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A driver produces acceleration three ways-by the gas pedal, the brake, and steering 
wheel. The first two change the speed. Turning the wheel changes the direction. All 
three change the velocity (they give acceleration). For steady motion around a circle, 
the change is from steering-the acceleration dvldt points to the center. We now 
look at motion along other curves, to separate change in the speed Ivl from change 
in the direction T. 

The direction of motion is T = vllvl. It depends on the path but not the speed 
(because we divide by Ivl). For turning we measure two things: 

1. How fast T turns: this will be the curvature K (kappa). 
2. Which direction T turns: this will be the normal vector N. 

K and N depend, like s and T, only on the shape of the curve. Replacing t by 2t or 
t2  leaves them unchanged. For a circle we give the answers in advance. The normal 
vector N points to the center. The curvature K is llradius. 

A smaller turning circle means a larger curvature K: more bending.. 

The curvature K is change in direction (dTI divided by change in position Idsl. There 
are three formulas for rc-a direct one for graphs y(x), a brutal but valuable one for 
any parametric curve (x(t), y(t)), and a neat formula that uses the vectors v and a. We 
begin with the definition and the neat formula. 

DEFINITION K = ldT/ds) FORMULA rc = lv x al/lvI3 (1) 

The definition does not involve the parameter t-but the calculations do. The posi- 
tion vector R(t) yields v = dR/dt and a = dvldt. If t is changed to 2t, the velocity v is 
doubled and r is multiplied by 4. Then lv x a1 and lv13 are multiplied by 8, and their 
ratio K is unchanged. 

Proof of formula (1) Start from v = JvlT and compute its derivative a: 

dlvl dT a = - T + Ivl - by the product rule. 
dt dt 

Now take the cross product with v = IvJT. Remember that T x T = 0: 

We know that IT1 = 1. Equation (4) will show that T is perpendicular to dTldt. So 
Iv x a1 is the first length Ivl times the second length Ivl IdTIdtl. The factor sin 8 in the 
length of a cross product is 1 from the 90" angle. In other words 

The chain rule brings the extra Ids/dt( = Ivl into the denominator. 

Before any examples, we show that dT/dt is perpendicular to T. The reason is that 
T is a unit vector. Differentiate both sides of T T = 1: 
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That proof used the product rule U ' * V  + U *V' for the derivative of U * V  
(Problem 23, with U = V = T). Think of the vector T moving around the unit sphere. 
To keep a constant length (T + d T) (T + dT) = 1, we need 2T dT = 0. Movement 
dT is perpendicular to radius vector T. 

Our first examples will be plane curves. The position vector R(t) has components 
x(t) and y(t) but no z(t). Look at the components of v and a and v x a (x' means 
dxldt): 

R x(t) YO) 0 

v ~ ' ( 0  Y'@) 0 1.1 = J I 
a xt'(t) y"(t) 0 (x'y" - y'x"1 

K =  
v x a 0 0 x'y" - y'x" ((x')~ + 

Equation (5) is the brutal but valuable formula for K .  Apply it to movement around 
a circle. We should find K = llradius a: 

EXAMPLE 1 When x = a cos wt and y = a sin wt we substitute x', y', x", y" into (5): 

(- wa sin cot)(- w2a sin cot) - (wa cos cot)(- w2a cos a t )  03a2 
I C =  - - 

[(ma sin + (ma cos ~ t ) ~ ] ~ / ~  [ w 2 a 2 ~  312' 

This is 03a2/w3a3 and w cancels. The speed makes no difference to K = lla. 

The third formula for K applies to an ordinary plane curve given by y(x). The 
parameter t is x! You see the square root in the speed Ivl= dsldx: 

In practice this is the most popular formula for K .  The most popular approximation 
is id 2y/dx21. (The denominator is omitted.) For the bending of a beam, the nonlinear 
equation uses IC and the linear equation uses d2y /d~2 .  We can see the difference for 
a parabola: 

EXAMPLE 2 The curvature of y = +x2 is IC = ly"l/(l + (y')2)312 = 1/(1 + x ~ ) ~ / ~ .  

