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44 Show that the spin field S does work around every simple inside R can be squeezed to a point without leaving R. Test 
closed curve. these regions: 

1. xy  plane without (0,O) 2. xyz space without (0, 0,O) 
45 For F =f(x) j  and R = unit square 0 < x  6 1, 0 < y <  1, 3. sphere x2 + y2 + z2 = 1 4.  a torus (or doughnut) 
integrate both sides of Green's Theorem (1). What formula is 
required from one-variable calculus? 5. a sweater 6. a human body 

7. the region between two spheres 
46 A region R is "simply connected" when every closed curve 8. xyz space with circle removed. 

-[ 15.4 Surface Integrals 

The double integral in Green's Theorem is over a flat surface R. Now the region 
moves out of the plane. It becomes a curved surface S, part of a sphere or cylinder 
or cone. When the surface has only one z for each (x, y), it is the graph of a function 
z(x, y). In other cases S can twist and close up-a sphere has an upper z and a lower 
z. In all cases we want to compute area and flux. This is a necessary step (it is our 
last step) before moving Green's Theorem to three dimensions. 

First a quick review. The basic integrals are 1 dx and 11 dx dy and 111 dx dy dz. The 
one that didn't fit was Jds-the length of a curve. When we go from curves to 
surfaces, ds becomes dS. Area is JI dS m d  flux is IJ F n dS, with double integrals 
because the surfaces are two-dimensional. The main difficulty is in dS. 

All formulas are summarized in a table at the end of the section. 

There are two ways to deal with ds (along curves). The same methods apply to dS 
(on surfaces). The first is in xyz coordinates; the second uses parameters. Before this 
subject gets complicated, I will explain those two methods. 

Method 1 is for the graph of a function: curve y(x) or surface z(x, y). 

A small piece of the curve is almost straight. It goes across by dx and up by dy: 

length ds = J- = ,/i+(dyldx)2 dx. (1) 

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One 
side goes across by dx and up by (dz/dx)dx. The neighboring side goes along by dy 
and up by (az/dy)dy. Computing the area is a linear problem (from Chapter 1 I), 
because the flat piece is in a plane. 

Two vectors A and B form a parallelogram. The length of their cross product is the 
area. In the present case, the vectors are A = i + (az/ax)k and B = j + (az/ay)k. Then 
Adx and Bdy are the sides of the small piece, and we compute A x B: 

This is exactly the normal vector N to the tangent plane and the surface, from 
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always 
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a rectangle). Its area dS is much like ds, but the length of N =A x B involves two 
derivatives: 

area dS = lAdx x Bdyl= INldx dy = J1 + (dzlax)' + (dz/dy)' dx dy. (3) 

EXAMPLE 1 Find the area on the plane z =x + 2y above a base area A. 

This is the example to visualize. The area down in the xy plane is A. The area up on 
the sloping plane is greater than A. A roof has more area than the room underneath 
it. If the roof goes up at a 45" angle, the ratio is fi.Formula (3) yields the correct 
ratio for any surface-including our plane z =x + 2y. 

Fig. 15.14 Roof area =base area times INI.Cone and cylinder with parameters u and v. 

The derivatives are dzlax = 1 and dzldy =2. They are constant (planes are easy). 
The square root in (3) contains 1 + 1' + 2' = 6. Therefore dS =&dx dy. An area in 
the xy plane is multiplied by &up in the surface (Figure 15.14a). The vectors A and 
B are no longer needed-their work was done when we reached formula (3)-but 
here they are: 

A=i+(dz/ax)k=i+k B=j+(az/ay)k=j+2k N =  - i -2 j+k.  

The length of N = A x B is fi.The angle between k and N has cos 0 = I/&. That 
is the angle between base plane and sloping plane. Therefore the sloping area is f i  
times the base area. For curved surfaces the idea is the same, except that the square 
root in IN1 = l/cos 0 changes as we move around the surface. 

Method 2 is for curves x(t), y(t) and surfaces x(u, v), y(u, v), z(u, v) with parameters. 

