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Introduction to Calculus 


1.4 Velocity and Distance 

The right way to begin a calculus book is with calculus. This chapter will jump 
directly into the two problems that the subject was invented to solve. You will see 
what the questions are, and you will see an important part of the answer. There are 
plenty of good things left for the other chapters, so why not get started? 

The book begins with an example that is familiar to everybody who drives a car. 
It is calculus in action-the driver sees it happening. The example is the relation 
between the speedometer and the odometer. One measures the speed (or velocity); 
the other measures the distance traveled. We will write v for the velocity, and f for 
how far the car has gone. The two instruments sit together on the dashboard: 

Fig. 1.1 Velocity v and total distance f (at one instant of time). 

Notice that the units of measurement are different for v and f.The distance f is 
measured in kilometers or miles (it is easier to say miles). The velocity v is measured 
in km/hr or miles per hour. A unit of time enters the velocity but not the distance. 
Every formula to compute v from f will have f divided by time. 

The central question of calculus is the relation between v and f. 
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Can you find v if you know f ,  and vice versa, and how? If we know the velocity over 
the whole history of the car, we should be able to compute the total distance traveled. 
In other words, if the speedometer record is complete but the odometer is missing, 
its information could be recovered. One way to do it (without calculus) is to put in 
a new odometer and drive the car all over again at the right speeds. That seems like 
a hard way; calculus may be easier. But the point is that the information is there. 
If we know everything about v,  there must be a method to find f .  

What happens in the opposite direction, when f is known? If you have a complete 
record of distance, could you recover the complete velocity? In principle you could drive 
the car, repeat the history, and read off the speed. Again there must be a better way. 

The whole subject of calculus is built on the relation between u and f .  The question 
we are raising here is not some kind of joke, after which the book will get serious 
and the mathematics will get started. On the contrary, I am serious now-and the 
mathematics has already started. We need to know how to find the velocity from a 
record of the distance. (That is called &@erentiation, and it is the central idea of 
dflerential calculus.) We also want to compute the distance from a history of the 
velocity. (That is integration, and it is the goal of integral calculus.) 

Differentiation goes from f to v; integration goes from v to f .  We look first 
at examples in which these pairs can be computed and understood. 

CONSTANT VELOCITY 

Suppose the velocity is fixed at v = 60 (miles per hour). Then f increases at this 
constant rate. After two hours the distance is f = 120 (miles). After four hours 
f = 240 and after t hours f = 60t. We say that f increases linearly with time-its 
graph is a straight line. 

4 velocity v ( t )  4 distancef ( t )  

v 2 4 0 ~ ~ s 1 ~ = " = 6 04 
Area 240 : I 

time t time t 

Fig. 1.2 Constant velocity v =60 and linearly increasing distance f=60t. 

Notice that this example starts the car at full velocity. No time is spent picking up 
speed. (The velocity is a "step function.") Notice also that the distance starts at zero; 
the car is new. Those decisions make the graphs of v and f as neat as possible. One 
is the horizontal line v = 60. The other is the sloping line f = 60t. This v, f ,  t relation 
needs algebra but not calculus: 

if v is constant and f starts at zero then f = vt. 

The opposite is also true. When f increases linearly, v is constant. The division by 
time gives the slope. The distance is fl = 120 miles when the time is t 1  = 2 hours. 
Later f' =240 at t ,  = 4. At both points, the ratio f / t  is 60 miles/hour. Geometrically, 
the velocity is the slope of the distance graph: 

change in distance - vt
slope = - v.

change in time t 
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Fig. 1.3 Straight lines f = 20 + 60t (slope 60) and f = -30t (slope -30). 

The slope of the f-graph gives the v-graph. Figure 1.3 shows two more possibilities: 

1. The distance starts at 20 instead of 0. The distance formula changes from 60t 
to 20 + 60t. The number 20 cancels when we compute change in distance-so 
the slope is still 60. 

2. When v is negative, the graph off  goes downward. The car goes backward and 
the slope of f  = -30t is v = -30. 

I don't think speedometers go below zero. But driving backwards, it's not that safe 
to watch. If you go fast enough, Toyota says they measure "absolute valuesw-the 
speedometer reads + 30 when the velocity is - 30. For the odometer, as far as I know 
it just stops. It should go backward.? 

VELOCITY vs. DISTANCE: SLOPE vs. AREA 

How do you compute f' from v? The point of the question is to see f = ut on the 
graphs. We want to start with the graph of v and discover the graph off.  Amazingly, 
the opposite of slope is area. 

The distance f is the area under the v-graph. When v is constant, the region under 
the graph is a rectangle. Its height is v, its width is t ,  and its area is v times t .  This is 
integration, to go from v to f by computing the area. We are glimpsing two of the 
central facts of calculus. 

1A The slope of the f-graph gives the velocity v. The area under the v-graph 
gives the distance f. 

That is certainly not obvious, and I hesitated a long time before I wrote it down in 
this first section. The best way to understand it is to look first at more examples. The 
whole point of calculus is to deal with velocities that are not constant, and from now 
on v has several values. 

EXAMPLE (Forward and back) There is a motion that you will understand right away. 
The car goes forward with velocity V, and comes back at the same speed. To say it 
more correctly, the velocity in the second part is - V. If the forward part lasts until 
t = 3, and the backward part continues to t = 6,  the car will come back where it started. 
The total distance after both parts will be f = 0. 

+This actually happened in Ferris Bueller's Day 08,when the hero borrowed his father's sports 
car and ran up the mileage. At home he raised the car and drove in reverse. I forget if it 
worked. 



1 Introductionto Calculus 

1u(r) = slope of f ( t )  

Fig. 1.4 Velocities + V and -V give motion forward and back, ending at f(6)=0. 

The v-graph shows velocities + V and -V. The distance starts up with slope + V 
and reaches f = 3V. Then the car starts backward. The distance goes down with slope 
-V and returns to f = 0 at t = 6 .  

Notice what that means. The total area "under" the v-graph is zero! A negative 
velocity makes the distance graph go downward (negative slope). The car is moving 
backward. Area below the axis in the v-graph is counted as negative. 

FUNCTIONS 

This forward-back example gives practice with a crucially important idea-the con-
cept of a "jiunction." We seize this golden opportunity to explain functions: 

The number v(t) is the value of the function t. at the time t. 

The time t is the input to the function. The velocity v(t) at that time is the output. 
Most people say "v oft" when they read v(t). The number "v of 2" is the velocity 
when t = 2. The forward-back example has v(2) = + V and v(4) = - V. The function 
contains the whole history, like a memory bank that has a record of v at each t. 

It is simple to convert forward-back motion into a formula. Here is v(t): 

The ,right side contains the instructions for finding v(t). The input t is converted into 
the output + V or - V. The velocity v(t) depends on t. In this case the function is 
"di~continuo~s,~ 'because the needle jumps at t = 3. The velocity is not dejined at that 
instant. There is no v(3). (You might argue that v is zero at the jump, but that leads 
to trouble.) The graph off' has a corner, and we can't give its slope. 

The problem also involves a second function, namely the distance. The principle 
behind f(t) is the same: f (t) is the distance at time t. It is the net distance forward, 
and again the instructions change at t = 3. In the forward motion, f(t) equals Vt as 
before. In the backward half, a calculation is built into the formula for f(t): 

At the switching time the right side gives two instructions (one on each line). This 
would be bad except that they agree: f (3)= 3 V . v h e  distance function is "con- 

?A function is only allowed one ~:alue,f'(r)  at each time ror ~ ( t )  
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tinuous." There is no jump in f, even when there is a jump in v. After t = 3 the distance 
decreases because of -Vt. At t = 6 the second instruction correctly gives f (6) = 0. 

Notice something more. The functions were given by graphs before they were given 
by formulas. The graphs tell you f and v at every time t-sometimes more clearly 
than the formulas. The values f (t) and v(t) can also be given by tables or equations 
or a set of instructions. (In some way all functions are instructions-the function 
tells how to find f at time t.) Part of knowing f is knowing all its inputs and 
outputs-its domain and range: 

The domain of a function is the set of inputs. The range is the set of outputs. 

The domain of f consists of all times 0 < t < 6. The range consists of all distances 
0 <f(t) < 3V. (The range of v contains only the two velocities + V and -V.) 
We mention now, and repeat later, that every "linear" function has a formula 
f (t) = vt + C. Its graph is a line and v is the slope. The constant C moves the line up 
and down. It adjusts the line to go through any desired starting point. 

SUMMARY: MORE ABOUT FUNCTIONS 

May I collect together the ideas brought out by this example? We had two functions 
v and f.  One was velocity, the other was distance. Each function had a domain, 
and a range, and most important a graph. For the f-graph we studied the slope 
(which agreed with v). For the v-graph we studied the area (which agreed with f). 
Calculus produces functions in pairs, and the best thing a book can do early is to 
show you more of them. 

input t + function f -, output f (t) " { input 2 + function u + output v(2) 1 the 
domain input 7 + f (t) = 2t + 6 + f (7)= 20 rangein 

Note about the definition of a function. The idea behind the symbol f (t) is absolutely 
crucial to mathematics. Words don't do it justice! By definition, a function is a "rule" 
that assigns one member of the range to each member of the domain. Or, a function 
is a set of pairs (t, f (t)) with no t appearing twice. (These are "ordered pairs" because 
we write t before f (t).) Both of those definitions are correct-but somehow they are 
too passive. 

In practice what matters is the active part. The number f (t) is produced from the 
number t. We read a graph, plug into a formula, solve an equation, run a computer 
program. The input t is "mapped" to the output f(t), which changes as t changes. 
Calculus is about the rate of change. This rate is our other function v. 

Fig. 1.5 Subtracting 2 from f affects the range. Subtracting 2 from t affects the domain. 
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It is quite hard at the beginning, and not automatic, to see the difference between 
f (t) - 2 and f (t - 2). Those are both new functions, created out of the original f (t). 
In f (t)- 2, we subtract 2 from all the distances. That moves the whole graph down. 
In f ( t  - 2), we subtract 2 from the time. That moves the graph over to the right. 
Figure 1.5 shows both movements, starting from f (t) = 2t + 1. The formula to find 
f (t - 2) is 2(t - 2) + 1, which is 2t - 3. 

