinear form on V & V*:

(X +6Y ) = L (€(¥) +n(X))

Thus we have an action of v € V & V* with v?p = (v,v)p. This is the defining relation for the Clifford
Algebra CL(V & V*).
For a general vector space FE, CL(FE,(,)) is defined by

CL(E, () = R E/ (v & v — (v,0)1)
That is, CL(E, {,)) is the quotient of the graded tensor product of E by the free abelian group generated by
all elements of the form v ® v — (v,v)1 for v € E. Note in particular that if (,) = 0 then CL(E, (,)) = \'E.

We therefore have representation CL(V @ V*) — End(A'V*) = End(R?") where n = dimV. This is
called the “spin” representation for CL(V & V*).

Choose an orthonormal basis for V @& V*, ie. {e; £e!,... e, & e"}. The clifford algebra has a natural
volume element in terms of this basis given by

n(n—1)

w=(=1)"2 (es—e') (e, —e")(er+e) - (en+em).
Problem. Show w! = 1, we; = —ejw,we’ = —e'w, and w-1 = 1, considering 1 as the element in /\OV* acted
on by the clifford algebra.
The eigenspace of w is naturally split, and we have
ST =Ker(w—1) = A\"V*
S~ =Ker(w+1) = \°MV*
The e are known as “creation operators” and the e; as “annihilation operators”. We define the “spinors” S
b S=ANV*=8T® S~
Here is another view. V is naturally embedded in V & V*, so we have
CLV)=AV CCLVaV*

since (V,V) = 0. Note in particular that detV C CL(V @ V*), where detV is generated by e;---e, in
terms of our basis elements. detV is a minimal ideal in CL(V @& V*), so CL(V & V*)-detV € CL(V & V*).
Elements of CL(V @ V*) - det V are generated by elements which look like
(1,e',e%e,...) er1---eq
N————— N——
noe; = fedetV
For x € CL(V @ V*) and p € S, the action x - p satisfies xpf = (z - p)f.

Problem. Show that this action coincides with the Cartan action.
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5.2 The Spin Group
The spin group Spin(V & V*) C CL(V @ V*) is defined by

Spin(Vae V") ={vy v :v; EVBV* (v;,v;) = £,r even.}
Spin(V @ V*) is a double cover of the special orthogonal group SO(V @ V*); there is a map
p:Spin(V o V*) 2L S0V @ V)

where the action p(x) - v = zvz~! in CL(V @ V*).
The adjoint action in the Lie algebra so(V @ V*) is given by

dpy v — [z,0]
where [,] is the commutator in CL(V & V*), so
so(V @ V*) =span{[z,y] 2,y e VO VI = N2 (V @ V*).
Recall that A*(V & V*) = A’V* & A’V @ End(V), so a generic element in A\*(V & V*) looks like
B+ B+ Ae NV e A’V & End(V)

In terms of the basis, say B = B;je' Ael, f7e;Aej, and A = Agei®ej. In CL(V &V*), these become B;je'e’,
Beje; and %Ai (eje’ — e'ej), respectively. Consider the action of each type of element on the spinors.

(Bije'e’) - p=Bije' Nes Ap=—BAp
(8Yejei) - p=Bicyic,p = igp
Lo, i i Loigi (o i n L yisi J i 1 .
§Ai(eje —e'ej) ~p:§Ai(zej(e Ap)—e /\zejp):(iAiéj)pfAie Nejp = §TrA p—Ap
Given B € /\2V*, recall the B field transform e~?. This acts on the spinors via
5 1
e 'p:p+B/\p+gBAB/\p+-~

Note that there are only finitely many terms in the above.
Similarly, given 8 € /\2V7 we have

1
e’ p=p+igp+ Sigigp+ -
For A € End(V), e* = g € GLT(V), we have

g-p=1/det(g) (") - p

so that, as a GLT (V) representation, S = A\'V* @ (detV)/2.
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5.3 A Bilinear Pairing on Spinors
Let p,¢ € A'V* and consider the reversal map a: A'V* — A'V* where
G N = E N NG

Define
(p,®) = [ap) A ¢n € detV™

where n = dim V, and the subscript n on the bracket indicates that we take only the degree n parts of the
resulting form.