A curve has one parameter t. A surface has two parameters u and v (it is two- 
dimensional). One advantage of parameters is that x, y, z get equal treatment, instead 
of picking out z as f(x, y). Here are the first two examples: 

cone x = u cos U,y = u sin v, z = u cylinder x = cos v, y = sin v, z = u. (4) 

Each choice of u and u gives a point on the surface. By making all choices, we get 
the complete surface. Notice that a parameter can equal a coordinate, as in z = u. 
Sometimes both parameters are coordinates, as in x = u and y = u and z =f(u, v). 
That is just z =f(x, y) in disguise-the surface without parameters. In other cases we 
find the xyz equation by eliminating u and v: 

cone (u cos v)' + (u sin v)' = u2 or x2 +y2 =z2 or z =JX2+yZ 
cylinder (cos v)' + (sin v)' = 1 or x2 +y2 = 1. 

x=cos 0 

y = sin v 
Z = U 
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The cone is the graph off = ,/-. The cylinder is not the graph of any function. 
There is; a line of z's through each point on the circle x2 + y2 = 1. That is what z = 
u tells us: Give u all values, and you get the whole line. Give u and v all values, and 
you get the whole cylinder. Parameters allow a surface to close up and even go 
through itself-which the graph of f(x, y) can never do. 

Actually z = Jw gives only the top half of the cone. (A function produces 
only one z.) The parametric form gives the bottom half also. Similarly y = ,/- 
gives only the top of a circle, while x = cos t, y = sin t goes all the way around. 

Now we find dS, using parameters. Small movements give a piece of the surface, 
practica.11~ flat. One side comes from the change du, the neighboring side comes from 
dv. The two sides are given by small vectors Adu and Bdv: 

ax ay a~ ax ay a2 
A=- i+ - j+ -k  and B=- i+- j+-k .  au au a~ a v  a v  a u  

To find the area dS of the parallelogram, start with the cross product N = A x B: 

Admittedly this looks complicated-actual examples are often fairly simple. The area 
dS of the small piece of surface is IN1 du dv. The length IN1 is a square root: 

iy iz i'z iyJ ( z  ax ix izJ (ax iy iy ix 
----- + ----- + ----- udv. (7) au av au a~ iiu iv iu av au av au av 

ay a2 a2 a ~ ) ~  + (az ax ax a;) (ax ay ay ax) = (-- - -- ----- j +  ----- k 
au a v  au av au a v  au av au a v  au av (6) N =  

EXAMPLE 2 Find A and B and N = A x B and dS for the cone and cylinder. 

i j k 

x ~ ,  yU z,, 

The cone has x = u cos v, y = u sin v, z = u. The u derivatives produce A = dR/du = 

cos v i -I- sin v j + k. The v derivatives produce the other tangent vector B = aR/dv = 

- u s i n v i + u c o s v j .  The normal vector is A x B =  - u c o s v i - u s i n v j + u k .  Its 
length gives dS: 

~ S = I A  x BI dudv=J(u cos v12+(u sin v)* +u2dudv=&ududv.  

The cylinder is even simpler: dS = du dv. In these and many other examples, A is 
perpendicular to B. The small piece is a rectangle. Its sides have length IAl du and 
IB(dv. (The cone has ]A/ = u and IBI = &, the cylinder has IAl= IBI = 1). The cross 
product is hardly needed for area, when we can just multiply IAl du times IBldv. 

Remark on the two methods Method 1 also used parameters, but a very special 
choice--u is x and v is y. The parametric equations are x = x, y = y, z = f(x, y). If 
you go through the long square root in (7), changing u to x and v to y, it simplifies 
to the s'quare root in (3). (The terms dy/dx and axlay are zero; axldx and dyldy are 
1.) Still it pays to remember the shorter formula from Method 1. 

Don't forget that after computing dS, you have to integrate it. Many times the 
good is with polar coordinates. Surfaces are often symmetric around an axis or 
a point. Those are the surfaces of revolution-which we saw in Chapter 8 and will 
come back to. 

Strictly speaking, the integral starts with AS (not dS). A flat piece has area 
[A x BlAxAy or [A x BlAuAv. The area of a curved surface is properly defined as a 
limit. The key step of calculus, from sums of AS to the integral of dS, is safe for 
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smooth surfaces. In examples, the hard part is computing the double integral and 
substituting the limits on x, y or u, v. 