Fig. 12.7 Normal N divided by curvature K for circle and parabola and unit helix. 
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The approximation is y" = 1. This agrees with K at x =0, where the parabola turns 
the corner. But for large x, the curvature approaches zero. Far out on the parabola, 
we go a long way for a small change in direction. 

The parabola y = -fx2,  opening down, has the same u. Now try a space curve. 

EXAMPLE 3 Find the curvature of the unit helix R = cos t i + sin t j + tk. 

Take the cross product of v = -sin t i + cos t j + k and a = -cos t i -sin t j: 

i j k 

v x a =  -sint cost  1 =s in t i - cos t j+k .  

-cost -sint 0 

This cross product has length d.Also the speed is (v( = Jsin2t + cos2t+ 1 = f i  
K = I V  x al/lv13= =f. 

Compare with a unit circle. Without the climbing term tk, the curvature would be 1. 
Because of climbing, each turn of the helix is longer and K = f .  

That makes one think: Is the helix twice as long as the circle? No. The length of a 
turn is only increased by lvl = $. The other $ is because the tangent T slopes 
upward. The shadow in the base turns a full 360°, but T turns less. 

THE NORMAL VECTOR N 

The discussion is bringing us to an important vector. Where K measures the rate of 
turning, the unit vector N gives the direction of turning. N is perpendicular to T, and 
in the plane that leaves practically no choice. Turn left or right. For a space curve, 
follow dT.Remember equation (4), which makes dT perpendicular to T. 

The normal vector N is a unit vector along dT/dt. It is perpendicular to T: 

dT/ds 1 dT
DEFINITION N = ---- FORMULA N=-

dT/dt 
IdTldsl - K ds (dT/dt(' (7) 

EXAMPLE 4 Find the normal vector N for the same helix R =cos t i + sin t j + tk. 

Solution Copy v from Example 3, divide by (v(, and compute dTldt: 

T = v/lv(= (-sin t i + cos t j + k) / f i  and dT/dt = (- cos t i - sin t j)/& 

To change dT/dt into a unit vector, cancel the a.The normal vector is N = 
-cos t i -sin t j. It is perpendicular to T. Since the k component is zero, N is hori- 

zontal. The tangent T slopes up at 45"-it goes around the circle at that latitude. 
The normal N is tangent to this circle (N is tangent to the path of the tangent!). 
So N stays horizontal as the helix climbs. 

There is also a third direction, perpendicular to T and N. It is the binormal vector 
B = T x N, computed in Problems 25-30. The unit vectors T, N, B provide the 
natural coordinate system for the path-along the curve, in the plane of the curve, 
and out of that plane. The theory is beautiful but the computations are not often 
done-we stop here. 



12 Motion Along a Curve 

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION 

May I return a last time to the gas pedal and brake and steering wheel? The first 
two give acceleration along T. Turning gives acceleration along N. The rate of turning 
(curvature K) and the direction N are established. We now ask about the force 
required. Newton's Law is F = ma, so we need the acceleration a-especially its 
component along T and its component along N. 

The acceleration is a = 7T + K - N.
dt 

For a straight path, d2s/dt2 is the only acceleration-the ordinary second derivative. 
The term ~ ( d s l d t ) ~  is the acceleration in turning. Both have the dimension of length/ 
(time)2. 

The force to steer around a corner depends on curvature and speed-as all drivers 
know. Acceleration is the derivative of v = lvlT = (ds/dt)T: 

d2s d s d T  d2s d s d T d sa=-T+--=-T+-- -
dt2 dt dt dt2 dt ds dt' 

That last term is ~ ( d s l d t ) ~ ~ ,  since dT/ds = KN by formula (7). So (8) is proved. 

EXAMPLE 5 A fixed speed dsldt = 1 gives d2s/dt2 = 0. The only acceleration is KN. 