Proposition 3. Forz € CL(Va@V*), (x-p,$) = (¢, a(x) - ¢)
Proof. Recall that (- p)f = xpf and

(p,9) = ip(p,®)f
£ (

so (- p,¢) = a(zpf)of = alpfla(z)of = (p,a(x)¢). O
Corollary 2. We have
(v-p,v-8) = (pa(v)v-¢) = (v,v)(p, P)
Also, for g € Spin(V & V™),
(9-p,9-9)=+£1(p,9)

Example. Suppose n =4, and p, ¢ € A\°'V*, so that
p = po+ p2+ps

and similarly for ¢, where the subscripts indicate forms of degree 0, 2, and 4. Then «a(p) = po — p2 + ps and

(0, ) = [(po — p2+ pa) A (¢o + 2 + ¢4)], = pPoda + dopa — p2 A b2

Ifn=4and p,¢ € /\OdV*, then

(p, @) = [(p1 = p3) A (61 + ¢3)], = p1 A 3 — p3s A .

n(n—1)

Proposition 4. In general, (p,¢) =(—1)" =z (¢, p)
Problem. e What is the signature of (,) when symmetric?
e Show that (,) is non-degenerate on S*.

e Show that in dimension 4, the 16 dimensional space A\ V* has a non degenerate symmetric form
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5.4 Pure Spinors
Let ¢ € \'V* be any nonzero spinor, and define the null space of ¢ as
Ly={X+EcVaV": (X+E) ¢=0}
It is clear then that L, depends equivariantly on ¢ under the spin representation. If
p—g-o, g€ Spin(VaVr)

then
Ly~ p(g)Lg

where p : Spin(V @ V*) — so(V @ V*) as before. The key property of the null space is that it is isotropic.
Indeed, if z,y € Ly we have

2z, y)¢ = (zy + yx)p = 0.
Thus Ly C Lé.

If Ly = Lq{, that is, if Ly is maximal, then ¢ is called “pure”. We have therefore that ¢ is pure if and
only if Ly is Dirac.

Example. e Take g =e' A--- Ae”. Then L, =V*.

e Take 1 € A’V*. Then L; = V. For B € A\°V*, then e .1 =1-B+1/2BAB+---. So
LeB = GB(Ll) = €B(V) = FB.

e For § € V* fis puresince Ly = {X +£:ix0+ N0 =0} = Ker 0 @ (f) which is Dirac; indeed this is
what we called L(Ker 6,0).

e Similarly, considering e?0, we have L.s9 = L(Ker 0, f*B).

e Given a Dirac structure L(E, €), choose 4, ... ,0) such that (1, ...,6;) = Ann E. Choose B € \°V*
such that f*B =e. Then ¢ = e B A--- Ay is pure and Ly = L(E, ).

Problem. e Show Ly N Ly = {0} < (¢,¢") # 0.

o Let dim V =4, and p = po + p2 + pa # 0. Show that p is pure iff 2pgps = p2 A pa.

6 Lecture 6 (Notes: Y. Lekili)

Recall from last lecture :
S=AV*(X+E) - p=1xp+E&Ap. Mukai pairing (p, ¢) = [p A @(®)], Sping-invariant.

Dir(V) «— Pure spinors
Ly — é=ceBOy A N0k, k= type

Problem. 1. Prove that Ly N L;b = {0} & (¢,¢)#0

2. Let dimV = 4. Show that 0 # p = pg + p2 + p4 is pure iff 2pgps = pa A p2. Show in general dimension
that Pur = Pure spinors C S* are defined by a quadratic cone. Indentify the space P(Pur) C P(S*.)
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6.1 Generalized Hodge star
C positive definite. Cy : V — V* | C1(X)(X) > 0for X #0. Cp =Tyip, g € S?V* and b € A2V*. Note

that C'y determines an operator
G:VoV*—->VaopV*
(Gz,Gy) = (x,9),G®> = 1. So G* = G. G is called a generalized metric since (Gx,y) is positive definite.