A graphing calculator also moves the graph, when you change the viewing window. 
You can pick any rectangle A < t < B, C <f(t)  < D. The screen shows that part of 
the graph. But on the calculator, the function f ( t )remains the same. It is the axes that 
get renumbered. In our figures the axes stay the same and the function is changed. 

There are two more basic ways to change a function. (We are always creating new 
functions-that is what mathematics is all about.) Instead of subtracting or adding, 
we can multiply the distance by 2. Figure 1.6 shows 2f (t). And instead of shifting the 
time, we can speed it up. The function becomes f(2t). Everything happens twice as 
fast (and takes half as long). On the calculator those changes correspond to a 
"zoom"-on the f axis or the t axis. We soon come back to zooms. 

0 I t 0 I t 0 
domain 1 1 112 

Fig. 1.6 Doubling the distance or speeding up the time doubles the slope. 

1.1 EXERCISES 

Each section of the book contains read-through questions. They 
allow you to outline the section yourself-more actively than 
reading a summary. This is probably the best way to remember 
the important ideas. 

Starting from f(0)  = 0 at constant velocity v ,  the distance 
function is f ( t)= a . When f ( t )  = 55t the velocity is 
v = b . When f(t) = 55t + 1000 the velocity is still c 
and the starting value is f (0)= d . In each case v is the 

e of the graph off .  When f is negative, the graph 
of s goes downward. In that case area in the t.-graph 
counts as h . 

Forward motion from f (0)= 0 to f (2)= 10 has v = i . 
Then backward motion to f (4)= 0 has v = i . The dis- 
tance function is f (t)= 5t for 0 < t < 2 and then f (t)= k 

(not -5t). The slopes are I and m . The distance 
f(3) = n . The area under the v-graph up to time 1.5 is 

o . The domain o f f  is the time interval P , and the 
range is the distance interval q . The range of v(t) is only 
-1 . 

The value off (t) = 3t + 1 at t = 2 is f (2) = s . The value 
19 equals f ( t ). The difference f (4)-f (1) = u . That 
is the change in distance, when 4 - 1 is the change in v . 
The ratio of those changes equals w , which is the x 

of the graph. The formula for f (t) + 2 is 3t + 3 whereas 
f (t + 2) equals Y . Those functions have the same z 

as f :  the graph of f (t)+ 2 is shifted A and f (t + 2) is 
shifted B . The formula for f (5t) is C . The formula 
for 5f ( t )is D . The slope has jumped from 3 to E . 
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The set of inputs to a function is its F . The set of 
outputs is its G . The functions f (t) = 7 + 3(t -2) and 
f(t) = vt + C are t~ . Their graphs are I with slopes 
equal to J and K . They are the same function, if 
v =  L a n d C =  M . 

Draw the velocity graph that goes with each distance graph. 

1 If I f 

3 Write down three-part formulas for the velocities u(t) in 
Problem 2, starting from v(t) = 2 for 0 < t < 10. 

4 The distance in l b  starts with f (t) = 10- lot for 0 < t < 1. 
Give a formula for the second part. 

5 In the middle of graph 2a find f (15) and f (12) and f (t). 

6 In graph 2b find f(1.4T). If T= 3 what is f(4)? 

7 Find the average speed between t = 0 and t = 5 in graph 
la. What is the speed at t = 5? 

8 What is the average speed between t = 0 and t = 2 in graph 
1 b? The average speed is zero between t = 3and t = . 
9 (recommended) A car goes at speed u = 20 into a brick 

wall at distance f -4. Give two-part formulas for v(t) and 
f (t) (before and after), and draw the graphs. 

10 Draw any reasonable graphs of v(t) and f(t) when 
(a) the driver backs up, stops to shift gear, then goes fast; 
(b) the driver slows to 55 for a police car; 
(c) in a rough gear change, the car accelerates in jumps; 
(d) the driver waits for a light that turns green. 

11 Your bank account earns simple interest on the opening 
balance f (0). What are the interest rates per year? 

12 The earth's population is growing at v = 100 million a 
year, starting from f = 5.2 billion in 1990. Graph f (t) and find 
f (2000). 

Draw the distance graph that goes with each velocity graph. 
Start from f = 0 at t = 0 and mark the distance. 

13a 13b 

15 Write down formulas for v(t) in Problem 14, starting with 
v = -40 for 0 < t < 1. Find the average velocities to t = 2.5 
and t = 3T. 

16 Give 3-part formulas for the areas f (t) under v(t) in 13. 

17 The distance in 14a starts with f (t)= -40t for 0 < t < 1. 
Find f (t) in the other part, which passes through f = 0at t = 2. 

18 Draw the velocity and distance graphs if v(t) = 8 for 
O < t < 2 ,  f ( t ) = 2 0 + t  for 2 < t < 3 .  

19 Draw rough graphs of y = and y = ,/=and 
y = f i -4. They are "half-parabolas" with infinite slope at 
the start. 

20 What is the break-even point if x yearbooks cost 
$1200 + 30x to produce and the income is 40x? The slope of 
the cost line is (cost per additional book). If it goes 
above you can't break even. 

21 What are the domains and ranges of the distance functions 
in 14a and 14b-all values of t and f (t) if f (0)= O? 

22 What is the range of u(t) in 14b? Why is t = 1 not in the 
domain of v(t) in 14a? 

Problems 23-28 involve linear functions f (t)= vt + C. Find the 
constants v and C. 

23 What linear function has f (0)= 3 and f (2) = -1  l? 

24 Find two linear functions whose domain is 0 < t d 2 and 
whose range is 1 df (t)< 9. 

25 Find the linear function with f(1) = 4 and slope 6. 

26 What functions have f (t + 1)=f (t)+ 2? 

27 Find the linear function with f (t + 2) =f (t) + 6 and 
f (1)= lo. 

28 Find the only f = vt that has f (2t) = 4f (t). Show that every 
f = +at2 has this property. To go times as far in 
twice the time, you must accelerate. 
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29 Sketch the graph of f(t) = 15 -2tl (absolute value) for 
It(< 2 and find its slopes and range. 

30 Sketch the graph off (t) = 4 - t -14 - t( for 2 < t 6 5 and 
find its slope and range. 

31 Suppose v = 8 up to time T, and after that v = -2. Starting 
from zero, when does f return to zero? Give formulas for v(t) 
and f (t). 

32 Suppose v = 3 up to time T= 4. What new velocity will 
lead to f (7) = 30 if f (0) = O? Give formulas for u(t) and f (t). 

33 What function F(C) converts Celsius temperature C to 
Fahrenheit temperature F? The slope is , whish is 
the number of Fahrenheit degrees equivalent to 1°C. 

34 What function C(F) converts Fahrenheit to Celsius (or 
Centigrade), and what is its slope? 

35 What function converts the weight w in grams to the 
weight f (w) in kilograms? Interpret the slope of f (w). 

36 (Newspaper of March 1989) Ten hours after the accident 
the alcohol reading was .061. Blood alcohol is eliminated at 
.015 per hour. What was the reading at the time of the acci- 
dent? How much later would it drop to .04 (the maximum set 
by the Coast Guard)? The usual limit on drivers is .10 percent. 

Which points between t = 0 and t = 5 can be in the domain of 
f (t)? With this domain find the range in 37-42. 

37 f(t) = ,/= 38 f (t) = I/-

39 f (t) = ( t-41 (absolute value) 40 f (t) = l/(t -4).? 

43 (a) Draw the graph off (t) = i t  + 3 with domain 0 Q t d 2. 
Then give a formula and graph for 

(b) f ( t )  + 1 (c) f ( t  + 1) 
(dl 4f (0  (e) f (40. 

44 (a) Draw the graph of U(t) = step function = (0 for t < 0, 
1 for t > 0). Then draw 

(b) U(t) + 2 ( 4  U(t + 2) 
( 4  3UW (e) U(3t). 

45 (a) Draw the graph of f (t) = t + 1 for -1 Q t 6 1. Find 
the domain, range, slope, and formula for 

(b) 2f (0  ( 4  f (t -3) (d) -f (0 (el f k t ) .  

46 If f (t) = t - 1 what are 2f (3t) and f (1 -t) and f (t - I)? 

47 In the forward-back example find f (* T )and f(3T). Verify 
that those agree with the areas "under" the v-graph in 
Figure 1.4. 

48 Find formulas for the outputs fl(t) and fi(t) which come 
from the input t: 

(1) inside = input * 3 (2) inside + input + 6 
output = inside + 3 output t inside* 3 

Note BASIC and FORTRAN (and calculus itself) use = 
instead of t.But the symbol t or := is in some ways better. 
The instruction t + t + 6 produces a new t equal to the old t 
plus six. The equation t = t + 6 is not intended. 

49 Your computer can add and multiply. Starting with the 
number 1 and the input called t, give a list of instructions to 
lead to these outputs: 

f1 ( t )= t2+ t  f2(t)=fdfdt))  f3(t)=f1(t+l)-

50 In fifty words or less explain what a function is. 

The last questions are challenging but possible. 

51 If f (t) = 3t - 1 for 0 6 t Q 2 give formulas (with domain) 
and find the slopes of these six functions: 

(a) f (t + 2) (b) f ( t )  + 2 ( 4  2f ( 0  
( 4  f (2t) (e) f (- t) (f) f ( f  (t)). 

52 For f (t) = ut + C find the formulas and slopes of 

(a) 3f (0 + 1 (b) f(3t + 1) (c) 2f(4t) 
(dl f (- t) (el f (0  -f (0) (f) f ( f  (t)). 

53 (hardest) The forward-back function is f (t) = 2t for 
O<t  ~ 3 ,  f ( t )=  12-2t for 3 6 t d 6 .  Graph f(f(t)) and find 
its four-part formula. First try t = 1.5 and 3. 

54 (a) Why is the letter X not the graph of a function? 
(b) Which capital letters are the graphs of functions? 
(c) Draw graphs of their slopes. 