EXAMPLE 6 Find the components of a for circular speed-up R(t) = cos t 2  i + sin t 2  j. 

Without stopping to think, compute dR/dt = v and dsldt = Ivl and v/lvl= T: 

The derivative of dsldt = Ivl is d2s/dt2 = 2. The derivative of v is a: 

a =  - 2  sin t 2  i + 2  cos t 2  j -4 t2  cos t 2  i -4 t2  sin t 2 j .  

In the first terms of a we see 2T. In the last terms we must be seeing K ~ v ~ ~ N .  Certainly 
lv12=4t2 and K = 1, because the circle has radius 1. Thus a = 2T + 4 t 2 ~has the 
tangential component 2 and normal component 4t2-acceleration along the circle 
and in to the center. 

Table of Formulas 2a, 
v = dRldt a = dvldt N ~ $ > ~ 
)vl= dsldt T = vllvl = ldR/dsl 

accelerate 
Curvature K = IdTldsl = Jvx a l / l ~ ( ~  

lx'ytt-y'xttl -Plane curves K = 
((x!)~+ (yf)2)3'2-

1 dT dT/dt
Normal vector N = -- = -

K ds IdTldtl dt' 

+ K I V ~ ~ N  Fig. 12.8 Components of a as car turns corner Acceleration a = (d 2s/dt 2 ) ~  
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12.3 EXERCISES 

Read-through questions 

The curvature tells how fast the curve a . For a circle of 
radius a, the direction changes by 2n in a distance b , so 
K = c . For a plane curve y = f (x) the formula is K = Iy"l/ 

d . The curvature of y := sin x i's e . At a point where 
y" = 0 (an f point) the curve is momentarily straight and 
K = g . For a space curve K = Iv x all h . 

The normal vector N is perpendicular to i . It is a 
i vector along the derivative of T, so N = k . For 

motion around a circle N points I . Up a helix N also 
points m . Moving at unit speed on any curve, the time t 
is the same as the n s. Then Ivl= 0 and d 2s/dt = 

P and a is in the direction of q . 

Acceleration equals r T + s N. At unit speed 
around a unit circle, those components are t . An 
astronaut who spins once a second in a radius of one meter 
has la1 = t~ meters/sec'!, which is about v g. 

Compute the curvature K in Problems 1-8. 

y = ex 

y = In x (where is K largest?) 

x = 2 cos t, y = 2 sin t 

x=cos  t2, y=s in  t 2  

~ = l + t ~ , ~ = 3 t ~ ( t h e p a t h i s a  ). 

x = cos3t, y = sin3t 

r = O = t  (so x = t  cos t, y =  ) 

x = t, y = In cos t 

Find T and N in Problem 4. 

Show that N = sin t i 1- cos t j in Problem 6. 

Compute T and N in Problem 8. 

Find the speed Ivl and curvature K of a projectile: 

x = (u, cos a)t, y = (v,  sin a)t - i g t  2. 

Find T and Ivl and K for the helix R = 3 cos t i 
+ 3 sin t j + 4t k. H ~ W  much longer is a turn of the helix than 
the corresponding circle? What is the upward slope of T? 

14 When K = 0 the path is a , This happens when v 
and a are . Then v x a =  . 

15 Find the curvature of a cycloid x = a(t - sin t), y = 

a(l - cos t). 

16 If all points of a curve are moved twice as far from the 
origin (x + 2x, y -+ 2y), what happens to K? What happens 
to N? 

17 Find K and N at 8 = n for the hypocycloid x = 

~ C O S  O+c0~48 ,  y =4sin8-sin48.  

18 From v = lvlT and a in equation (8), derive K = Iv x al/lvI3. 

19 From a point on the curve, go along the vector N/K to 
find the center of curvature. Locate this center for the point 
(I, 0) on the circle x = cos t, y = sin t and the ellipse x = cos t, 
y = 2 sin t and the parabola y = *(x2 - 1). The path of the 
center of curvature is the "euolute" of the curve. 