-1
Note that if Cy =Ty : {v+g(v)} and C_ = {v — g(v)} then G = < 2 I . In general

0
Ci =T, =Ty s0

G = b 0 gt b — 1 0 0 gt 1 0\ —g b g !
o g 0 Wb 1 g 0 b 1 )\ g—bg'b bg!
Problem. Note that restriction of G to T is g — bg~'b. Verify that it is indeed positive definite.

Comment about the volume form of g — bg~'b = g¢° :

Note: g —bg~ b= (g —b)g~ (g +b) . So det(g — bg~1b) =det(g — b)det(g~*)det(g + b), and
det(g + b) =det(g + b)* =det(g — b). Hence vol, =det(g — bg~1b)1/? = g:;;((i;g%
Problem. What is volg /voly ?

Aside: detV*, choose orientation. detV* ® V* | natural orientation since square. detg(v ® v) > 0 so detg
has square roots. After choice of orientation on V, there exists a unique positive square root volg.

A generalized metric is given by G: V @& V* — V & V* such that G*> = 1,G* = G, (G(z),z) > 0.
Cy = ker(GF1).
Consider * = a3 ...a, where (aj,...,a,) is an oriented basis for C.. x eCL(Cy) CCL(V @ V*).

e x is the volume element of CL(C} )
e x is the lift of —G to Pin(V @& V*) = {v1...v, : ||v;]| = £1} (Spin if n is even)
e x acts on forms via x-p=aj...a, - p.

Consider b = 0 and e;, e’ orthonormal basis. Then x = (e; +e¢e!)... (e, + e"). Consider
a(*)=(en+e)...(e1 +el). a(x)l=e"A...ANel, a(x)el =e" A...A€2, .. ete. So,

ala(x)p) = *p, Hodge star.

n(n—1) n(n—1)

So a(a(x)p) is generalized Hodge star. Note that > = (—1)~ 2 and (p,¢) = (=1)~ =2 (¢, p). So
consider (xp, @) is symmetric pairing of p, ¢ into detV*. And note that if b = 0,

(xp,0) = (p, a()0) = [p N ala()9)]top = [p N *Pliop = 9(p, P)voly

When b # 0,G = e® ( 2 g;) ) e’ Sox=elx, et and (xp,¢) = (¥ x, e 0p, @) = (x,(e ’p)e~0¢). So

always nondegenerate for all b. Hence (xp, ¢) = G(p, ¢)(*1,1) with G(1,1) = 1 where G is the natural
symmetric pairing on forms.

Problem. Let eq,...,e, be g-orthonormal basis of V.

e Show (e; + (g + b)(e;)) form orthonormal basis of C.

o Show (+1,1) = det(g +b)(e1 A ... Aeg) = Jotok = volg

e As a result, show volgr lle=®||2
volg g
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6.2 Spinors for TM & T*M and the Courant algebroid
On a manifold M, T =TM, T*=T*M. T ® T* is a bundle with {,) structure O(n,n). S = A*T*.
Diff forms «—Spinors for T'® T™.

New element: d : QF — Q"' Recall [X,Y] is defined by ¢[x,y] = [Lx,ty] = [[d, tx], ty]. We now use same
strategy to define a bracket on T'& T™.

(X+8-p=(x+EN)p
So for e1,e9 € C°(T ® T*), define
([d,ex-], e ]p = [ex, e2]c - p
the Courant bracket on C*°(T @ T™*). Note [d,tx + (§A)] = Lx + (déA) and
[Lx + (dEN), oy + (MAN)] = yxy) + (Lxn)A) = ((by d)EA).
Hence
[[d,e1-],e2-]p = tix,y1p + (Lxn — vy d§) A
defines a bracket, Courant bracket :
(X +&Y + 0] =[X, Y]+ Lxn — tyds.