EXAMPLE 3 Find the surface area of the cone z= up to the height z = a. 

We use Method 1 (no parameters). The derivatives of z are computed, squared, and 
added: 

Conclusion: IN1 = f i and dS = f i dxdy. The cone is on a 45" slope, so the area 
dx dy in the base is multiplied by f i  in the surface above it (Figure 15.15). The 
square root in dS accounts for the extra area due to slope. A horizontal surface has 
dS = f i dxdy, as we have known all year. 

Now for a key point. The integration is down in the base plane. The limits on x and 
y are given by the "shadow" of the cone. To locate that shadow set z = Jm 
equal to z = a. The plane cuts the cone at the circle x2 + y2 = a2. We integrate over 
the inside of that circle (where the shadow is): 

surface area of cone = f i dx dy = f i nu2 
shadow 

EXAMPLE 4 Find the same area using dS = ,,bu du dv from Example 2. 

With parameters, dS looks different and the shadow in the base looks different. The 
circle x2 + Y2 = a2 becomes u2 cos2v + u2 sin2v = a2. In other words u = a. (The cone 
has z= u, the plane has z= a, they meet when u = a.) The angle parameter v goes 
from 0 to 2n. The effect of these parameters is to switch us "automatically" to polar 
coordinates, where area is r dr do: 

surface area of cone = ~ ~ d S = ~ ~ ~ ~ ~ \ : 2 ~ d ~ d v = , , b n a ~ .  

Fig. 15.15 Cone cut by plane leaves shadow in the base. Integrate over the shadow. 

EXAMPLE 5 Find the area of the same cone up to the sloping plane z = 1 -ix. 

Solution The cone still has dS = $dx dy, but the limits of integration are changed. 
The plane cuts the cone in an ellipse. Its shadow down in the xy plane is another 
ellipse (Figure 15.1%). To find the edge of the shadow, set z= equal to z = 

1 - i x .  We square both sides: 
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This is the ellipse in the base-where height makes no difference and z is gone. The 
area of an ellipse is nab, when the equation is in the form (xla)' + (y/b)2= 1. After 
multiplying by 314 we find a = 413 and b = $@. Then jJ$ dx dy = $nab is the 
surface area of the cone. 

The hard part was finding the shadow ellipse (I went quickly). Its area nab came 
from Example 15.3.2. The new part is & from the slope. 

EXAMPLE 6 Find the surface area of a sphere of radius a (known to be 4na2). 

This is a good example, because both methods almost work. The equation of the 
sphere is x2 + y2 + z2 = a2. Method 1 writes z =,,/-. The x and y deriva- 
tives are -x/z and -ylz: 

The square root gives dS = a dxdy/J-. Notice that z is gone (as it should 
be). Nolw integrate dS over the shadow of the sphere, which is a circle. Instead of 
dx dy, switch to polar coordinates and r dr d6: 

2naJ-1:- - = 2na2. 
shadow 

This calculation is successful but wrong. 2na2 is the area of the half-sphere above the 
xy plane. The lower half takes the negative square root of z2 = a2 -x2 -y2. This 
shows t'he danger of Method 1, when the surface is not the graph of a function. 

EXAMPLE 7 (same sphere by Method 2: use parameters) The natural choice is spheri- 
cal coordinates. Every point has an angle u = # down from the North Pole and an 
angle v = 6 around the equator. The xyz coordinates from Section 14.4 are x = 

a sin # cos 6, y = a sin # sin 6, z = a cos #. The radius p = a is fixed (not a parameter). 
Compute the first term in equation (6)' noting dz/d6 = 0: 

(dy/d#)(az/aO) - (az/a#)(ay/a6) = - (-a sin #)(a sin # cos 6) = a2 sin24 cos 6. 