1.2 Calculus Without Limits 

The next page is going to reveal one of the key ideas behind calculus. The discussion 
is just about numbers-functions and slopes can wait. The numbers are not even 
special, they can be any numbers. The crucial point is to look at their differences: 

Suppose the numbers are f =  0 2 6 7 4 9 
Their differences are v = 2 4 1 - 3 5  

The differences are printed in between, to show 2 -0 = 2 and 6 -2 = 4 and 7 -6 = 1. 
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Notice how 4 -7 gives a negative answer -3. The numbers in f can go up or down, 
the differences in v can be positive or negative. The idea behind calculus comes when 
you add up those differences: 

2 + 4 + 1 - 3 + 5 = 9  

The sum of differences is 9. This is the last number on the top line (in f). Is this an 
accident, or is this always true? If we stop earlier, after 2 +4 + 1, we get the 7 in f. 
Test any prediction on a second example: 

Suppose the numbers are f =  1 3 7 8 5 10 
Their differences are u = 2 4 1 - 3 5  

The f's are increased by 1. The differences are exactly the same-no change. The 
sum of differences is still 9. But the last f is now 10. That prediction is not right, we 
don't always get the last f. 

The first f is now 1.- The answer 9 (the sum of differences) is 10 - 1, the last f 
minus the first f. What happens when we change the f's in the middle? * 

Suppose the numbers are f = 1 5 12 7 10 
Their differences are v = 4 7 - 5 3  

The differences add to 4 + 7 - 5 + 3 = 9. This is still 10 - 1. No matter what f's we 
choose or how many, the sum of differences is controlled by the first f and last f. 
If this is always true, there must be a clear reason why the middle f's cancel out. 

The sum of dlrerences is (5 - 1)+ (12 -5) + (7 - 12)+ (10 -7) = 10 - 1. 

The 5's cancel, the 12's cancel, and the 7's cancel. It is only 10 - 1 that doesn't cancel. 
This is the key to calculus! 

EXAMPLE I The numbers grow linearly: f = 2 3 4 5 6 7 
Their differences are constant: v = 1 1 1 1 1 

The sum of differences is certainly 5. This agrees with 7 -2 =ha,,-f,,,, .The numbers 
in v remind us of constant velocity. The numbers in f remind us of a straight line 
f = vt + C. This example has v = 1 and the f's start at 2. The straight line would 
come from f = t + 2. 

EXAMPLE 2 The numbers are squares: f = 0 1 4 9 16 
Their differences grow linearly: u = 1 3 5 7 

1+ 3 + 5 + 7 agrees with 42 = 16. It is a beautiful fact that the first j odd numbers 
always add up to j2.The v's are the odd numbers, the f's are perfect squares. 

Note The letter j is sometimes useful to tell which number in f we are looking at. 
For this example the zeroth number is f, =0 and the jth number is fj =j2.This is a 
part of algebra, to give a formula for the f's instead of a list of numbers. We can also 
use j to tell which difference we are looking at. The first u is the first odd number 
v, = 1. The jth difference is the jth odd number vj =2j - 1. (Thus v, is 8 - 1= 7.) It 
is better to start the differences with j = 1, since there is no zeroth odd number v,. 

With this notation the jth diflerence is vj =fi -fi-,. Sooner or later you will get 
comfortable with subscripts like j and j - 1, but it can be later. The important point 
is that the sum of the u's equals A,,, -hi,,,. We now connect the v's to slopes and the 
f's to areas. 
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Fig. 1.7 Linear increase in v = 1,3,5,7. Squares in the distances f = 0, 1,4,9, 16. 

Figure 1.7 shows a natural way to graph Example 2, with the odd numbers in v and 
the squares in f. Notice an important difference between the v-graph and the f-graph. 
The graph of f is "piecewise linear." We plotted the numbers in f and connected 
them by straight lines. The graph of v is "piecewise constant." We plotted the differ- 
ences as constant over each piece. This reminds us of the distance-velocity graphs, 
when the distance f (t) is a straight line and the velocity v(t) is a horizontal line. 

Now make the connection to slopes: 

distance up change in f 
The slope of the f-graph is - - = v. 

distance across change in t 

Over each piece, the change in t (across) is 1. The change in f (upward) is the difference 
that we are calling v. The ratio is the slope vll or just v. The slope makes a sudden 
change at the breakpoints t = l,2,3, .... At those special points the slope of the 
f-graph is not defined-we connected the v's by vertical lines but this is very 
debatable. The main idea is that between the breakpoints, the slope off (t) is v(t). 

Now make the connection to areas: 

The total area under the v-graph is f,,,, -hirst. 
This area, underneath the staircase in Figure .1.7, is composed of rectangles. The base 
of every rectangle is 1. The heights of the rectangles are the v's. So the areas also 
equal the v's, and the total area is the sum of the v's. This area is A,,, -hirst. 

Even more is true. We could start at any time and end at any later time 
-not necessarily at the special times t = 0, 1,2,3,4. Suppose we stop at t = 3.5. 
Only half of the last rectangular area (under v = 7) will be counted. The total area is 
1 + 3 + 5 + &7) = 12.5. This still agrees with f,,,, --hi,, = 12.5 - 0. At this new ending 
time t = 3.5, we are only halfway up the last step in the f-graph. Halfway between 
9 and 16 is 12.5. 

This is nothing less than the Fundamental Theorem of Calculus. But we have only 
used algebra (no curved graphs and no calculations involving limits). For now the 
Theorem is restricted to piecewise linear f (t) and piecewise constant u(t). In Chapter 5 
that restriction will be overcome. 

Notice that a proof of 1 + 3 + 5 + 7 = 42 is suggested by Figure 1.7a. The triangle 
under the dotted line has the same area as the four rectangles under the staircase. 
The area of the triangle is 4 base height = 4 8, which is the perfect Square 42. 
When there are j rectangles instead of 4, we get 3 j 2j = j2 for the area. 
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The next examples show other patterns, where f and v increase exponentially or 
oscillate around zero. I hope you like them but I don't think you have to learn them. 
They are like the special functions 2' and sin t and cos t-except they go in steps. 
You get a first look at the important functions of calculus, but you only need algebra. 
Calculus is needed for a steadily changing velocity, when the graph off is curved. 

The last example will be income tax-which really does go. in steps. Then Sec- 
tion 1.3 will introduce the slope of a curve. The crucial step for curves is working 
with limits. That will take us from algebra to calculus. 

EXPONENTIAL VELOCITY AND DISTANCE 

Start with the numbers f = 1,2,4,8, 16. These are "powers of 2." They start with the 
zeroth power, which is 2' = 1. The exponential starts at 1 and not 0. After j steps there 
are j factors of 2, and & equals 2j. Please recognize the diflerence between 2j and j2  
and 2j. The numbers 2j grow linearly, the numbers j2grow quadratically, the numbers 
2' grow exponentially. At j = 10 these are 20 and 100 and 1024. The exponential 2' 
quickly becomes much larger than the others. 

The differences off = 1,2,4,8, 16 are exactly v = 1,2,4,8.. We get the same beauti- 
ful numbers. When the f's are powers of 2, so are the v's. The formula vj  = 2"-' is 
slightly different from & = 2j, because the first v is numbered v,. (Then v, = 2' = 1. 
The zeroth power of every number is 1, except that 0' is meaningless.) The two graphs 
in Figure 1.8 use the same numbers but they look different, because f is piecewise 
linear and v is piecewise constant. 

1 2 3 4 1 2 3 4 
Fig. 1.8 The velocity and distance grow exponentially (powers of 2). 

Where will calculus come in? It works with the smooth curve f (t)= 2'. This expo- 
nential growth is critically important for population and money in a bank and the 
national debt. You can spot it by the following test: v(t) is proportional to f (t). 

Remark The function 2' is trickier than t2. For f = t2 the slope is v = 2t. It is 
proportional to t and not t2. For f = 2' the slope is v = c2', and we won't find the 
constant c = .693 ... until Chapter 6. (The number c is the natural logarithm of 2.) 
Problem 37 estimates c with a calculator-the important thing is that it's constant. 

OSCILLATING VELOCITY AND DISTANCE 

We have seen a forward-back motion, velocity V followed by -V. That is oscillation 
of the simplest kind. The graph off  goes linearly up and linearly down. Figure 1.9 
shows another oscillation that returns to zero, but the path is more interesting. 

The numbers in f are now 0, 1, 1,0, -1, -l,O. Since f6 = 0 the motion brings us 
back to the start. The whole oscillation can be repeated. 
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The differences in v are 1,0, -1, -1,0, 1. They add up to zero, which agrees with 
Jast -Airst. It is the same oscillation as in f (and also repeatable), but shifted in time. 

The f-graph resembles (roughly) a sine curve. The v-graph resembles (even more 
roughly) a cosine curve. The waveforms in nature are smooth curves, while these are 
"digitized"-the way a digital watch goes forward in jumps. You recognize that the 
change from analog to digital brought the computer revolution. The same revolution 
is coming in CD players. Digital signals (off or on, 0 or 1 )  seem to win every time. 

The piecewise v and f start again at t = 6. The ordinary sine and cosine repeat at 
t =2n. A repeating motion is periodic-here the "period" is 6 or 2n. (With t in degrees 
the period is 360-a full circle. The period becomes 2n when angles are measured in 
radians. We virtually always use radians-which are degrees times 2n/360.) A watch 
has a period of 12 hours. If the dial shows AM and PM, the period is . 

Fig. 1.9 Piecewise constant "cosine" and piecewise linear "sine." They both repeat. 

A SHORT BURST O F  SPEED 

The next example is a car that is driven fast for a short time. The speed is V until 
the distance reaches f = 1, when the car suddenly stops. The graph of f goes up 
linearly with slope V ,  and then across with slope zero: 

V upto  t = T  Vt up to t = T 
v(t) = f (0= 

0 after t = T 1 after t = T 

This is another example of "function notation." Notice the general time t and the 
particular stopping time T. The distance is f (t). The domain off (the inputs) includes 
all times t 3 0. The range of f (the outputs) includes all distances 0 ff < 1. 

Figure 1.10 allows us to compare three cars-a Jeep and a Corvette and a Maserati. 
They have different speeds but they all reach f = 1. So the areas under the v-graphs 
are all 1. The rectangles have height V and base T = 1/ V. 

v~ EQUAL AREAS EQUAL DISTANCES I I  

Maserati delta II function 
I I 

II steD 
vc - - - - - 7  1 

I Corvette 
v~ I 

I Jeep 
I 

T~ T~ 

Fig. 1.10 Bursts of speed with V, TM= Vc Tc = 'V, T,= 1. Step function has infinite slope. 