Note bracket is not skew-symmetric: [X + &, X +&] = Lx€ —i1xdé = dix§ = d{X + &, X +&). Tt is skew
”up to exact terms” or "up to homotopy”. However, it does satisfy Jacobi identity:

[la,b].c] = [a, [b, c]] — [b,[a, ]].
Proof: [d,-] = D an inner graded derivation on EndQ. D? = 0. [a,b]c - ¢ = [[d,a],b] - ¢ = [Da,b] Then
[la, bl cle - ¢ = [D[Da, ], c]¢ = [[Da, Db], c|¢ = [Da, [Db, d]] = [Db, [Da H = [, [b.lelc — [b, [a, clele.

It is also obviously compatible with Lie bracket.
ToT =T
[ ; ]C - [ ) ]

that is, [ra,wb] = 7[a, b]c.

Two main key properties :

* [a, fb] = fla,b] + ((za)(f))b.

Let a=X+&b=Y +1,
[(X+& f(Y+n)] = [X, fY]+Lx (fn) = fryd§ = fla, )] +H(X )Y +(X fn = fIX+E Y 4]+ (X f)(Y +n).

e How does it interact with (,) ? wa(b,b) = 2([a, b],b)

([a,0],b) = vx,yn + ty (Lxn — tyd§) = Lxtyn = %Lx<b, by = wa(b,b)
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Usually written : wa(b, c) = ([a, b],c) + (b, [a,]).
This defines the notion of Courant Algebroid:

(E,(,),[,],7) where E is a real vector bundle, 7 : E — T is called anchor, (,) is nondegenerate symmetric
bilinear form, [,]: C*®(E) x C*(E) — C*(FE) such that :

o [le1, ea], es] = [e1, [e2, €3] — [e2, [e1, e5]]
o [mey, mes| = mley, €3]
o [e1, fea] = fler, e2] + (mer) f)ez
o e (ea, e3) = ([e1, ea], e3) + {ea, [e1, e3])
o [e1,e1] = d{e1,e1)
F is exact when
0—=T*SEST 0

So T & T* is exact Courant algebroid.
This motivates Lie Algebroid: A = T, [,]: C*(A) x C®(A) — C>®(A) Lie alg. such that

e 7[a,b] = [ra,wb]

* [a, fb] = fla,b] + ((ma) f)b

7 Lecture 7 (Notes: N. Rosenblyum)

7.1 Exact Courant Algebroids
Recall that a Courant algebroid is given by the diagram of bundles

E——"——>T
NS
M
where 7 is called the “anchor” along with a bracket [, ] and a nondegenerate bilinear form ( , ) such that
e 7la,b] = [ra, b
e The Jacobi identity is zero
[a, fb] = fla,b] + ((mwa) f)b

e [a,b] = ir*d(a,a)

7ra<b, C> = <[aa b]v C> + <ba [CL, C]>

A Courant algebroid is exact if the sequence

s ™

0 T* E T 0

is exact (note that m o 7* is always 0).
Remarks: For an exact Courant algebroid, we have:

22



1. The inclusion T* C E is automatically isotropic because for £,n € T*,
(n&,m"n) = &(v*mn) =0
since (7*¢,a) = &(7a).

2. The bracket [, |

7+ =0: for s,t € C®(E), f € C=(M),
D =n*d: C®(M) — C™(E)
Now,
([s,Df),t) = ws(Df,t) — (Df, [s,t]) = ws(nt(f)) — n[s,1)(f) = wt(zs(f)) = (D(Df,s), f)

Thus, [s, Df] = D(s, Df). We also have, [Df,s] + [s,Df] = D(Df, s) and therefore [Df, s] = 0.
We need to show that [fdz’, gdz?] = 0. But have [dz*,dz’] = 0 and

[a, fb] = fla,b] + ((wa) f)b, [ga,b] = gla,b] — ((wb)g)a + 2(a, b)dg.