The other terms in (6) are a2 sin2# sin 6 and a2 sin # cos #. Then dS in equation (7) 
squares these three components and adds. We factor out a4 and simplify: 

Conclusion: dS = a2 sin # d# dB. A spherical person will recognize this immediately. 
It is the volume element dV = p2 sin # dp d# dB, except dp is missing. The small box 
has area dS and thickness dp and volume dK Here we only want dS: 

= Sfrrarea of sphere = [[dS [: a2 sin i,l d 4  dB = 4aa2. (9) 

Figure 15.16a shows a small surface with sides a d# and a sin # d6. Their product is 
dS. Figure 15.16b goes back to Method 1, where equation (8) gave dS = (alz) dx dy. 

I doubt that you will like Figure 15.16~-and you don't need it. With parameters 
# and 8,the shadow of the sphere is a rectangle. The equator is the line down the 
middle, where # = 4 2 .  The height is z = a cos #. The area d# d6 in the base is the 
shadow of dS = a2 sin # d# dB up in the sphere. Maybe this figure shows what we 
don't halve to know about parameters. 
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X X 

Fig. 15.16 Surface area on a sphere: (a) spherical coordinates (b) xyz coordinates (c) 48 space. 

EXAMPLE 8 Rotate y = x2 around the x axis. Find the surface area using parameters. 

The first parameter is x (from a to b). The second parameter is the rotation angle 8 
(from 0 to 2n). The points on the surface in Figure 15.17 are x = x, y = x2 cos 8, 
z = x2 sin 8. Equation (7) leads after much calculation to dS = x 2 J m  dx do. 

Main point: dS agrees with Section 8.3, wh.ere the area was J 2ny ,/I+(dyjdx)i dx. 
The 2n comes from the 9 integral and y is x2. Parameters give this formula auto- 
matically. 

VECTOR FIELDS AND THE INTEGRAL OF F . n 

Formulas for surface area are dominated by square roots. There is a square root in 
dS, as there was in ds. Areas are like arc lengths, one dimension up. The good point 
about line integrals I F  nds is that the square root disappears. It is in the denominator 
of n, where ds cancels it: Fonds  = M dy - N dx. The same good thing will now 
happen for surface integrals JI F ndS. 

151 Through the surface z = f(x, y), the vector field F(x, y, z) = Mi + Nj + Pk I has 

flux= surface {I Fends= shadow JJ ( - - ~ $ + P ) d x d ~ .  

This formula tells what to integrate, given the surface and the vector field (f and F). 
The xy limits come from the shadow. Formula (10) takes the normal vector from 
Method 1: 

N = - aflaxi - aflayj + k and IN1 = 41 + ( d f l d ~ ) ~  + ( a f ~ a ~ ) ~ .  

For the unit normal vector n, divide N by its length: n = N/INI. The square root is in 
the denominator, and the same square root is in dS. See equation (3): 

That is formula (lo), with cancellation of square roots. The expression F * ndS is often 
written as F dS, again relying on boldface to make dS a vector. Then dS equals ndS, 
with direction n and magnitude dS. 
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y = x b o s  6, L = x2 sin 6 

d s  = dxdy 
Y 

Fig. 15.1 7 Surface of revolution: parameters x, 8. Fig. 15.18 F - n dS gives flow through dS.  

EXAMPLE 9 Find ndS for the plane z = x + 2y. Then find F ndS for F = k. 

This plane produced & in Example 1 (for area). For flux the & disappears: 

For the flow field F = k, the dot product k ndS reduces to l d x  dy. The slope of the 
plane makes no difference! Theflow through the base alsoflows through the plane. The 
areas are different, but flux is like rain. Whether it hits a tent or the ground below, 
it is the same rain (Figure 15.18). In this case JJ F ndS = 51 d x  dy = shadow area in 
the base. 

EXAMPLE 10 Find the flux of F = xi + yj + zk through the cone z = , /x2 + y2. 

X 
Solution F ndS = 

The zero comes as a surprise, but it shouldn't. The cone goes straight out from the 
origin, and so does F. The vector n that is perpendicular to the cone is also perpendic- 
ular to F. There is no flow through the cone, because F n = 0. The flow travels out 
along rays. 

jj F ndS F O R  A SURFACE WITH PARAMETERS 

In Example 10 the cone was z = f(x, y) = Jx2 + y2. We found dS by Method 1. 
Parameters were not needed (more exactly, they were x and y). For surfaces that fold 
and twist, the formulas with u and v look complicated but the actual calculations can 
be simpler. This was certainly the case for dS = dudv on the cylinder. 