Optional remark It is natural to think about faster and faster speeds, which means 
steeper slopes. The f-graph reaches 1 in shorter times. The extreme case is a step 
function, when the graph of f goes straight up. This is the unit step U(t) ,which is 
zero up to t =0 and jumps immediately to U = 1 for t >0. 
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What is the slope of the step function? It is zero except at the jump. At that moment, 
which is t = 0, the slope is infinite. We don't have an ordinary velocity v(t)-instead 
we have an impulse that makes the car jump. The graph is a spike over the single 
point t = 0, and it is often denoted by 6-so the slope of the step function is called 
a "delta function." The area under the infinite spike is 1. 

You are absolutely not responsible for the theory of delta functions! Calculus is 
about curves, not jumps. 

Our last example is a real-world application of slopes and! rates-to explain "how 
taxes work." Note especially the difference between tax rates and tax brackets and 
total tax. The rates are v, the brackets are on x, the total tax is f. 

EXAMPLE 3 Income tax is piecewise linear. The slopes are the tax rates .15, .28, .31. 

Suppose you are single with taxable income of x dollars (Form 1040, line 37-after 
all deductions). These are the 1991 instructions from the Internal Revenue Service: 

If x is not over $20,350, the tax is 15% of x. . 

If $20,350 < x 6 $49,300, the tax is $3052.50 + 28% of the amount over $20,350. 

If x is over $49,300, the tax is $1 1,158.50 + 31% of the amount over $49,300. 

The first bracket is 0 <x < $20,350. (The IRS never uses this symbol 6 ,but I think 
it is OK here. We know what it means.) The second bracket is $20,350 < x < $49,300. 
The top bracket x 2 $49,300 pays tax at the top rate of 31 %. But only the income in 
that bracket is taxed at that rate. 

Figure 1.1 1 shows the rates and the brackets and the tax due. Those are not average 
rates, they are marginal rates. Total tax divided by total income would be the average 
rate. The marginal rate of .28 or .31 gives the tax on each additional dollar of income- 
it is the slope at the point x. Tax is like area or distance-it adds up. Tax rate is like 
slope or velocity-it depends where you are. This is often unclear in the news media. 

40+ 180 tax to pay Ax) 
up 180 
across 3 slope .28 

f(2) = 40 , 

3,052 taxable income 
t X 

2 5 2 5 20,350 49,300 


Fig. 1. I  1 The tax rate is v, the total tax is f. Tax brackets end ar breakpoints. 

Question What is the equation for the straight line in the top bracket? 
Answer The bracket begins at x = $49,300 when the tax is f (x) = $1 1,158.50. The 
slope of the line is the tax rate .31. When we know a point on the line and the slope, 
we know the equation. This is important enough to be highlighted. 

Section 2.3 presents this "point-slope equation" for any straight line. Here you see it 
for one specific example. Where does the number $1 1,158.50 come from? It is the tax 
at the end of the middle bracket, so it is the tax at the start of the top bracket. 
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Figure 1.11 also shows a distance-velocity example. The distance at t = 2 is 
f (2)= 40 miles. After that time the velocity is 60 miles per hour. So the line with 
slope 60 on the f-graph has the equation 

f (t) = starting distance + extra distance =40 + 60(t -2). 

The starting point is (2'40). The new speed 60 multiplies the extra time t -2. The 
point-slope equation makes sense. We now review this section, with comments. 

Central idea Start with any numbers in f. Their differences go in v. Then the sum 
of those differences is ha,,-ffirst. 

Subscript notation The numbers are f,, fl ,  ... and the first difference is v, =fl-f,. 
A typical number is fi and the jth difference is v j  =fi -fi- . When those differences 
are added, all f's in the middle (like f,) cancel out: 

Examples fi =j or j2or 2'. Then vj = 1 (constant) or 2j - 1 (odd numbers) or 2'- '. 

Functions Connect the f's to be piecewise linear. Then the slope v is piecewise 
constant. The area under the v-graph from any t,,,,, to any ten, equals f (ten,)-f (t,,,,,). 

Units Distance in miles and velocity in miles per hour. Tax in dollars and tax rate 
in (dollars paid)/(dollars earned). Tax rate is a percentage like .28, with no units. 

1.2 EXERCISES 

Read-through questions 

Start with the numbers f = 1,6,2,5. Their differences are 
v = a .The sum of those differences is b .This is equal 
to f,,,, minus c . The numbers 6 and 2 have no effect on 
this answer, because in (6 - 1)+ (2 -6) + (5 -2) the numbers 
6 and 2 d . The slope of the line between f(0) = 1 and 
f (1) = 6 is e . The equation of that line is f (t) = f . 

With distances 1, 5, 25 at unit times, the velocities are 
g . These are the h of the f-graph. The slope of the 

tax graph is the tax i . If f(t) is the postage cost for t 
ounces or t grams, the slope is the i per k . For 
distances 0, 1,4,9 the velocities are I . The sum of the 
first j odd numbers is fi = m . Then flo is n and the 
velocity ulo is 0 . 

The piecewise linear sine has slopes P . Those form a 
piecewise q cosine. Both functions have r equal to 
6, which means that f (t + 6) = s for every t. The veloci- 
ties v = 1,2,4,8, ... have vj = t . In that case fo = 1 and 
jj.= u . The sum of 1,2,4,8, 16 is v . The difference 
2J -2'- ' equals w . After a burst of speed V to time T, 
the distance is x . If f(T) = 1 and V increases, the burst 
lasts only to T = Y . When V approaches infinity, f (t) 
approaches a function. The velocities approach a 

A function, which is concentrated at t = 0 but has area 
B under its graph. The slope of a step function is c . 

Problems 1-4 are about numbers f and differences v. 

1 From the numbers f = 0,2,7,10 find the differences u and 
the sum of the three v's. Write down another f that leads 
to the same v's. For f =  0,3,12,10 the sum of the u's is 
still . 
2 Starting from f = 1,3,2,4 draw the f-graph (linear pieces) 

and the v-graph. What are the areas "under" the u-graph that 
add to 4 - l? If the next number in f is 11, what is the area 
under the next v? 

3 From v = 1,2, 1'0, -1 find the f's starting at fo = 3. 
Graph v and f. The maximum value of f occurs when 
v =  . Where is the maximum f when u = 1,2,1, -l?  

4 For f = 1, b, c, 7 find the differences vl  ,u2, v, and add 
them up. Do the same for f = a, b, c, 7. Do the same for 
f =a, b, c, d. 

Problems 5-11 are about linear functions and constant slopes. 

5 Write down the slopes of these linear functions: 
(a) f ( t )=  1.lt (b) f ( t )=  1 -2t (c) f ( t )=4+  5(t -6). 

Compute f (6) and f (7) for each function and confirm that 
f (7) -f (6) equals the slope. 

6 If f (t) = 5 + 3(t - 1) and g(t) = 1.5 + 2S(t - 1) what is 
h(t) =f (t) -g(t)? Find the slopes of f, g, and h. 
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=Suppose ~ ( t )  2 for t < 5 and v(t) =3 for t > 5. 
(a) If f (0)=0 find a two-part formula for f (t). 
(b) Check that f (10) equals the area under the graph of 
v(t) (two rectangles) up to t = 10. 

Suppose u(t) = 10 for t < 1/10, v(t) =0 for t > 1/10. Start- 
ing from f (0)= 1 find f (t) in two pieces. 

9 Suppose g(t) =2t + 1 and f (t)=4t. Find g(3) and f (g(3)) 
and f(g(t)). How is the slope of f(g(t)) related to the slopes 
of f and g? 

10 For the same functions, what are f (3) and g(f (3)) and 
g(f (t))? When t is changed to 4t, distance increases 
times as fast and the velocity is' multiplied by . 
11 Compute f (6) and f (8) for the functions in Problem 5. 
Confirm that the slopes v agree with 

f (8)-f (6) -
-

change in f
slope = 

8 -6 change in t ' 

Problems 12-18 are based on Example 3 about income taxes. 

12 What are the income taxes on x=$10,000 and 
x =$30,000 and x =$50,000? 

13 What is the equation for income tax f(x) in the second 
bracket $20,350 <x <$49,300? How is the number 1 1,158.50 
connected with the other numbers in the tax instructions? 

14 Write the tax function F(x) for a married couple if the IRS 
treats them as two single taxpayers each with taxable income 
x/2. (This is not done.) 

15 In the 15% bracket, with 5% state tax as a deduction, the 
combined rate is not 20% but . Think about the tax 
on an extra $100. 

16 A piecewise linear function is continuous when f (t) at the 
end of each interval equals f (t) at the start of the following 
interval. If f (t)= 5t up to t = 1 and v(t) =2 for t > 1, define 
f beyond t = 1 so it is (a) continuous (b) discontinuous. 
(c) Define a tax function f(x) with rates .15 and .28 so you 
would lose by earning an extra dollar beyond the breakpoint. 

17 The difference between a tax credit and a deduction from 
income is the difference between f (x)-c and f (x -d). Which 
is more desirable, a credit of c = $1000 or a deduction of 
d =$1000, and why? Sketch the tax graphs when f (x)= .15x. 

18 The average tax rate on the taxable income x is a(x) = 
f (x)/x. This is the slope between (0,O) and the point (x, f (x)). 
Draw a rough graph of a(x). The average rate a is below the 
marginal rate v because . 

Problems 19-30 involve numbers fo, f,,f2, ...and their differ- 
ences vj =& -&-, .They give practice with subscripts 0, . . .,j. 
19 Find the velocities v,, v2, v3 and formulas for vj and &: 
(a) f= l ,3 ,5 ,7  ... (b) f=0,1,0,1, ... (c) f=O,$,$,i ,... 

20 Find f,, f2, f3 and a formula for fi with fo =0: 
(a) v=l ,2 ,4 ,8,... (b) u = - l , l , - l , l ,  ... 

21 The areas of these nested squares are 12, 22, 32, . . . . What 
are the areas of the L-shaped bands (the differences between 
squares)? How does the figure show that I + 3 + 5 +7 =42? 