7.2 Severa’s Classification of Exact Courant Algebroids
We can choose an isotropic splitting

O—T"———~—F_ —_——~—T—>0

*
S

ie. (sX,sY)=0forall XY € T. We then have F = T @ T* and we can transport the Courant structure
toT®T*: for X, Y € T and &,n € T,

(X +&4Y +n) = (sX + 77 sY +77n) = {(msY) + n(rsX) = (V) +n(X)
since (sX,sY) = 0. Also,

(X +&Y +n]=[sX+7%EsY + 7" = [sX,sY] + [sX,n%n] + [, sY]

We have that the second term is given by
w[s X, m*n] = [wsX, 7] =0
and therefore, [sX, 7*n] € Q. Further,
[sX, 7 n](Z) = ([sX, 7" n], sZ) = X (7", sZ) — (7"n, [s X, sZ]) = Xn(Z) = n([X, Z]) = izLxn

and so [sX,7*n] = Lxn.
Now, the third term is given by

(77, sY],52) = (=[sY,7"E] + D(sY,7"E), s2Z) = —(Ly§)(Z) + izdiy{ = (—iyd§)(Z)
and so [7*€, sY] = —iydE.

For the first term, we have no reason to believe that [sX, sY] = [X,Y] We do have that
m[sX,sY] = [X,Y]pie. Now, let H(X,Y) = s*[sX, sY]. We then have,
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1. H is C*°-linear and skew in X,Y":
H(X, fY) = fs"[sX,sY]+ s"(X(f)sY) = fs*[sX,sY], and

H(fX,Y)=s"[fsX,sY]|=fH(X,Y) —s*(Yf)sX) + 2(sX,sY)df = fH(X,Y). Furthermore,
[sX,sY] + [sY,sX] = n*d(sX, sY).

2. H(X,Y)(Z) is totally symmetic in X,Y, Z:

H(X,Y)(Z) = ([sX,sY],sZ)g = X(sY,sZ) — (sY,[sX,sZ])

So, we have [sX,sY] = [X,Y] —iyixH for H € Q3(M).
Problem. Show that [[a,b], c] = [a, [b, c]] — [b, [a, c]] + trcinpiradH and so Jac = 0 if and only if dH = 0.

Thus, we have that the only parameter specifying the Courant bracket is a closed three form H € Q3(M).
We will see that when [H]/2m € H3(M,Z), E is associated to an S!-gerbe.

Now, let’s consider how H changes when we change the splitting. Suppose that we have two section
$1,82 : T — E. We then have that w(s; — s2) = 0. So consider B = s; — s9 : T — T*. In the s; splitting,
we have for x € T, sa(x) = (x + (s2 — s1)x). Since the s; are isotropic splittings, we have that

(s2 — s1)(z)(z) = 0. Thus we have, B € C>(A%*T™*).

Now, in the s; splitting we have,

[X+’izB,Y+in]H = [X, Y]+inyB—iydixB+iyixH = [X, Y]+’i[X7y]B—inyB+iydixB+iyixH =

In particular, in the sy splitting H changes by dB. Thus, we have that [H] € H3(M,R) classifies the exact
Courant algebroid up to isomorphis.
The above bracket is also a derived bracket. Before, we had that

[a” b]C P = [[dv (L], b]SD

Now, replace d with dy = d + HA. We clearly have that d%;, = (dH)A = 0 since dH = 0. Note that dy is
not of degree one and is not a derivation but it is odd. The cohomology of dy is called H-twisted deRham
cohomology. In simple cases (e.g. when M is formal in the sense of rational homotopy theory,), we have

* ev/o ev/od
H* (H (M), eq)) = Hyy/ (M)

where ey = HA.

Now, [a,b]m - ¢ = [[d#,a],b]e. Indeed, for B € Q2, we have ¢ +— eBp and

e B(d+ HN)eP = e PdeP + e BHeP = dy ap, and so eBle B eB.ly = [, |grap In particular, if

B € 921, then P is a symmetry of the Courant bracket.

This phenomena is somewhat unusual because for the ordinary Lie bracket, the only symmetries are given
by diffeomorphisms of the underlying manifold. More specifically, a symmetry of the Lie bracket on C°°(T")
is a diagram

P
_—

T T
L,
M—M

such that ¢ is a diffeomorphism and [®, ®] = [, -].