A small piece of surface has area dS = IA x BI du dv. The vectors along the sides are 
A = xui + yuj + z,k and B = xvi + y,j + zvk. They are tangent to the surface. Now we 
put their cross product N = A x B to another use, because F ndS involves not only 
area but direction. We need the unit vector n to see how much flow goes through. 

The direction vector is n = N/INI. Equation (7) is dS = lNldu dv, so the square root 
IN1 cancels in ndS. This leaves a nice formula for the "normal component" of flow: 

1 155 Through a surface with parameters u and v, the field F = Mi + Nj + P k  I 
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EXAMPLE I I Find the flux of F = xi + yj + zk through the cylinder x2 + y2 = 1, 
O < z < b .  

Solution The surface of the cylinder is x = cos u, y = sin u, z = v. The tangent vectors 
from (5) are A = (- sin u) i + (cos u) j and B = k. The normal vector in Figure 15.19 
goes straight out through the cylinder: 

To find F N, switch F = xi + yj + zk to the parameters u and v. Then F N = 1: 

For the flux, integrate F N = 1 and apply the limits on u = 8 and v = z: 

flux = f b  fin 1 du dv = 2nb = surface area of the cylinder. 
0 0 

Note that the top and bottom were not included! We can find those fluxes too. The 
outward direction is n = k at the top and n = - k down through the bottom. Then 
F n is + z = b at the top and -z = 0 at the bottom. The bottom flux is zero, the top 
flux is b times the area (or nb). The total flux is 2nb + nb = 3nb. Hold that answer 
for the next section. 

Apology: I made u the angle and v the height. Then N goes outward not inward. 

EXAMPLE 12 Find the flux of F = k out the top half of the sphere x2 + y2 + z2 = a2. 

Solution Use spherical coordinates. Example 7 had u = 4 and v = 8. We found 

N = A x B = a2 sin2# cos 8 i + a' sin24 sin 8 j + a2 sin # cos # k. 

The dot product with F = k is F * N = a2 sin # cos #. The integral goes from the pole 
to the equator, # = 0 to # = 4 2 ,  and around from 8 = 0 to 0 = 2n: 

flux = 
sin2# "I2 

a2 sin # cos 4 d4  dB = 2na2 --- I = nu2 
2 0 

The next section will show that the flux remains at nu2 through any surfLlce (!) that 
is bounded by the equator. A special case is a flat surface-the disk of radius a at 
the equator. Figure 15.18 shows n = k pointing directly up, so F - n  = k k = 1. The 
flux is jj 1 dS = area of disk = nu2. ANfluid goes past the equator and out through the 
sphere. 

Fig. 15.19 Flow through cylinder. Fig. 15.20 Mobius strip (no way to choose n). 
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I have to mention one more problem. It might not occur to a reasonable person, but 
sometimes a surface has only one side. The famous example is the Mobius strip, for 
which you take a strip of paper, twist it once, and tape the ends together. Its special 
property appears when you run a pen along the "inside." The pen in Figure 15.20 
suddenly goes "outside." After another round trip it goes back "inside." Those words 
are in quotation marks, because on a Mobius strip they have no meaning. 

Suppose the pen represents the normal vector. On a sphere n points outward. 
Alternatively n could point inward; we are free to choose. But the Mobius strip makes 
the choice impossible. After moving the pen continuously, it comes back in. the 
opposite direction. This surface is not orientable. We cannot integrate F n to compute 
the flux, because we cannot decide the direction of n. 

A surface is oriented when we can and do choose n. This uses the final property of 
cross products, that they have length and direction and also a right-hand rule. We 
can tell A x B from B x A. Those give the two orientations of n. For an open surface 
(like a wastebasket) you can select either one. For a closed surface (like a sphere) it 
is conventional for n to be outward. By making that decision once and for all, the 
sign of the flux is established: outward JEux is positive. 