22 From the area under the staircase (by rectangles and then 
by triangles) show that the first j whole numbers 1 to j add 
up to G2+&. Find 1 +2 + .-.+ 100. 

23 If v=1,3,5 ,... then&=j2.  If v =  I, 1, 1 ,... then &= 
. Add those to find the sum of 2,4,6, ...,2j. Divide 

by 2 to find the sum of 1,2,3, ...,j. (Compare Problem 22.) 

24 True (with reason) or false (with example). 
(a) When the f's are increasing so are the 0's. 
(b) When the v's are increasing so are the f's. 
(c) When the f's are periodic so are the 0's. 
(d) When the v's are periodic so are the f 's. 

25 If f(t)= t2, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

26 If f (t)= t2 + t, compute f (99) and f (101). Between those 
times, what is the increase in f divided by the increase in t? 

27 If & =j2+j + 1 find a formula for vj. 

28 Suppose the 0's increase by 4 at every step. Show by 
example and then by algebra that the "second difference" 
&+ -2& +&- ,equals 4. 

29 Suppose fo =0 and the v's are 1, 3, 4, $, 4, 4, 4, .... For 
which j does & = 5? 

30 Show that aj =&+,-2fj +fj- ,always equals vj+ ,-vj. If 
v is velocity then a stands for . 

Problems 31-34 involve periodic f's and v's (like sin t and 
cos t). 

31 For the discrete sine f=O, 1, 1,0, -1, -1,O find the 
second differences al =f2 -2f1 +.fo and a2 =f, -2f2 +fland 
a3. Compare aj with &. 
32 If the sequence v,, v2, ... has period 6 and wl, w2, ... has 
period 10, what is the period of v, + w,, v2 + w2, ...? 

33 Draw the graph of f(t) starting from fo =0 when v = 1, 
-1, -1, 1. If v has period 4 find f(12), f(l3), f(lOO.l). 
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34 Graph f(t) from f o = O  to f 4 = 4  when v =  1,2, l,O. If v 44 Graph the square wave U(t) -U(t - 1). If this is the veloc- 
has period 4, find f (1 2) and f (1 4) and f (1 6). Why doesn't f ity v(t), graph the distance f(t). If this is the distance f (t), 
have period 4? graph the velocity. 

Problems 35-42 are about exponential v's and f 's. 45 Two bursts of speed lead to the same distance f = 10: 

35 Find the v's for f = 1,3,9,27. Predict v, and vj. Algebra v =  tot=.001 v = v t o t =  . 
gives 3j - 3j- = (3 - 1)3j- '. As V+ co the limit of the f (t)'s is 
36 Find 1 + 2 + 4 +  +32 and also 1 + j + d +  +&.- a -

46 Draw the staircase function U(t) + U(t - 1)+ U(t -2). Its 
37 Estimate the slope of f (t)=2' at t =0. Use a calculator slope is a sum of three functions. 
to compute (increase in f )/(increase in t) when t is small: 

f (t) -f (0) 2 - 1 2.l - 1 2.O' - 1 2.0°1 - 1 47 Which capital letters like L are the graphs of functions 
- and -and -and - when steps are allowed? The slope of L is minus a delta func- 

t 1 .I .o1 .001 . tion. Graph the slopes of the others. 

38 Suppose fo = I and vj  = 2fi - ,. Find f,. 
48 Write a subroutine FINDV whose input is a sequence 

39 (a) From f = 1, j , b ,  find v,, v,, v ,  and predict vj. fo, f,, ...,f, and whose output is v,, v,, ...,v,. Include 
(b) Check f3 -fo = v, + v2 + v3 and fi-A- = vj. graphical output if possible. Test on fi = 2j and j2 and 2j. 

40 Suppose vj  = rj. Show that fi = (rj' '- l)/(r- 1) starts 49 Write a subroutine FINDF whose input is v,, ...,v, and 
from fo = 1 and has fj-fi-, = uj. (Then this is the correct fo, and whose output is fo, f,,  ...,f,. The default value of fo
fi = 1 + r + + r j  = sum of a geometric series.) is zero. Include graphical output if possible. Test vj =j. 

41 From fi =(- 1)' compute vj. What is v,  + v2 + + vj? 
50 If FINDV is applied to the output of FINDF, what 

42 Estimate the slope of f (t) = et at t = 0. Use a calculator sequence is returned? If FINDF is applied to the output of 
that knows e (or else take e = 2.78) to compute FINDV, what sequence is returned? Watch fo. 

f(t)-f(0) 
-

e - 1 e.' - 1 e-O1- 1 51 Arrange 2j and j2and 2' and 4in increasing order and -and -
t 1 . I  .01 - (a) when j is large: j =9 (b) when j is small: j =&. 

Problems 43-47 are about U(t) = step from 0 to 1 at t =0. 52 The average age of your family since 1970 is a piecewise 
43 Graph the four functions U(t - 1) and U(t) -2 and U(3t) linear function A(t). Is it continuous or does it jump? What 
and 4U(t). Then graph f (t) =4U(3t - 1)-2. is its slope? Graph it the best you can. 

1.3 The Velocity at an Instant 

We have arrived at the central problems that calculus was invented to solve. There 
are two questions, in opposite directions, and I hope you could see them coming. 

1. If the velocity is changing, how can you compute the distance traveled? 
2. If the graph of f(t) is not a straight line, what is its slope? 

Find the distance from the velocity, find the velocity from the distance. Our goal is 
to do both-but not in one section. Calculus may be a good course, but it is not 
magic. The first step is to let the velocity change in the steadiest possible way. 

Question 1 Suppose the velocity at each time t is v(t) = 2t. Find f (t). 

With zr= 2t, a physicist would say that the acceleration is constant (it equals 2). The 
driver steps on the gas, the car accelerates, and the speedometer goes steadily up. 
The distance goes up too-faster and faster. If we measure t in seconds and v in feet 
per second, the distance f comes out in feet. After 10 seconds the speed is 20 feet 
per second. After 44 seconds the speed is 88 feetlsecond (which is 60 miles/hour). 
The acceleration is clear, but how far has the car gone? 
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Question 2 The distance traveled by time t is f ( t )= t2 .  Find the velocity v(t). 

The graph off ( t )= t2  is on the right of Figure 1.12. It is a parabola. The curve starts 
at zero, when the car is new. At t = 5 the distance is f = 25. By t = 10, f reaches 100. 

Velocity is distance divided by time, but what happens when the speed is changing? 
Dividing f =  100 by t = 10 gives v = 10-the average veEocity over the first ten 
seconds. Dividing f = 121 by t = 11 gives the average speed over 11 seconds. But how 
do we find the instantaneous velocity-the reading on the speedometer at the exact 
instant when t = lo? 

change in 
distance 
( t  + h)2 -

time t t t + h  t 

Fig. 1.12 The velocity v =2t is linear. The distance f= t2 is quadratic. 

I hope you see the problem. As the car goes faster, the graph of t 2  gets steeper- 
because more distance is covered in each second. The average velocity between t = 10 
and t = 11 is a good approximation-but only an approximation-to the speed at 
the moment t = 10. Averages are easy to find: 

average velocity is f (1 1) -f (10) -- 121 - 100 
= 21.

11- 10 1 

The car covered 21 feet in that 1 second. Its average speed was 21 feetlsecond. Since 
it was gaining speed, the velocity at the beginning of that second was below 21. 

Geometrically, what is the average? It is a slope, but not the slope of the curve. 
The average velocity is the slope of a straight line. The line goes between two points 
on the curve in Figure 1.12. When we compute an average, we pretend the velocity 
is constant-so we go back to the easiest case. It only requires a division of distance 
by time: 

change in f
average velocity = 

change in t ' 

Calculus and the Law You enter a highway at 1 :00. If you exit 150 miles away at 
3 :00, your average speed is 75 miles per hour. I'm not sure if the police can give you 
a ticket. You could say to the judge, "When was I doing 75?" The police would have 
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to admit that they have no idea-but they would have a definite feeling that you 
must have been doing 75 sometime.? 

We return to the central problem-computing v(10) at the instant t = 10. The 
average velocity over the next second is 21. We can also find the average over the 
half-second between t = 10.0 and t = 10.5. Divide the change in distance by the change 
in time: 

f (10.5) -f (10.0) - (10.5)2- (10.0)2- 110.25 - 100 
= 20.5. 

10.5 - 10.0 .5 .5 

That average of 20.5 is closer to the speed at t = 10. It is still not exact. 
The way to find v(10) is to keep reducing the time interval. This is the basis for 

Chapter 2, and the key to differential calculus. Find the slope between points that are 
closer and closer on the curve. The "limit" is the slope at a single point. 

Algebra gives the average velocity between t = 10 and any later time t = 10 + h. 
The distance increases from lo2 to (10 + h)l. The change in time is h. So divide: 

This formula fits our previous calculations. The interval from t = 10 to t = 11 had 
h = 1, and the average was 20 + h = 21. When the time step was h =i,the average 
was 20 + 4= 20.5. Over a millionth of a second the average will be 20 plus 
1/1,000,000-which is very near 20. 

Conclusion: The velocity at t = 10 is v = 20. That is the slope of the curve. It agrees 
with the v-graph on the left side of Figure 1.12, which also has v(10) = 20. 

We now show that the two graphs match at all times. If f (t) = t 2  then v(t) = 2t. 
You are seeing the key computation of calculus, and we can put it into words before 
equations. Compute the distance at time t + h, subtract the distance at time t, and 
divide by h. That gives the average velocity: 

This fits the previous calculation, where t was 10. The average was 20 + h. Now the 
average is 2t + h. It depends on the time step h, because the velocity is changing. But 
we can see what happens as h approaches zero. The average is closer and closer to 
the speedometer reading of 2t, at the exact moment when the clock shows time t: 

I 1E As h approaches zero, the average velooity 2t + h approaches v(t )  = 2t. I 
Note The computation (3) shows how calculus needs algebra. If we want the whole 
v-graph, we have to let time be a "variable." It is represented by the letter t. Numbers 
are enough at the specific time t = 10 and the specific step h = 1-but algebra gets 
beyond that. The average between any t and any t + h is 2t + h. Please don't hesitate 
to put back numbers for the letters-that checks the algebra. 