20 Which of these depend only on the shape of the curve, 
and which depend also on the speed? v, T, Ivl, s, IC, a, N, B. 

21 A plane curve through (0,O) and (2,O) with constant cur- 
vature K is the circular arc . For which K is there no 
such curve? 

22 Sketch a smooth curve going through (0, O), (1, -I), and 
(2,O). Somewhere d2y/dx2 is at least . Somewhere 
the curvature is at least . (Proof is for instructors 
only.) 

23 For plane vectors, the ordinary product rule applied to 
U1 Vl + U ,  V2 shows that (U V)' = U' V + 
24 If v is perpendicular to a, prove that the speed is constant. 
True or false: The path is a circle. 

Problems 25-30 work with the T-N-B system-along the 
curve, in the plane of the curve, perpendicular to that plane. 

25 Compute B = T x N for the helix R = cos t i + sin t j + tk 
in Examples 3-4. 

26 Using Problem 23, differentiate B . T = 0 and B B = 1 to 
show that B' is perpendicular to T and B. So dB/ds = - zN 
for some number z called the torsion. 

27 Compute the torsion z = ldB/dsl for the helix in 
Problem 25. 

28 Find B = T x N for the curve x = 1, y = t, z = t2. 

29 A circle lies in the xy plane. Its normal N lies 
and B = and z = (dB/dsl= . 

30 The Serret-Frenet formulas are dTlds = KN, dN/ds = 

- KT + zB, dBlds = - zN. We know the first and third. 
Differentiate N = - T x B to find the second. 

31 The angle 9 from the x axis to the tangent line is 8 = 

tan-'(dyldx), when dyldx is the slope of the curve. 
(a) Compute d8ldx. 
(b) Divide by dsldx = (1 + ( d y / d ~ ) ~ ) ' / ~  to show that IdO/dsl 
is IC in equation (5). Curvature is change in direction Id81 
divided by change in position Ids[. 

32 If the tangent direction is at angle 8 then T =  
cos 9 i + sin 19 j. In Problem 31 IdO/dsl agreed with K = IdTldsl 
because ldTld8l = . 
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In 33-37 find the T and N components of acceleration. 36 x = et cos t, y = et sin t, z = 0 (spiral) 

33 x = 5 cos at,  y = 5 sin at,  z = 0 (circle) 

34 x = 1 + t, y = 1 + 2t, z = 1 + 3t (line) 

37 x =  1, y=t,  z=t2 .  

38 For the spiral in 36, show that the angle between R and 
a (position and acceleration) is constant. Find the angle. 

35 x = t cos t, y = t sin t, z = 0 (spiral) 39 Find the curvature of a polar curve r = F(0) .  

12.4 Polar Coordinates and Planetary Motion 

This section has a general purpose-to do vector calculus in polar coordinates. It 
also has a specific purpose- to study central forces and the motion of planets. The 
main gravitational force on a planet is from the sun. It is a central force, because it 
comes from the sun at the center. Polar coordinates are natural, so the two purposes 
go together. 

You may feel that the planets are too old for this course. But Kepler's laws are 
more than theorems, they are something special in the history of mankind-"the 
greatest scientific discovery of all time." If we can recapture that glory we should do 
it. Part of the greatness is in the difficulty-Kepler was working sixty years before 
Newton discovered calculus. From pages of observations, and some terrific guesses, 
a theory was born. We will try to preserve the greatness without the difficulty, and 
show how elliptic orbits come from calculus. The first conclusion is quick. 

Motion in a central force #eld always stays in a plane. 

F is a multiple of the vector R from the origin (central force). F also equals ma 
(Newton's Law). Therefore R and a are in the same direction and R x a = 0. Then 
R x v has zero derivative and is constant: 

d 
by the product rule: -(R x v ) = v  x v + R x a=O+O. 

dt ( 1 )  

R x v is a constant vector H. So R stays in the plane perpendicular to H. 