FORMULAS 
FOR 
SURFACE 
INTEGRALS 

15.4 EXERCISES 

Read-through questions surface z = xy has ndS = u dx dy. For F = xi + yj + zk the 
flux through z = xy is F ndS = v dx dy. A small piece of the surface z = f(x, y) is nearly a . When 

we go across by dx, we go up by b . That movement is On a 30" cone the points are x = 2u cos v, y = 2u sin v, z = 
Adx, where the vector A is i + c . The other side of the u. The tangent vectors are A = w and B = x . This 
piece is Bdy, where B = j + d . The cross product A x B cone has ndS = A x B du dv = Y . For F = xi + yj + zk, 
is N = e . The area of the piece is dS = IN1 dx dy. For the the flux element through the cone is F ndS = . The 
surface z = xy, the vectors are A = f and B = g and reason for this answer is A . The reason we don't compute 
N = h . The area integral is JJ dS = I dx dy. flux through a Mobius strip is B . 

With parameters u and v, a typical point on a 45" cone is 
In 1-14 find N and dS = IN1 dx dy and the surface area SjdS. x = u cos V, y = J , z = k . A change in u moves that 
Integrate over the xy shadow which ends where the z's are equal 

point by Adu = (cos v i + I )du. A change in v moves the (x2 + y2 = 4 in Problem 1). 
point by Bdu = m . The normal vector is N = A  x B = 

n . The area is dS = o du dv. In this example A B = 1 Paraboloid z = x2 + y2 below the plane z = 4. 
P so the small piece is a q and dS = IAJ IBldudv. 

2 Paraboloid z = x Z  + y2 between z = 4 and z = 8. 
For flux we need ndS. The r vector n is N = A x B 3 Plane z = x - y inside the cylinder x 2  + y2 = 1 .  

divided by s . For a surface z = f(x, y), the product ndS 
is the vector t (to memorize from table).  he particular 4 Plane z = 3x + 4y above the square 0 < x < 1,0 < y < 1.  
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Spherical cap x2 + y2 + z2 = 1 above z = 1/& 

Spherical band x2 + y2 + z2 = 1 between z = 0 and 1/& 

Plane z = 7y above a triangle of area A. 

Cone z2 = x2 + y2 between planes z = a and z = b. 

The monkey saddle z = 3x3 - xy2 inside x2 + y2 = 1. 

z = x + y above triangle with vertices (0, O), (2,2), (0,2). 

Plane z = 1 - 2x - 2y inside x 2 0, y 2 0, z 2 0. 

Cylinder x2 + z2 = a2 inside x2 + y2 = a2. Only set up 

SS 'is- 
13 Right circular cone of radius a and height h. Choose 
z = f (x, y) or parameters u and v. 

14 Gutter z = x2 below z = 9 and between y = f 2. 

In 15-18 compute the surface integrals g(x, y, z)dS. 

15 g = xy over the triangle x + y + z = 1, x, y, z 2 0. 

16 g = x2 + y2 over the top half of x2 + y2 + z2 = 1 (use +,8). 

17 g = xyz on x2 + y2 + z2 = 1 above z2 = x2 + y2 (use +,8). 

18 g = x on the cylinder x2 + y2 = 4 between z = 0 and z = 3. 

In 19-22 calculate A, B, N, and dS. 

19 x = u ,  y = v + u , z = v + 2 u + l .  

20 x=uv, y = u + u ,  z=u-v. 

21 x = (3 + cos u) cos v, y = (3 + cos u) sin v, z = sin u. 

22 x = u cos v, y = u sin v, z = v (not z = u). 

23-26 In Problems 1-4 respectively find the flux F ndS 
for F = xi + yj + zk. 

27-28 In Problems 19-20 respectively compute F ndS for 
F = yi - xj through the region u2 + v2 < 1. 

29 A unit circle is rotated around the z axis to give a torus 
(see figure). The center of the circle stays a distance 3 from 
the z axis. Show that Problem 21 gives a typical point (x, y, z) 
on the torus and find the surface area dS = IN1 du dv. 