+This is our first encounter with the much despised "Mean Value Theorem." If the judge can 
prove the theorem, you are dead. A few u-graphs and f-graphs will confuse the situation 
(possibly also a delta function). 
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There is also a step beyond algebra! Calculus requires the limit of the average. As 
h shrinks to zero, the points on the graph come closer. "Average over an interval" 
becomes "velocity at an instant.'' The general theory of limits is not particularly 
simple, but here we don't need it. (It isn't particularly hard either.) In this example 
the limiting value is easy to identify. The average 2t + h approaches 2t, as h -, 0. 

What remains to do in this section? We answered Question 2-to find velocity 
from distance. We have not answered Question 1. If v(t) = 2t increases linearly with 
time, what is the distance? This goes in the opposite direction (it is integration). 

The Fundamental Theorem of Calculus says that no new work is necessary. Zfthe 
slope o f f  (t) leads to v(t), then the area under that v-graph leads back to the f-graph. 
The odometer readings f = t2 produced speedometer readings v = 2t. By the Funda- 
mental Theorem, the area under 2t should be t2. But we have certainly not proved 
any fundamental theorems, so it is better to be safe-by actually computing the area. 

Fortunately, it is the area of a triangle. The base of the triangle is t and the height 
is v = 2t. The area agrees with f (t): 

area = i(base)(height)= f(t)(2t)= t2. (4) 

EXAMPLE 1 The graphs are shifted in time. The car doesn't start until t = 1. Therefore 
v =  0 and f = O  up to that time. After the car starts we have v =  2(t - 1) and 
f = (t - You see how the time delay of 1 enters the formulas. Figure 1.13 shows 
how it affects the graphs. 

Fig. 1.13 Delayed velocity and distance. The pairs v = at + b and f= $at2+ bt. 

EXAMPLE 2 The acceleration changes from 2 to another constant a. The velocity 
changes from v = 2t to v = at. The acceleration is the slope ofthe velocity curve! The 
distance is also proportional to a, but notice the factor 3: 

acceleration a 9 velocity v = at 9 distance f = fat2. 

If a equals 1, then v = t and f = f t2. That is one of the most famous pairs in calculus. 
If a equals the gravitational constant g, then v = gt is the velocity of a falling body. 
The speed doesn't depend on the mass (tested by Galileo at the Leaning Tower of 
Pisa). Maybe he saw the distance f = &gt2more easily than the speed v = gt. Anyway, 
this is the most famous pair in physics. 
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EXAMPLE 3 Suppose f (t) = 3t + t2. The average velocity from t to t + h is 

f (t + h) -f (t) - 3(t + h) + (t + h)2 - 3t - t2 -
Vave = h h 

The change in distance has an extra 3h (coming from 3(t + h) minus 3t). The velocity 
contains an additional 3 (coming from 3h divided by h). When 3t is added to the 
distance, 3 is added to the velocity. If Galileo had thrown a weight instead of dropping 
it, the starting velocity vo would have added vot to the distance. 

FUNCTIONS ACROSS TIME 

The idea of slope is not difficult-for one straight line. Divide the change in f by 
the change in t. In Chapter 2, divide the change in y by the change in x. Experience 
shows that the hard part is to see what happens to the slope as the line moves. 

Figure 1.l4a shows the line between points A and B on the curve. This is a "secant 
line." Its slope is an average velocity. What calculus does is to bring that point B 
down the curve toward A. 

1 speed 

Fig. 1.14 Slope of line, slope of curve. Two velocity graphs. Which is which? 

. Question I What happens to the "change in f "-the height of B above A? 
Answer The change in f decreases to zero. So does the change in t. 

Question 2 As B approaches A, does the slope of the line increase or decrease? 
Answer I am not going to answer that question. It is too important. Draw another 
secant line with B closer to A. Compare the slopes. 

This question was created by Steve Monk at the University of Washington-where 
57% of the class gave the right answer. Probably 97% would have found the right 
slope from a formula. Figure 1.14b shows the opposite problem. We know the veloc- 
ity, not the distance. But calculus answers questions about both functions. 

Question 3 Which car is going faster at time t = 3/4? 
Answer Car C has higher speed. Car D has greater acceleration. 

Question 4 If the cars start together, is D catching up to C at the end? Between 
t = $  and t = 1, do the cars get closer or further apart? 
Answer This time more than half the class got it wrong. You won't but you can see 
why they did. You have to look at the speed graph and imagine the distance graph. 
When car C is going faster, the distance between them . 



1.3 The VelocHy at an Instant 

To repeat: The cars start together, but they don't finish together. They reach the 
same speed at t = 1, not the same distance. Car C went faster. You really should draw 
their distance graphs, to see how they bend. 

These problems help to emphasize one more point. Finding the speed (or slope) is 
entirely different from finding the distance (or area): 

1. To find the slope of the f-graph at a'particular time t, you don't have to know 
the whole history. 

2. To find the area under the v-graph up to a particular time t, you do have to 
know the whole history. 

A short record of distance is enough to recover v(t). Point B moves toward point A. 
The problem of slope is local-the speed is completely decided by f (t) near point A. 

In contrast, a short record of speed is not enough to recover the total distance. We 
have to know what the mileage was earlier. Otherwise we can only know the increase 
in mileage, not the total. 

1.3 EXERCISES 

Read-through questions 

Between the distances f (2) = 100 and f (6)= 200, the average 
velocity is a . If f(t) = i t 2  then f (6)= b and 
f(8) = c . The average velocity in between is d . The 
instantaneous velocities at t = 6 and t = 8 are e and 

f . 

The average velocity is computed from f (t) and f (t + h) by 
uave= g . If f ( t ) = t 2  then o,,,= h . From t = l  to 
t = 1.1 the average is 1 . The instantaneous velocity 
is the I of u,,,. If the distance is f (t)= +at2 then the 
velocity is u(t) = k and the acceleration is 1 . 

On the graph of f(t), the average velocity between A and 
B is the slope of m . The velocity at A is found by n . 
The velocity at B is found by 0 . When the velocity is 
positive, the distance is P . When the velocity is increas- 
ing, the car is q . 

1 Compute the average velocity between t = 5 and t = 8: 

(a) f (0= 6t (b) f (t)= 6t + 2 
(c) f(t) =+at2 (d) f(t)=' t- t2 

( 4  f ( t )  = 6 (f) u(t) = 2t 

2 For the same functions compute [ f(t + h) -f (t)]/h. This 
depends on t and h. Find the limit as h -,0. 

3 If the odometer reads f (t) = t2 + t (f in miles or kilo- 
meters, t in hours), find the average speed between 

(a) t = l  and t = 2  
(b) t = 1 and t = 1.1 
(c) t = l  a n d t = l + h  
(d) t = 1 and t = .9 (note h = - .l) 

4 For the same f (t) = t2 + t, find the average speed between 
(a) t = O a n d l  (b) t = O a n d +  (c) t=Oandh.  

5 In the answer to 3(c), find the limit as h + 0. What does 
that limit tell us? 

6 Set h = 0 in your answer to 4(c). Draw the graph of 
f(t)= t2 + t and show its slope at t = 0. 

7 Draw the graph of v(t) = 1 + 2t. From geometry find 
the area under it from 0 to t. Find the slope of that area 
function f (t). 

8 Draw the graphs of v(t) = 3 -2t and the area f(t). 

9 True or false 
(a) If the distance f (t) is positive, so is v(t). 
(b) If the distance f (t) is increasing, so is u(t). 
(c) If f (t) is positive, v(t) is increasing. 
(d) If v(t) is positive, f (t) is increasing. 

10 If f(t) = 6t2 find the slope of the f-graph and also the 
v-graph. The slope of the u-graph is the 

11 Iff (t) = t 2  what is the average velocity between t = .9 and 
t = 1.1? What is the average between t -h and t + h? 

12 (a) Show that for f (t) = *at2 the average velocity between 
t -h and t +'h is exactly the velocity at t. 
(b) The area under v(t) = at from t -h to t + h is exactly 
the base 2h times 

13 Find f (t) from u(t) = 20t iff (0) = 12. Also if f (1) = 12. 

14 True or false, for any distance curves. 
(a) The slope of the line from A to B is the average velocity 
between those points. 
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(b) Secant lines have smaller slopes than the curve. Find the area under u(t) between t =0 and t = 1,2,3,4,5,6. 
(c) If f (t) and F(t) start together and finish together, the Plot those points f (1),. . . ,f (6) and draw the complete piece- 
average velocities are equal. wise parabola f (t). 

(d) If v(t) and V(t) start together and finish together, the 21 Draw the graph of f (t) = (1- t2( for 0 < t <2. Find a 
increases in distance are equal. three-part formula for u(t). 

15 When you jump up and fall back your height is y =2t - t2 22 Draw the graphs of f (t) for these velocities (to t =2): 
in the right units. (a) v(t) = 1 - t 

(a) Graph this parabola and its slope. (b) ~ ( t )  = 11 - tl 
(b) Find the time in the air and maximum height. (c) ~ ( t )  =(1 - t) + 1 1 - t 1. 
(c) Prove: Half the time you are above y =2. 

23 When does f (t) = t2 -3t reach lo? Find the average 
Basketball players "hang" in the air partly because of (c). velocity up to that time and the instantaneous velocity at that 
16 Graph f (t) = t2 and g(t) =f (t) -2 and h(t) =f (2t), all time. 
from t =0 to t = 1. Find the velocities. 24 If f (t) =*at2 + bt + c, what is v(t)? What is the slope of 

17 (Recommended) An up and down velocity is v(t) =2t for v(t)? When does f (t) equal 41, if a =b =c = I? 

t < 3, v(t) = 12 -2t for t 2 3. Draw the piecewise parabola 25 If f (t) = t2 then v(t) =2t. Does the speeded-up function 
f(t). Check that f (6)=area under the graph of u(t). f(4t) have velocity v(4t) or 4u(t) or 4v(4t)? 

18 Suppose v(t) = t for t <2 and v(t) = 2 for t 2 2. Draw the 26 If f (t) = t - t2 find v(t) and f (3t). Does the slope of f (3t) 
graph off (t) out to t = 3. equal v(3t) or 3v(t) or 3v(3t)? 