Claim 1. Sym[, |ric = {(¢«,9), ¢ € Dif f(M)}.

Proof. Given (®,¢) € Sym|, ]Lie, consider G : ®¢; L. Then G covers the identity map on M and we have
fGIX,) Y] - (YIGX =G[fX,Y] = fIGX,GY] — (GY)fGX and so Y f = (GY)(f) for all Y, f and so

G=1. O
Let’s now consider the question of what all the symmetries of the Courant bracket [, |¢ are. Once again,
we have a diagram
FE—2.F
|, |
M—M
where E ~ T & T™* such that
L ¢*(®, @) = ()
2. [®,P] = D, ]

3. Tod = ¢, om.
Suppose that ¢ € Dif f(M). Then on T & T*, ¢, is given by

o= (" (o)

and so we have ¢.(X + &) = ¢. X + (¢*) 1€ and

¢ [0 X + (97 0Y + () Ml = [X +EY +n)pen

since ¢ (i, vig.xH)(Z) = ig.zip.vie.xH = ¢*H(X,Y, Z). In particular, this does not give a symmetry
unless ¢o*H = H.

Now, consider a B-field transform. Since eZ[e=8- e B.]y = [-,-|g1ap, this is not a symmetry unless

dB = 0. Now we can combine these to generate the symmetries:

[x"-, pueP ] = 6ueP[, Jgemrran
and so ¢.eP € SymE iff H — ¢*H = dB. It turns out that these are all the symmetries.

Theorem 5. The above are all the symmetries of an exact Courant algebroid. In particular, we have a
short exact sequence
0— Q% — Sym(E) — Dif fim — 0

where Dif fig) is the subgroup of diffeomorphisms of M preserving the cohomology class [H].

8 Lecture 8 (Notes: J. Bernstein)

8.1 Dirac Structures
So far we understand the exact Courant Algebroids
0—-T"—-FE—-T—0

Which are classified up to isomorphism by [H] € H3(M,R3) and upon a choice of splitting is isomorphic to
(TeT<,>]um:E—T). For He Q3. Always consider (M, E) or (M, H). Geometry in exact
Courant Algebroids consists of studying special subbundles L C F.

25



Theorem 6. Suppose that L C E a subbundle which is closed under [,] (involutive), i.e.
[C%°(L),C*°(L)] € C*(L). then L must be isotropic or L = 7~ Y(A) for A C T integrable distribution.
Note, for Ak C T, 7=1(8) is of dimension n + k and contains T* (so is not isotropic).

Proof. Suppose L is involutive, but not isotropic, then there exists v € C*°(L) with < v,v >,,# 0. Now
recall property [fv,v] = flv,v] — (7(vV)flv+2 <wv,vo>df =2 <wv,v>df € C°(L) for all f, as

[fv,v], flv,v] € C*°(L). This implies that df,, € Ly, for all m which tells us that T); C L,, but T* is
isotropic so L,, = 77 1(A,,) for A # 0. Thus tkL > n evertywhere and so L not isotropic at all points

p € M thus Ty C Ly, for all p and so L = 7~ '(A) where A is an integrable distribution. O

So interesting involutive subbundles are isotropic subbundles L C E. Recall that the axioms of a Courant
Algebroid imply that [a,a] = $7*d < a,a >. Thus on L, [,]¢|ce(r) defines a Lie Algebroid when L is
involutive and isotropic. So L C E with [L,L] C L and < L, L >= 0 implies that (L, [,],7) is a Lie
Algebroid which implies (C*°(A*L*),dy) gives rise the Hg, (M) the Lie Algebroid Cohomology.