How does a planet move in that plane? We turn to polar coordinates. At each 
point except the origin (where the sun is), u, is the unit vector ointing outward. It is 
the position vector R divided by its length r (which is ~ d j :  

u, = R/r = (xi + yj)/r = cos 8 i + sin 8 j. (2) 

That is a unit vector because cos28 + sin28 = 1. It goes out from the center. 
Figure 12.9 shows u, and the second unit vector u, at a 90" angle: 

The dot product is u, u, = 0. The subscripts r and 8 indicate direction (not derivative). 

Question 1: How do u, and ue change as r changes (out a ray)? They don't. 

Question 2: How do u, and u, change as 8 changes? Take the derivative: 

duJd8 = -sin 8 i + cos 8 j = ue 

du,/d8 = - cos 8 i - sin 8 j = - u,. 
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Fig. 12.9 u, is outward, uo is around the center. Components of v and a in those directions. 

Since u, = Rlr, one formula is simple: The position vector is R = ru,. For its derivative 
v = dR/dt, use the chain rule du,/dt = (dur/d8)(d8/dt)= (dO/dt)u,: 

d dr d8
The velocity is v = -(ru,) = -u, + r -u, .

dt dt dt 

The outward speed is drldt. The circular speed is r dO/dt. The sum of squares is lvI2. 
Return one more time to steady motion around a circle, say r = 3 and 8 = 2t. The 

velocity is v = h e ,  all circular. The acceleration is -124, all inward. For circles u, 
is the tangent vector T. But the unit vector u, points outward and N points inward- 
the way the curve turns. 

Now we tackle acceleration for any motion in polar coordinates. There can be 
speedup in r and speedup in 8 (also change of direction). Differentiate v in (5) by the 
product rule: 

For du,/dt and due/dt, multiply equation (4) by d8ldt. Then all terms contain u, or u,. 
The formula for a is famous but not popular (except it got us to the moon): 

In the steady motion with r = 3 and 8 = 2t, only one acceleration term is nonzero: 
a = - 12u,. Formula (6) can be memorized (maybe). Problem 14 gives a new way to 
reach it, using reie. 

EXAMPLE 1 Find R and v and a for speedup 8 = t2  around the circle r = 1. 

Solution The position vector is R = u,. Then v and a come from (5-6): 

This question and answer were also in Example 6 of the previous section. The acceler- 
ation was 2T + 4t2N. Notice again that T = u, and N = -u,, going round the circle. 

EXAMPLE 2 Find R and v and Ivl and a for the spiral motion r = 3t, 8 = 2t. 

Solution The position vector is R = 3t u,. Equation (5) gives velocity and speed: 

v = 3 4  + 6tu, and ivl= Jm. 
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The motion goes out and also around. From (6) the acceleration is -12t u, + 12ue. 
The same answers would come more slowly from R = 3t cos 2t i + 3t sin 2t j. 

This example uses polar coordinates, but the motion is not circular. One of Kepler's 
inspirations, after many struggles, was to get away from circles. 

KEPLER'S LAWS 

You may know that before Newton and Leibniz and calculus and polar coordinates, 
Johannes Kepler discovered three laws of planetary motion. He was the court mathe- 
matician to the Holy Roman Emperor, who mostly wanted predictions of wars. 
Kepler also determined the date of every Easter-no small problem. His triumph 
was to discover patterns in the observations made by astronomers (especially by 
Tycho Brahe). Galileo and Copernicus expected circles, but Kepler found ellipses. 

Law 1: Each planet travels in an ellipse with one focus at the sun. 

Law 2: The vector from sun to planet sweeps out area at a steady rate: dA/dt = 
constant. 

Law 3: The length of the planet's year is T = ka3I2, where a = maximum distance 
from the center (not the sun) and k = 2n/@ is the same for all planets. 