19 Draw f (t) up to t =4 when u(t) increases linearly from 27 For f (t) = tZ  find vaVe(t) between 0 and t. Graph vave(t) 
(a) 0 to 2 (b) - I t 0 1  (c) -2 to 0. and v(t). 

how can you find 20 (Recommended) Suppose v(t) is the piecewise linear sine 28 If you know the average velocity uaVe(t), 
function of Section 1.2. (In Figure 1.8 it was the distance.) the distance f (t)? Start from f (0)=0. 

1.4 Circular Motion 

This section introduces completely new distances and velocities-the sines and cosines 
from trigonometry. As I write that last word, I ask myself how much trigonometry it 
is essential to know. There will be the basic picture of a right triangle, with sides cos t 
and sin t and 1. There will also be the crucial equation (cos t )2+ (sin t )2= 1, which 
is Pythagoras' law a' + b2 = c2. The squares of two sides add to the square of the 
hypotenuse (and the 1 is really 12). Nothing else is needed immediately. If you don't 
know trigonometry, don't stop-an important part can be learned now. 

You will recognize the wavy graphs of the sine and cosine. W e  intend to Jind the 
slopes of those graphs. That can be done without using the formulas for sin(x + y) 
and cos (x + y)-which later give the same slopes in a more algebraic way. Here it is 
only basic things that are needed.? And anyway, how complicated can a triangle be? 

Remark You might think trigonometry is only for surveyors and navigators (people 
with triangles). Not at all! By far the biggest applications are to rotation and vibration 
and oscillation. It is fantastic that sines and cosines are so perfect for "repeating 
motionw-around a circle or up and down. 

?Sines and cosines are so important that I added a review of trigonometry in Section 1.5. But 
the concepts in this section can be more valuable than formulas. 
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1 

f = sin t 

1

sin t 

- 1 
COS t 

Fig. 1.15 As the angle t changes, the graphs show the sides of the right triangle. 

Our underlying goal is to offer one more example in which the velocity can be 
computed by common sense. Calculus is mainly an extension of common sense, but 
here that extension is not needed. We will find the slope of the sine curve. The straight 
line f = v t  was easy and the parabola f = +at2 was harder. The new example also 
involves realistic motion, seen every day. We start with circular motion, in which the 
position is given and the velocity will be found. 

A ball goes around a circle of radius one. The center is at x = 0, y = 0 (the origin). 
The x and y coordinates satisfy x 2  + y2 = 12, to keep the ball on the circle. We specify 
its position in Figure 1.16a by giving its angle with the horizontal. And we make the 
ball travel with constant speed, by requiring that the angle is equal to the time t. The 
ball goes counterclockwise. At time 1 it reaches the point where the angle equals 1. 
The angle is measured in radians rather than degrees, so a full circle is completed at 
t = 271 instead of t = 360. 

The ball starts on the x axis, where the angle is zero. Now find it at time t: 

The ball is at the point where x= cos t and y = sin t. 

This is where trigonometry is useful. The cosine oscillates between 1 and -1, as the 
ball goes from far right to far left and back again. The sine also oscillates between 1 
and - 1, starting from sin 0 = 0. At time 7112 the sine (the height) increases to one. 
The cosine is zero and the ball reaches the top point x = 0, y = 1. At time 71 the cosine 
is -1 and the sine is back to zero-the coordinates are (- 1,O). At t = 271 the circle 
is complete (the angle is also 271), and x = cos 27~ = 1, y = sin 271 = 0. 

vertical 
velocity 

vertical 
distance 

Fig. 1.16 Circular motion with speed 1, angle t, height sin t, upward velocity cos t .  
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Important point: The distance around the circle (its circumference) is 2nr = 2n, 
because the radius is 1. The ball travels a distance 2n in a time 2n. The speed equals 
1. It remains to find the velocity, which involves not only speed but direction. 

Degrees vs. radians A full circle is 360 degrees and 271 radians. Therefore 

1 radian = 36012~ degrees = 57.3 degrees 

1 degree = 2711360 radians = .01745 radians 

Radians were invented to avoid those numbers! The speed is exactly 1, reaching t 
radians at time t. The speed would be .01745, if the ball only reached t degrees. The 
ball would complete the circle at time T = 360. We cannot accept the division of the 
circle into 360 pieces (by whom?), which produces these numbers. 

To check degree mode vs. radian mode, verify that sin lo  z .017 and sin 1 = 34. 

VELOCITY OF THE BALL 

At time t, which direction is the ball going? Calculus watches the motion between t 
and t + h. For a ball on a string, we don't need calculus-just let go. The direction 
of motion is tangent to the circle. With no force to keep it on the circle, the ball goes 
oflon a tangent. If the ball is the moon, the force is gravity. If it is a hammer swinging 
around on a chain, the force is from the center. When the thrower lets go, the hammer 
takes off-and it is an art to pick the right moment. (I once saw a friend hit by a 
hammer at MIT. He survived, but the thrower quit track.) Calculus will find that 
same tangent direction, when the points at t and t + h come close. 

The "velocity triangle" is in Figure 1.16b. It is the same as the position triangle, 
but rotated through 90". The hypotenuse is tangent to the circle, in the direction the 
ball is moving. Its length equals 1 (the speed). The angle t still appears, but now it is 
the angle with the vertical. The upward component of velocity is cos t, when the upward 
component of position is sin t. That is our common sense calculation, based on a 
figure rather than a formula. The rest of this section depends on it-and we check 
v = cos t at special points. 

At the starting time t = 0, the movement is all upward. The height is sin 0 = 0 and 
the upward velocity is cos 0 = 1. At time ~ 1 2 ,  the ball reaches the top. The height is 
sin 4 2  = 1 and the upward velocity is cos n/2 = 0. At that instant the ball is not 
moving up or down. 

The horizontal velocity contains a minus sign. At first the ball travels to the left. 
The value of x is cos t, but the speed in the x direction is -sin t. Half of trigonometry 
is in that figure (the good half), and you see how sin2 t + cos2 t = 1 is so basic. 
That equation applies to position and velocity, at every time. 

Application of plane geometry: The right triangles in Figure 1.16 are the same size 
and shape. They look congruent and they are-the angle t above the ball equals the 
angle t at the center. That is because the three angles at the ball add to 180". 

OSCILLATION: UP AND DOWN MOTION 

We now use circular motion to study straight-line motion. That line will be the y axis. 
Instead of a ball going around a circle, a mass will move up and down. It oscillates 
between y = 1 and y = - 1. The mass is the "shadow of the ball," as we explain in a 
moment. 
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There is a jumpy oscillation that we do not want, with v = 1 and v = -1. That 
"bang-bang" velocity is like a billiard ball, bouncing between two walls without 
slowing down. If the distance between the walls is 2, then at t = 4 the ball is back to 
the start. The distance graph is a zigzag (or sawtooth) from Section 1.2. 

We prefer a smoother motion. Instead of velocities that jump between +1 and -1, 
a real oscillation slows down to zero and gradually builds up speed again. The mass 
is on a spring, which pulls it back. The velocity drops to zero as the spring is fully 
stretched. Then v is negative, as the mass goes the same distance in the opposite 
direction. Simple harmonic motion is the most important back and forth motion, 
while f = vt and f = fat2 are the most important one-way motions. 

) 
turn 

( . p = m s t ; / / / J  
U P  


fup = sin t 
down 

turn 

Fig. 1.17 Circular motion of the ball and harmonic motion of the mass (its shadow). 

How do we describe this oscillation? The best way is to match it with the ball on 
the circle. The height of the ball will be the height of the mass. The "shadow of the 
ball" goes up and down, level with the ball. As the ball passes the top of the 
circle, the mass stops at the top and starts down. As the ball goes around the bottom, 
the mass stops and turns back up the y axis. Halfway up (or down), the speed is 1. 

Figure 1.17a shows the mass at a typical time t. The height is y =f (t)= sin t, level 
with the ball. This height oscillates between f = 1 and f = -1. But the mass does not 
move with constant speed. The speed of the mass is changing although the speed of 
the ball is always 1 .  The time for a full cycle is still 2n, but within that cycle the mass 
speeds up and slows down. The problem is to find the changing velocity u. Since the 
distance is f = sin t, the velocity will be the slope of the sine curve. 

THE SLOPE OF THE SINE CURVE 

At the top and bottom (t = n/2 and t = 3~12) the ball changes direction and v = 0. 
The slope at the top and bottom of the sine curve is zero.? At time zero, when the ball 
is going straight up, the slope of the sine curve is v = 1. At t = n,when the ball and 
mass and f-graph are going down, the velocity is v = -1. The mass goes fastest at 
the center. The mass goes slowest (in fact it stops) when the height reaches a maximum 
or minimum. The velocity triangle yields v at every time t. 

To find the upward velocity of the mass, look at the upward velocity of the ball. 
Those velocities are the same! The mass and ball stay level, and we know v from 
circular motion: The upward velocity is v = cos t. 

?That looks easy but you will see later that it is extremely important. At a maximum or 
minimum the slope is zero. The curve levels off. 
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Figure 1.18 shows the result we want. On the right, f = sin t gives the height. On 
the left is the velocity v = cos t. That velocity is the slope of the f-curve. The height 
and velocity (red lines) are oscillating together, but they are out of phase-just as 
the position triangle and velocity triangle were at right angles. This is absolutely 
fantastic, that in calculus the two most famous functions of trigonometry form a pair: 
The slope of the sine curve is given by the cosine curve. 

When the distance is f (t) = sin t, the velocity is v(t)= cos t .  

Admission of guilt: The slope of sin t was not computed in the standard way. 
Previously we compared (t + h)' with t2,and divided that distance by h. This average 
velocity approached the slope 2t as h became small. For sin t we could have done the 
same: 

change in sin t sin (t + h) - sin t 
average velocity = 

change in t 
--

h (1) 

This is where we need the formula for sin (t + h), coming soon. Somehow the ratio in 
(1) should approach cosmtas h -,0. (It d,oes.)The sine and cosine fit the same pattern 
as t2 and 2 t o u r  shortcut was to watch the shadow of motion around a circle. 

Fig. 1.I 8 v = cos t when f = sin t (red); v = -sin t when f = cos t (black). 

