
Problem 5.27

Centrifugal pump/turbine

The sketch shows a centrifugal turbine or pump with an impeller in a flat-sided casing of width *b*. A liquid of density ρ flows through the pump at a volume flow rate *Q*. Assuming that (i) the liquid enters with a purely axial velocity and (ii) exits at radius r_2 with a velocity that follows the (moving) blade surfaces, and (iii) neglecting frictional effects,

(a) derive an expression for the *counterclockwise* external torque, T_s , exerted on the shaft at an angular speed . Express it in terms of Q, ρ , b, $r_{l'}$, $r_{2'}$, $\beta_{l'}\beta_2$ and .

ANSWER

(b) What is the system's run-away speed ω_0 , that is, the (counterclockwise) speed of the shaft running unrestrained? What is the torque T_0 at zero rotation?

ANSWER

(c) Show that your result in (a) reduces to the universal form

$$T_s/T_{s_0} = f(\omega/\omega_0)$$

and plot this function.

(d) Derive the power output to the shaft,

$$\dot{W}_{S} = T_{S}\omega$$
,

as a function of . At what range of values of will the power output be positive (that is, the system be a pump), if >0? At what value(s) of $/_0$ is the power output maximized? Provide expressions for the maximum power and the angular frequency at which it is attained, expressed in terms of Q, ρ , b, r_p , r_2 , β_p , and β_2 .

ANSWER