With calculus the proof of these laws is a thousand times quicker. But Law 2 is the 
only easy one. The sun exerts a central force. Equation (I) gave R x v = H = constant 
for central forces. Replace R by ru, and replace v by equation (5): 

This vector H is constant, so its length h = r2dO/dt is constant. In polar coordinates, 
the area is dA =$r2d0. This area dA is swept out by the planet (Figure 12.10), and 
we have proved Law 2: 

dA/dt = i r 2  d01dt = i h = constant. (8) 

Near the sun r is small. So d0ldt is big and planets go around faster. 

Fig. 12.10 The planet is on an ellipse with the sun at a focus. Note a, b, c, q. 

Now for Law 1, about ellipses. We are aiming for 1 /r = C -D cos 0, which is the 
polar coordinate equation of an ellipse. It is easier to write q than llr, and find an 
equation for q. The equation we will reach is d 'q/d02 + q = C. The desired q = 
C -D cos 0 solves that equation (check this), and gives us Kepler's ellipse. 
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The first step is to connect dr/dt to dqlde by the chain rule: 

Notice especially dB/dt =h/r2=hq2. What we really want are second derivatives: 

After this trick of introducing q, we are ready for physics. The planet obeys Newton's 
Law F =ma, and the central force F is the sun's gravity: 

That right side is the u, component of a in (6). Change r to l/q and change dB/dt to 
hq2. The preparation in (10) allows us to rewrite d2r/dt2 in equation (11). That 
equation becomes 

Dividing by -h2q2 gives what we hoped for-the simple equation for q: 

d 'q/dB2 +q = G M / ~ ~= C (a constant). (12) 

The solution is q = C -D cos 8. Section 9.3 gave this polar equation for an ellipse or 
parabola or hyperbola. To be sure it is an ellipse, an astronomer computes C and D 
from the sun's mass M and the constant G and the earth's position and velocity. The 
main point is that C >D. Then q is never zero and r is never infinite. Hyperbolas and 
parabolas are ruled out, and the orbit in Figure 12.10 must be an ellipse.? 

Astronomy is really impressive. You should visit the Greenwich Observatory in 
London, to see how Halley watched his comet. He amazed the world by predicting 
the day it would return. Also the discovery of Neptune was pure mathematics- 
the path of Uranus was not accounted for by the sun and known planets. LeVerrier 
computed a point in the sky and asked a Berlin astronomer to look. Sure enough 
Neptune was there. 

Recently one more problem was solved-to explain the gap in the asteroids around 
Jupiter. The reason is "chaos"-the three-body problem goes unstable and an 
asteroid won't stay in that orbit. We have come a long way from circles. 

Department of Royal Mistakes The last pound note issued by the Royal Mint 
showed Newton looking up from his great book Principia Mathematica. He is not 
smiling and we can see why. The artist put the sun at the center! Newton has just 
proved it is at the focus. True, the focus is marked S and the planet is P. But those 
rays at the center brought untold headaches to the Mint-the note is out of circula- 
tion. I gave an antique dealer three pounds for it (in coins). 

Kepler's third law gives the time T to go around the ellipse-the planet's year. 
What is special in the formula is a3Iz-and for Kepler himself, the 15th of May 1618 
was unforgettable: "the right ratio outfought the darkness of my mind, by the great 
proof afforded by my labor of seventeen years on Brahe's observations." The second 

?An amateur sees the planet come around again, and votes for an ellipse. 
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law dA/dt = 4h is the key, plus two facts about an ellipse-its area nab and the height 
b2/aabove the sun: 

1 2nab
1. The area A = dt = -hT must equal nab, so T = -

2 h 

2. The distance r = 1/C at 0 = n/2 must equal b2/a,so b = @. 

The height b2/a is in Figure 12.10 and Problems 25-26. The constant C = G M / ~ ~is 
in equation (12). Put them together to find the period: 

To think of Kepler guessing a3I2 is amazing. To think of Newton proving Kepler's 
laws by calculus is also wonderful-because we can do it too. 

EXAMPLE 3 When a satellite goes around in a circle, find the time T. 

