1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2012

Part II – Quantum Mechanical Methods : Lecture 4

Application of QM Modeling to Solar Thermal Fuels

Jeffrey C. Grossman

Department of Materials Science and Engineering Massachusetts Institute of Technology

Part II Topics

- It's a Quantum World: The Theory of Quantum Mechanics
- 2. Quantum Mechanics: Practice Makes Perfect
 - From Many-Body to Single-Particle; Quantum Modeling of Molecules
- **4.** Application of Quantum Modeling of Molecules: Solar Thermal Fuels
- Application of Quantum Modeling of Molecules: Hydrogen Storage
- 6. From Atoms to Solids
- 7. Quantum Modeling of Solids: Basic Properties
- 8. Advanced Prop. of Materials: What else can we do?
- 9. Application of Quantum Modeling of Solids: Solar Cells Part I
- **10.** Application of Quantum Modeling of Solids: Solar Cells Part II
- 1. Application of Quantum Modeling of Solids: Nanotechnology

Lesson outline

• Review

- Interactive calculations and discussion on the H2
- First application of QM modeling: Solar Thermal Fuels
- Interactive calculations and discussion on candidate fuels.

 $\Big[T_1+V_1+T_2+V_2+W\Big|\psi(ec{r_1},ec{r_2})=E\psi(ec{r_1},ec{r_2})$

 $\left[-\frac{\hbar^2}{2m}\nabla_1^2 - \frac{e^2}{4\pi\epsilon_0 r_1} - \frac{\hbar^2}{2m}\nabla_2^2 - \frac{e^2}{4\pi\epsilon_0 r_2} + \frac{e^2}{4\pi\epsilon_0 r_{12}}\right]\psi(r_1, r_2) = E\psi(r_1, r_2)$ cannot be solved analytically
problem!

 $H(\mathbf{R}_{1},...,\mathbf{R}_{N};\mathbf{r}_{1},...,\mathbf{r}_{n})\Psi(\mathbf{R}_{1},...,\mathbf{R}_{N};\mathbf{r}_{1},...,\mathbf{r}_{n}) = E\Psi(\mathbf{R}_{1},...,\mathbf{R}_{N};\mathbf{r}_{1},...,\mathbf{r}_{n})$

Born-Oppenheimer Approximation

Electrons and nuclei as "separate" systems

 $\Psi = -\frac{\mathbf{h}^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{|\mathbf{R}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1\\i\neq j}}^n \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Born-Oppenheimer Approximation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Electrons and nuclei as "separate" systems

$$= -\frac{\mathbf{h}^2}{2m} \sum_{i=1}^n \nabla_{\mathbf{r}_i}^2 - \sum_{i=1}^N \sum_{j=1}^n \frac{Z_i e^2}{|\mathbf{R}_i - \mathbf{r}_j|} + \frac{1}{2} \sum_{i=1}^n \sum_{\substack{j=1\\i\neq j}}^n \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$

... but this is an approximation!

- electrical resistivity
- superconductivity

Review: Solutions

Review: Why DFT?

Image by MIT OpenCourseWare.

$$\psi=\psi(ec{r_1},ec{r_2},\ldots,ec{r_N})$$
 wave function: complicated!

$$n = n(\vec{r}) \begin{array}{c} e_{e_{c_{tr}}} \\ e_{e_{n_{s_{i_{ty}}}}} \\ e_{e_{s_{y'}}} \end{array}$$

Walter Kohn DFT 1964

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

All aspects of the electronic structure of a system of interacting electrons, in the ground state, in an "external" potential, are determined by $n(\mathbf{r})$

The ground-state energy is a functional of the electron density.

$$E[n] = T[n] + V_{ii} + V_{ie}[n] + V_{ee}[n]$$

ion-ion

ion-electron electron-electron

The functional is minimal at the exact ground-state electron density $n(\mathbf{r})$

The functional exists... but it is unknown!

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

kinetic

$$E[n] = T[n] + V_{ii} + V_{ie}[n] + V_{ee}[n]$$
kinetic ion-ion ion-electron electron-electron

electron density
$$n(ec{r}) = \sum_i |\phi_i(ec{r})|^2$$
 $E_{ ext{ground state}} = \min_{\phi} E[n]$

Find the wave functions that minimize the energy using a functional derivative.