Definition 14. When an isotropic, involutive L C E is mazximal it is called a Dirac Structure
Examples of Dirac structuresin 0 - 7* - E —- T — 0
o T* C Fas[T*T* C[T*,T

o If we split (T@T™,[,]x) then [X,Y]y € C°(T) if and only if H =0s0 T € T & T* is a Dirac
structure if and only if H =0

e Any maximal isotropic transverse L (that is such that L N T* = {0} is of the form L =T'p. Since
eB[e*B-, e*B-]H = [', ']H+dB SO GB[T7 T]Hde = eB[e*BI‘B, efBFB]H,dB = [FB, FB}H Thus
[Cp,T'p] C Tp]if and only if [T, T]g—qgp C T and this occurs if and only if H —dB =0so I'p is

Dirac when and only when [H] = 0. In particular when [H] # 0 there is no Dirac complement to 7.

e When A C T is an integral distribution then f: A @® Ann A — T @ T* is involutive for [,]x when
and only when f*H = 0.

e For (I'&T*,[,]x) and 8 € A*T we consider I'g. This is Dirac if and only if [3, 3] = —3*H where we
think of 8 : T* — T.

Problem. Verify the condition for I'g to be Dirac by first showing that [£ + 8(£),n + B(n)] = (+ 8(() if
and only if < [+ 6(£),n+ B(n)],¢ + B(¢) >=0. And then showing that

< [df + B(df),dg + B(dg)],dh + B(dh) >= {f,{g,h}} + {g,{h, f}} + {h. {f,g}} + H(B(df), B(dg), B(dh)) =
(Jac{, } + B*H)(df,dg,dh).

Definition 15. if [3, 3] = —3*H then (3 is called a twisted Poisson Structure.

Suppose that 3 is a twisted Poisson structure, then e? I'g is not necessarily I'g/, in particular if 3 is
invertible (as a map T* — T) and 3~ = B then e8Iy = T. However if B is “small enough” then
ePT3 = T'. To quantify this we note that e? : £ + 3(€) — B(€) + £ + BB(£) which we want equal to

1+ ' (n). This happens if and only if n = (1 + BS)¢ and also 8(€) = 5'(n) = /(1 + BB)E. Thus
B = B(1+ BB)~! and so smallness just means that the map is invertible (i.e. what is written makes sense).

Definition 16. The transformation from 3+ (1 + BB)~! is called a gauge transform of /3.

Problem. (Severa-Weinstein) Show that if 3 is Poisson and d = 0 then ' is Poisson. Also show that
Hj,(M) = Hj, (M), (i.e. one has a isomorphsm of Poisson cohomology. (Hint: e” : Ty — T'g is an
isomorphism of Lie Algebras).
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8.2 Geometry of Lie Groups

Recall that for a Lie group G one has a natural action of G x G on G, given by (g,h) - © = gzh = LyRpx
(here one has a left action and a right action). These actions commute in that (gx)h = g(zh). Now for

g = T.G the lie algebra of G one has two identifications of g — T,G namely a — a’|, = (L,).a and

a — afl; = (Ry).a where al’, o’ are left and right invariant vector fields respectively. We have by
definition [a%,b%] ;e = [a,b]*. Now if j : G — G is given by z — 2!, then jL, = R,-1j so

j*(Lg)* = (Ry-1)+Js. In particular since (j.). = —Id, one has

(jra®),— —j*(Lg)*a = (Ry-1)sjsa = —(Ry-1)sa = —aR\gfl. Thus j.a” = —a’. Thus

[a® bB] = [j.al, j.bF] = jila®, bL] = ji[a,b)F = [a b]®. One also has [aX, b®] = 0. To see this we note
that the map g — C*°(T'G) given by a +— aL|g t(gv( )) exponentiates to a right action R, similarly

a® exponentiates to a left action and so [a”, b

=0.
We now define Ad, : g — g by Ady(X) = (Ry-1)+(Lgy)«. Equivalently a®|; = (Ad,-1a)"|,. We define
adx = d(Ady)o = [X, ]

Lemma 1. If p € QF(G) is bi-invariant then dp =0

Proof. If p is left invariant then p € AFg* and so

dp(Xo, ..., Xz) :Z( 1! X;p(Xo, ..., X, +Z )" p([ X4, X, Xo, -+, X
, where we have chosen Xy, ... X} to be left invariant so the first sum is zero . On the other hand right
invariance tells us that for all X, >~ p(Xy,...,[X, X;],..., X%) = 0. O
Problem. Show how the statement above implies that dp = 0.