Let r be the radius and w be the angular velocity. The time for a complete circle 
(angle 2n) is T = 2nlo.  The acceleration is G M / ~ ~from gravity, and it is also rw2 for 
circular motion. Therefme Kepler is proved right: 

* w = JGM/r" T = 2 n / ~rw2 = G M / ~ ~  = 2nr312/@. 

12.4 EXERCISES 

Read-through questions 

=A central force points toward a . Then R x d 2 ~ / d t 2  0 For motion under a circular force, r2 times I is con- 
because b . Therefore R x dR/dt  is a c (called H). stant. Dividing by 2 gives Kepler's second law dA/dt = m . 

In polar coordinates, the outward unit vector is u, = 
The first law says that the orbit is an n with the sun at 

cos 0 i + d . Rotated by 90"this becomes u, = e . The -0 . The polar equation for a conic section is P = 

C -D cos 0. Using F = ma we found q,, + CI = C. So the position vector R is the distance r times f . The velocity 
path is a conic section; it must be an ellipse because r . v = dR/dt is s u, + h u,. For steady motion around 

the circle r = 5 with 6 = 4t,  v is i and lv( is i and a The properties of an ellipse lead to the period T = s , 
which is Kepler's third law. 

is k . 
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1 Find the unit vectors u, and u, at the point (0,2). The u, 
and ue components of v = i + j at that point are . 
2 F i n d u r a n d u , a t ( 3 , 3 ) . I f v = i + j t h e n v =  u,. 

Equation (5) gives dr/dt = and d0/dt = . 
3 At the point (1,2), velocities in the direction will 

give dr/dt = 0. Velocities in the direction will give 
d0ldt = 0. 

4 Traveling on the cardioid r = 1 - cos 0 with d0/dt = 2, 
what is v? How long to go around the cardioid (no integration 
involved)? 

5 If r = e e  and 8=3t,  find vand a when t=1 .  

6 If r = 1 and 0 = sin t, describe the path and find v and a 
from equations (5-6). Where is the velocity zero? 

7 (important) R = 4 cos 5t i + 4 sin 5t j = 4u, travels on a 
circle of radius 4 with 0 = 5t and speed 20. Find the compo- 
nents of v and a in three systems: i and j, T and N, u, and u,. 

8 When is the circle r = 4 completed, if the speed is 8t? Find 
v and a at the return to the starting point (4,O). 

9 The ~e component of acceleration is = 0 for a 
central force, which is in the direction of . Then 
r2d0/dt is constant (new proof) because its derivative is r times 

10 If r2d0/dt = 2 for travel up the line x = 1, draw a triangle 
to show that r = sec 0 and integrate to find the time to reach 
(1, 1). 

11 A satellite is r = 10,000 km from the center of the Earth, 
traveling perpendicular to the radius vector at 4 kmlsec. Find 
d0ldt and h . 
12 From lu,l= 1, it follows that du,/dr and du,/d0 are 

to u, (Section 12.3). In fact du,/dr is and 
dur/dO is . 

13 Momentum is mv and its derivative is ma = force. Angular 
momentum is mH = mR x v and its derivative is - - 

torque. Angular momentum is constant under a central force 
because the is zero. 

14 To find (and remember) v and a in polar coordinates, start 
with the complex number reie and take its derivatives: 

Key idea: The coefficients of eie and ieie are the u, and ue 
components of R, v, a: 

(a) Fill in the five terms from the derivative of dR/dt 
(b) Convert eie to u, and ieie to ue to find a 

(c) Compare R, v, a with formulas (5-6) 
(d) (for instructors only) Why does this method work? 

Note how eie = cos 0 + i sin 0 corresponds to u, = cos 0 i 
+sin 0 j. This is one place where electrical engineers are 
allowed to write j instead of i for fi. 
15 If the period is T find from (1 3) a formula for the distance 
a. 

16 To stay above New York what should be the period of a 
satellite? What should be its distance a from the center of the 
Earth? 