Finding the minimum leads to Kohn-Sham equations

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_s(\vec{r})\right]\phi_i(\vec{r}) = \epsilon_i\phi_i(\vec{r}),$$

$$V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r' + V_{\rm XC}[n_s(\vec{r})],$$

ion potential Hartree potential exchange-correlation potential

equations for non-interacting electrons

$$V_s = V + \int \frac{e^2 n_s(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 r' + V_{\rm XC}[n_s(\vec{r})],$$

Only one problem: v_{xc} not known!

approximations necessary

local density approximation LDA

general gradient approximation GGA

Review: Self-consistent cycle

Review: DFT calculations

Review: Basis functions

Review: Plane waves as basis functions

plane wave expansion:

Cutoff for a maximum G is necessary and results in a finite basis set.

First Application Example: Solar Chemical Fuels

Materials will determine the future of renewable energy

Solar PV

Biofuels

Thermoelectrics

Hydrogen Storage

Solar Thermal

Thermoelectrics © D. J. Paul; hydrogen storage © Berkeley Lab; other images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The Materials Design Age

Iron Age

Industrial Age

Plastic Age

Materials

Design

Bronze Age

Silicon Age

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Let's look at a single element:

Nanotube architecture © John Hurt; graphene integrated circuit © Raghu Murali; other images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Carbon in Energy to Date

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Same C: 10⁵ X Improvement

That same 1 barrel could be used to make the plastic needed for thin-film solar cells.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The solar cells could generate ~16,000 MWh of energy over their lifetime, or 10,000 X as much

Solar Resource

© Richard Perez. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solar Energy Harvesting

© source unknown. All rights reserved.

Copyrighted content on this page is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solar to Heat

Parabolic Dish / Stirling Engines

Hot Water

Reflectors (Parabolic Troughs)

Solar Towers (a.k.a. "Power Towers")

From left (clockwise): SES SunCatcher solar dish © Stirling Energy Systems, barrels, reflectors, parabolic troughs, PS10 in Seville © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solar Thermal: Sunlight-->Heat: Concentrating

PS10, 11 MW Solar Tower (Sanlucar la Mayor, Seville)

heat power 160 148 Total capacity in operation [GW] 2006 140-128 Produced Energy [TWh] 2006 120-100-77 74 80-60-52 40-20-9 7 7.7 0.8 2 0.3 0.4 Ocean Tidal Solar Thermal Wind Power Geothermal Photovoltaic Solar Thermal Power Heat Power Power Figure 2: Total capacity in operation [GW_{el}], [GW_{th}] 2006 and annually energy generated [TWh_{el}], [TWh_{th}]. Sources: EPIA, GEWC, EWEA, EGEC, REN21 and IEA SHC 2008

Total Capacity in Operation $[GW_{el}]$, $[GW_{th}]$ and Produced Energy $[TWh_{el}]$, $[TWh_{th}]$, 2006

Left: PS10, 11 MW Solar Tower in Sanlucar la Mayor, Seville © source unknown. Right: from Weiss, W. I. Bergmann, and G. Faninger. "Solar heat worldwide 2008: Markets and contributions to the energy supply 2006" © International Energy Agency. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Challenges with Solar Thermal Power:

- Losses in storage
- Auxiliary heating
- Highly reflective coatings + tracking
- Large footprint and cost
- Not transportable, no distribution "as heat"

USA has not widely adopted Solar Water Heating.

Figure 8. Solar Hot Water/Heating Capacity **Existing, Selected Countries, 2006**

* France: includes Overseas Departments

Figure 6: Total capacity of glazed flat-plate and evacuated tube collectors in operation at the end of 2006 in kW_{th} per 1,000 inhabitants

From Weiss, W. I. Bergmann, and G. Faninger. "Solar heat worldwide 2008: Markets and contributions to the energy supply 2006." © International Energy Agency. Copyrighted content on this page is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Some Challenges with Solar Thermal

- Losses in storage
- Auxiliary heating
- Highly reflective (and clean) coatings
- Tracking components
- Large storage facilities
- Not transportable, can't be distributed "as heat"

11 MW Solar Tower in Sanlucar la Mayor, Seville © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solar-Chemical : Heat stored in chemical bonds

Blast from the past (70's/80's)...