Question 1 What if the ball goes twice as fast, to reach angle 2t at time t? 

Answer The speed is now 2. The time for a full circle is only n. The ball's position 
is x = cos 2t and y = sin 2t. The velocity is still tangent to the circle-but the tangent 
is at angle 2t where the ball is. Therefore cos 2t enters the upward velocity and 
-sin 2t enters the horizontal velocity. The difference is that the velocity triangle is 
twice as big. The upward velocity is not cos 2t but 2 cos 2t. The horizontal velocity 
is -2 sin 2t. Notice these 2's! 

Question 2 What is the area under the cosine curve from t = 0 to t = n/2? 

You can answer that, if you accept the Fundamental Theorem of Calculus-
computing areas is the opposite of computing slopes. The slope of sin t is cos t, so the 
area under cos t is the increase in sin t. No reason to believe that yet, but we use it 
anyway. 

From sin 0 = 0 to sin n/2 = 1, the increase is 1. Please realize the power of calculus. 
No other method could compute the area under a cosine curve so fast. 
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THE SLOPE OF THE COSINE,CURVE 

I cannot resist uncovering another distance and velocity (another f-v pair) with no 
extra work. This time f is the cosine. The time clock starts at the top of the circle. 
The old time t = n/2is now t = 0.The dotted lines in Figure 1.18 show the new start. 
But the shadow has exactly the same motion-the ball keeps going around the circle, 
and the mass follows it up and down. The f-graph and v-graph are still correct, both 
with a time shift of 4 2 .  

The new f-graph is the cosine. The new v-graph is minus the sine. The slope of the 
cosine curve follows the negative of the sine curve. That is another famous pair, twins 
of the first: 

When the distance is f (t)= cos t, the velocity is v(t) = - sin t. 

You could see that coming, by watching the ball go left and right (instead of up and 
down). Its distance across is f = cos t. Its velocity across is v = -sin t. That twjn pair 
completes the calculus in Chapter 1 (trigonometry to come). We review the ideas: 

v is the velocity 
the slope of the distance curve 
the limit of average velocity over a short time 
the derivative of f. 

f is the distance 
the area under the velocity curve 
the limit of total distance over many short times 
the integral of v. 

Differential calculus: Compute v from f . Integral calculus: Compute f from v. 

With constant velocity, f equals vt. With constant acceleration, v = at and f = t a t  2. 

In harmonic motion, v = cos t and f = sin t .  One part of our goal is to extend that 
list-for which we need the tools of calculus. Another and more important part is 
to put these ideas to use. 

Before the chapter ends, may I add a note about the book and the course? The 
book is more personal than usual, and I hope readers will approve. What I write is 
very close to what I would say, if you were in this room. The sentences are spoken 
before they are written.? Calculus is alive and moving forward-it needs to be taught 
that way. 

One new part of the subject has come with the computer. It works with a finite 
step h, not an "infinitesimal" limit. What it can do, it does quickly-even if it cannot 
find exact slopes or areas. The result is an overwhelming growth in the range of 
problems that can be solved. We landed on the moon because f and v were so 
accurate. (The moon's orbit has sines and cosines, the spacecraft starts with v = at 
and f = )at2. Only the computer can account for the atmosphere and the sun's gravity 
and the changing mass of the spacecraft.) Modern mathematics is a combination of 
exact formulas and approximate computations. Neither part can be ignored, and I 
hope you will see numerically what we derive algebraically. The exercises are to help 
you master both parts. 

t o n  television you know immediately when the words are live. The same with writing. 
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The course has made a quick start-not with an abstract discussion of sets or 
functions or limits, but with the concrete questions that led to those ideas. You have 
seen a distance function f and a limit v of average velocities. We will meet more 
functions and more limits (and their definitions!) but it is crucial to study important 
examples early. There is a lot to do, but the course has definitely begun. 

1.4 EXERCISES 
Read-through questions 

A ball at angle t on the unit circle has coordinates x = a 
and y = b . It completes a full circle at t = c . Its speed 
is d . Its velocity points in the direction of the e , 
which is f to the radius coming out from the center. The 
upward velocity is g and the horizontal velocity is h . 

A mass going up and down level with the ball has height ' 

f(t)= i . This is called simple i motion. The velocity 
is u(t) = k . When t = n/2 the height is f = I and the 
velocity is v = m . If a speeded-up mass reaches f= sin 2t 
at time t, its velocity is v = n . A shadow traveling under 
the ball has f= cos t and v = o . When f is distance = 
area = integral, v is P = q = r . 

1 For a ball going around a unit circle with speed 1, 
(a) how long does it take for 5 revolutions? 
(b) at time t = 3n/2 where is the ball? 
(c) at t = 22 where is the ball (approximately)? 

2 For the same motion find the exact x and y coordinates 
at t = 2x13. At what time would the ball hit the x axis, if it 
goes off on the tangent at t = 2n/3? 

3 A ball goes around a circle of radius 4. At time t (when it 
reaches angle t) find 

(a) its x and y coordinates 
(b) the speed and the distance traveled 
(c) the vertical and horizontal velocity. 

4 On a circle of radius R find the x and y coordinates at 
time t (and angle t). Draw the velocity triangle and find the 
x and y velocities. 

5 A ball travels around a unit circle (raalus 1) with speed 3, 
starting from angle zero. At time t, 

(a) what angle does it reach? 
(b) what are its x and y coordinates? 
(c) what are its x and y velocities? This part is harder. 

6 If another ball stays n/2 radians ahead of the ball with 
speed 3, find its angle, its x and y coordinates, and its vertical 
velocity at time t. 

7 A mass moves on the x axis under or over the original 
ball (on the unit circle with speed 1). What is the position 
x =f (t)? Find x and v at t = 4 4 .  Plot x and v up to t = n. 

8 Does the new mass (under or over the ball) meet the old 
mass (level with the ball)? What is the distance between 
the masses at time t? 

9 Draw graphs of f(t) = cos 3t and cos 2nt and 271 cos t, 
marking the time axes. How long until each f repeats? 

10 Draw graphs of f = sin(t + n) and v = cos (t + n). This 
oscillation stays level with what ball? 

11 Draw graphs of f= sin ( 4 2  - t) and v = -cos (n/2 - t). 
This oscillation stays level with a ball going which way start- 
ing where? 

12 Draw a graph of f(t) = sin t + cos t. Estimate its greatest 
height (maximum f )  and the time it reaches that height. By 
computing f check your estimate. 

13 How fast should you run across the circle to meet the ball 
again? It travels at speed 1. 

14 A mass falls from the top of the unit circle when the ball 
of speed 1 passes by. What acceleration a is necessary to meet 
the ball at the bottom? 

Find the area under v = cos t from the change in f= sin t: 

15 from t = O  to t = n  j6 from t = 0 to t = n/6 

17 from t = O  to t = 2 n  18 from t = n/2 to t = 3x12. 

19 The distance curve f= sin 4t yields the velocity curve 
v = 4 cos 4t. Explain both 4's. 

20 The distance curve f = 2 cos 3t yields the velocity curve 
v = -6 sin 3t. Explain the -6. 

21 The velocity curve v = cos 4t yields the distance curve 
f = $ sin 4t. Explain the i. 
22 The velocity v = 5 sin 5t yields what distance? 



23 Find the slope of the sine curve at t = 4 3  from v = cos t. The oscillation x = 0, y = sin t goes (1)up and down (2)between 
Then find an average slope by dividing sin n/2 -sin 4 3  by -1 and 1 (3) starting from x = 0, y = 0 (4) at velocity 
the time difference 4 2  -43.  v = cos t. Find (1)(2)(3)(4) for the oscillations 31-36. 

24 The slope of f = sin t at t = 0 is cos 0 = 1. Compute 31 x=cost,  y=O 32 x = 0, y = sin 5t 
average slopes (sin t)/t for t = 1, .l, .01, .001. 

33 x=O, y=2sin(t+O) 34 x=cost,  y=cost  

The ball at x = cos t, y = sin t circles (1) counterclockwise 35 x=O, y=-2cos i t  36 x=cos2t, y=sin2t 
(2)with radius 1 (3)starting from x = 1, y = 0 (4)at speed 1. 
Find (1)(2)(3)(4) for the motions 25-30. 37 If the ball on the unit circle reaches t degrees at time t, 

find its position and speed and upward velocity. 
25 x=cos3t, y=-sin3t 

38 Choose the number k so that x = cos kt, y = sin kt com- 
26 x = 3 cos 4t, y = 3 sin 4t pletes a rotation at t = 1. Find the speed and upward velocity. 
27 x = 5 sin 2t, y = 5 cos 2t 39 If a pitcher doesn't pause before starting to throw, a balk 

is called. The American League decided mathematically that 
there is always a stop between backward and forward motion, 
even if the time is too short to see it. (Therefore no balk.) Is 

30 x =cos (- t), y = sin (- t) that true? 

1.5 A Review of Trigonometry 

Trigonometry begins with a right triangle. The size of the triangle is not as important 
as the angles. We focus on one particular angle-call it 8-and on the ratios between 
the three sides x, y, r. The ratios don't change if the triangle is scaled to another 
size. Three sides give six ratios, which are the basic functions of trigonometry: 

n r 1 
cos 8 = -

x 
= 

near side set 8 =  - =  -
r hypo tenuse x cos 8 

sin 8 = -
y 

= 
opposite side csc 8 = -r = -1 

r hypotenuse y sin 8R 
X 

I y  
y opposite side x 1 

tan 8 = - = cot g = - = -
Fig. 1.19 x near side y tan 8 

Of course those six ratios are not independent. The three on the right come directly 
from the three on the left. And the tangent is the sine divided by the cosine: 

Note that "tangent of an angle" and "tangent to a circle" and "tangent line to a 
graph" are different uses of the same word. As the cosine of 8 goes to zero, the tangent 
of 8 goes to infinity. The side x becomes zero, 8 approaches 90", and the triangle is 
infinitely steep. The sine of 90" is y/r = 1. 

Triangles have a serious limitation. They are excellent for angles up to 90°, and 
they are OK up to 180", but after that they fail. We cannot put a 240" angle into a 
triangle. Therefore we change now to a circle. 
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