We define Cartan one-forms to be forms 6%,6% € Q'(G,g) by 0% (v) = (Ly-1).v € g. and

0 (v) = (Rg-1)«v € g. So 0F o (Ly-1). = 0f,. Thus 6% is left invariant as 67 is right invariant.

For G = Gl,,, g = M,, one has 0 = g~'dg and 6% = dgg~'. Now if g = [g;;] that is g;; are coordinates one
gets matrix of oneforms [g;;]7*[dg;;]. Then (cg)~'d(cg) = g~'o " odg = g~'dg, and so it is left invariant
(similarly one can check that the obvious definition is indeed right invariant). At 1 € GL,, one has g
consisting of n x n matrices {[a;;]} here we make think of [a;j] =3, ; aij%“. SO

g_ldg(zm. aij%) =a;j, so g~ 'dg|. = Id : g — g. This is also true for 6% and 0%.

9 Lecture 9 (Notes: K. Venkatram)

Last time, we talked about the geometry of a connected lie group G. Specifically, for any a in the
corresponding Lie algebra g, one can define a’'|, = L,.a and choose 8L € Q1(G, g) s.t. 6% (al) = a. For
instance, for GL,,, with coordinates g = [g;;], one has 6% = g~'dg, and similarly 6% = dgg~!.This implies
that dg A 0L + gd0F =0 = dOF + 0 NOF =0 = dO* + %[GL, 6%] = 0, the latter of which is the
Maurer-Cartan equation.

Problem. 1. Extend this proof so that it works in the general case.
2. Show j*0f = —6*~.
3. Show df® — 167, 6%] =0
4. Show 0%(al)|, = Ad jaVa € g,g € G.
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9.1 Bilinar forms on groups

Let G be a connected real Lie group, B a symmetric nondegenerate bilinear form on g. This extends to a
left-invariant metric on G, and B is invariant under right translation

< B([X,Y],Z) + B(Y,[X, Z]) = 0VX,Y, Z. If this is true, we obtain a bi-invariant (pseudo-Riemannian)
metric on G.

Remark. Geodesics through e are one-parameter subgroups < B is bi-invariant. See Helgason for
Riemannian geometry of Lie groups and homogeneous spaces.

Example. Let B be the Killing form on a semisimple Lie group, i.e. B(a,b) = Try(ad,ads) for
S|m, 5 © M, 5Py, a constant multiple of Tr(X,Y"). Now, we can form the Cartan 3-form

1 1
H = 55 B(0",[0%,0%)) = 1;B(0", 0%, 6") (7

This H is bi-invariant, and thus closed. When G is simple, compact, and simply connected, the Killing
form gives \[H] as a generator for H3(G,Z) = Z. (See Brylinski.) For instance, given g = sl,,, 0% = g~ 1dg,
one has H = Tr(0F A 0L A 0F) ie. H = Tr(g~tdg)3.

9.1.1 Key calculation
Let m,p1,p2 : G X G — G be the multiplication and projection maps respectively. Then
m*H = Tr((gh) " d(gh))® = Te(h™ g~} (gdh + dgh))?
= Tr(h~'gh)® + Tr(g~'dg)® + Tr((dhh~')*g~'dg) + Tr(dhh =1 (g~ dg)?)
Now, define §# = dhh™!,Q = g 'dg, so dd = O A0 and dQ2 = —Q A Q. Then
dTr(dhh™ g tdg) = dTr(0 A Q) = Tr(dO A Q2 — 0 A dRQ) )
=Tr(0ANONQ+ONQAQ)

So, m*H — ptH — p5H = dr, where 7 = Tr(dhh~1g~tdg) = B(pi6%,p50%) € O%(G x G).

Now, recall that given a metric g : V. — V*, we have a decomposition Ve V* =Cy & C_ for Cy =T4.