Norbornadiene

Quadricyclane

BUT: Poor cycling, rapid degradation for ALL cases.

"... a photochemical solar energy storage plant, although technically feasible, is not economically justified."

Ind. Eng. Chem. Prod. Res. Dev., 1983, 22 (4), pp 627–633

Decomposition products

Efforts to prevent decomposition

Images removed due to copyright restrictions. See article: Alexander D Dubonosov et al. Russian Chemical Reviews 71, no. 11 (2002): 917-27.

"donor-acceptor" norbornadienes: ~10³ cycles

2,3-disubstituted norbornadienes: can be cycled "many times"

No magic bullet – always a trade-off between:

- quantum yield
- absorption efficiency
- stored energy
- thermal stability of the quadricyclane
- cyclability

Russian Chem. Rev. 71, 917-927 (2002)

Why revisit solar thermal fuels now?

+

Computational power for high-throughput materials design

Rapid computational screening of thousands of materials

Technology for atomic-scale engineering

Potential to synthesize systems designed with atomic-scale control

Example: Time to perform calculations for 100,000 known crystalline materials:

> **1980: 30 years 2012: few days**

The time is ripe to tackle this generation-old concept with a new "arsenal" of science/ technology capabilities.

A novel approach to solar thermal fuels

There are many, many photoactive molecules...

...that are terrible solar thermal fuels.

spiropyran/merocyanine

DHA/VHF

Can we turn them into good ones?

A new approach: combine photomolecule with template

The azobenzene/CNT system

- Already synthesized*
- Photoactivity experimentally demonstrated*
- Not previously considered for energy storage

**e.g.*, see Feng, *et. al*, J. Appl. Phys. (2007); Simmons *et. al*, PRL (2007)

trans-azobenzene/CNT

Role of the CNT template

Role of the CNT template

Intermolecular Separation (A)

Rigid substrate – fixes inter-molecular distances over long range, enabling:

- steric inhibition
- π-stacking
- hydrophobic interactions

Enables design of specific intermolecular interactions – not available in free azobenzene Stores More Energy

Energy density comparison

system	state	energy density (Wh/L)
Ru-fulvalene	solution (toluene)	0.02
azobenzene	solution (H ₂ O)	0.000002
azobenzene	powder	90
azobenzene/CNT	soln. or powder	up to 690
Li-ion battery		200-600

New Materials for Solar Thermal Fuels

Template Materials + Photoactive Molecules

Solar Thermal Fuel Applications

- Solar cooker: developing countries
- Solar cooker: hiking & outdoor / military
- Solar autoclave: developing countries
- Medical sanitation
- Milk pasteurization: rural
- Thin film window heating supplement
- On-site storage: power generation
- Gas/oil industry
- Military off-grid heat
- Building heating
- NASA/maritime
- CSP auxiliary heat supply
- De-icing (windows, planes, power lines)

The Case for Solar Cookers

Problems with Cooking Off-Grid

- Cooking fuel (e.g., wood) is increasingly scarce, expensive, and time-intensive to find
- Smoke in not-well ventilated areas causes respiratory problems

Existing Solar Ovens

- Can only cook while the sun is out
- Are cumbersome and heavy to transport
- Cannot be turned 'on' and 'off'

Images of outdoor cookers and solar oven © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Solar Cooker: Using the Sun to Cook at Night

- Charging: slow flow through solar collector during the day.
- Cooking: device is turned upside down.
- Cost estimate <\$200. Weight=<5 kg, floor space=1 sq. ft.
- 5 hours of charge time = boil liters of water or cook at 300C for ~1 hour.

Materials Design Full Cycle

Simulation

Synthesis

Testing

Prototype

Grossman Group, MIT.

So Why do We Need QM?

Solar radiation spectrum © Robert A. Rohde/Global Warming Art. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

MIT OpenCourseWare http://ocw.mit.edu

3.021J / 1.021J / 10.333J / 18.361J / 22.00J Introduction to Modelling and Simulation Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.