17 From T and a find a formula for the mass M. 

18 If the moon has a period of 28 days at an average distance 
of a = 380,000 km, estimate the mass of the 

19 The Earth takes 3656 days to go around the sun at a 
distance a x 93 million miles x 150 million kilometers. Find 
the mass of the sun. 

20 True or false: 

(a) The paths of all comets are ellipses. 
(b) A planet in a circular orbit has constant speed. 
(c) Orbits in central force fields are conic sections. 

21 x 2 lo7 in what units, based on the Earth's mass 
M = 6 kg and the constant G = 6.67 lo-" Nm2/kg2? 
A force of one kg meter/sec2 is a Newton N. 

22 If a satellite circles the Earth at 9000 km from the center, 
estimate its period T in seconds. 

23 The Viking 2 orbiter around Mars had a period of about 
10,000 seconds. If the mass of Mars is M = 6.4 kg, what 
was the value of a? 

24 Convert l/r = C - D cos 0, or 1 = Cr - Dx, into the xy 
equation of an ellipse. 

25 The distances a and c on the ellipse give the constants 
in r = 1/(C - D cos 0). Substitute 0 = 0 and 0 = .n as in 
Figure 1 2.1 0 to find D = c/(a2 - c2) and C = a/(a2 - c2) = 

a/ b2. 

26 Show that x =  -c, y =  b2/a lies on the ellipse 
x2/a2 + y2/b2 = 1. Thus y is the height 1/C above the sun in 
Figure 12.10. The distance from the sun to the center has c2 = 
a2 - b2. 

27 The point x = a cos 2nt/T, y = b sin 2ntlT travels around 
an ellipse centered at (0,O) and returns at time T. By symmetry 
it sweeps out area at the same rate at both ends of the major 
axis. Why does this break Kepler's second law? 

28 If a central force is F =  -ma(r)u,, explain why 
d 'r/dt - r(d0/dt)2 = - a@). What is a(r) for gravity? 
Equation (12) for q = l /r  leads to qee + q = r2a(r). 

29 When F = 0 the body should travel in a straight 
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The equation q,, + q = 0 allows q = cos 8, in which case the 
path l / r  =cos 8 is . Extra credit: Mark off equal 
distances on a line, connect them to the sun, and explain why 
the triangles have equal area. So dA/dt is still constant. 

30 The strong nuclear force increases with distance, a(r) = r. 
It binds quarks so tightly that up to now no top quarks have 
been seen (reliably). Problem 28 gives q,, + q = l/q3. 

(a) Multiply by q, and integrate to find i q i  + i q 2  = 

+ C .  
*(b) Integrate again (with tables) after setting u = q2, u, = 

2qq,. 

31 The path of a quark in 30(b) can be written as 
r2(A + B cos 28) = 1. Show that this is the same as the ellipse 
( A  + B)x2 + (A - B)y2 = 1 with the origin at the center. The 
nucleus is not at a focus, and the pound note is correct for 
Newton watching quarks. (Quantum mechanics not 
accounted for.) 

32 When will Halley's comet appear again? It disappeared in 

1986 and its mean distance to the sun (average of a + c and 
a - c) is a = 1.6 lo9 kilometers. 

33 You are walking at 2 feetlsecond toward the center of a 
merry-go-round that turns once every ten seconds. Starting 
from r = 20,8 = 0 find r(t), 8(t), v(t), a(t) and the length of your 
path to the center. 

34 From Kepler's laws r = 1/(C - D cos 8) and r2d8/dt = h, 
show that 

1. dr/dt = - Dh sin 0 2. d 2 d 2  = ( - C)h2/r2 

When Newton reached 3, he knew that Kepler's laws required 
a central force of Ch2/r2. This is his inverse square law. Then 
he went backwards, in our equations (8-12), to show that this 
force yields Kepler's laws. 

35 How long is our year? The Earth's orbit has a =  
149.57 lo6 kilometers. 