30 The surface x = r cos 8, y = r sin 8, z = a2 - r2 is bounded 
by the equator (r = a). Find N and the flux 11 k ndS, and 
compare with Example 12. 

31 Make a "double Mobius strip" from a strip of paper by 
twisting it twice and taping the ends. Does a normal vector 
(use a pen) have the same direction after a round trip? 

32 Make a "triple Mobius strip" with three twists. Is it 
orientable-does the normal vector come back in the same 
or opposite direction? 

33 If a very wavy surface stays close to a smooth surface, are 
their areas close? 

34 Give the equation of a plane with roof area dS = 3 times 
base area dx dy. 

35 The points (x, f(x) cos 8, f(x) sin 8) are on the surface of 
revolution: y = f(x) revolved around the x axis, parameters 
u = x and v = 8. Find N and compare dS = IN1 dx d8 with 
Example 8 and Section 8.3. 

15.5 The Divergence Theorem 

This section returns to the fundamental law wow out) - wow in) = (source). In two 
dimensions, the flow was in and out through a closed curve C. The plane region 
inside was R. In three dimensions, the flow enters and leaves through a closed surface 
S. The solid region inside is V. Green's Theorem in its normal form (for the flux of a 
smooth vector field) now becomes the great three-dimensional balance equation- 
the Divergence Theorem: 
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I 15K The flux qfF = Mi + Nj +Pk through abe boundary surface S equds the 
integral of the divergemx of F insick Y.  'TL~ Mrlgcaee Threni  h I 

In Green's Theorem the divergence was dM/dx + dN/dy. The new term dP/dz 
accounts for upward flow. Notice that a constant upward component P adds nothing 
to the divergence (its derivative is zero). It also adds nothing to the flux (flow up 
through the top equals flow up through the bottom). When the whole field F is 
constant, the theorem becomes 0 = 0. 

There are other vector fields with div F = 0. They are of the greatest importance. 
The Divergence Theorem for those fields is again 0 = 0, and there is conservation of 
fluid. When div F = 0, flow in equals flow out. We begin with examples of these 
"divergence-free" fields. 

EXAMPLE 1 The spin fields - yi + xj + Ok and Oi - zj + yk have zero divergence. 

The first is an old friend, spinning around the z axis. The second is new, spinning 
around the x axis. Three-dimensional flow has a great variety of spin fields. The 
separate terms dM/dx, dN/dy, dP/az are all zero, so div F = 0. The flow goes around 
in circles, and whatever goes out through S comes back in. (We might have put a 
circle on 11, as we did on $c, to emphasize that S is closed.) 

EXAMPLE 2 The position field R = xi + yj + zk has div R = 1 + 1 + 1 = 3. 

This is radial flow, straight out from the origin. Mass has to be added at every point 
to keep the flow going. On the right side of the divergence theorem is [[[ 3 dl/. 
Therefore the flux is three times the volume. 

Example 11 in Section 15.4 found the flux of R through a cylinder. The answer 
was 3nb. Now we also get 3nb from the Divergence Theorem, since the volume is nb. 
This is one of many cases in which the triple integral is easier than the double integral. 

EXAMPLE 3 An electrostatic field R/p3 or gravity field - R/p3 almost has div F = 0. 

The vector R = xi + yj + zk has length = p. Then F has length p/p3 
(inverse square law). Gravity from a point mass pulls inward (minus sign). The electric 
field from a point charge repels outward. The three steps almost show that div F = 0: 

Step 1. ap/ax = x/p, dplay = y/p, apldz = z/p-but do not add those three. F is not 
p or l/p2 (these are scalars). The vector field is We need dM/ax, aN/ay, aP/dz. 

Step 2. a ~ / a x  = d/dx(x/p3) is equal to l/p3 - ( 3 ~  dp/ax)/p4 = 1lp3 - 3x2/p5. For 
dN/dy and dP/az, replace 3x2 by 3y2 and 3z2. Now add those three. 

Step 3. div F = 3lp3 - 3(x2 + y2 + z2)/p5 = 3lp3 - 3lp3 = 0. 

The calculation div F = 0 leaves a puzzle. One side of the Divergence Theorem seems 
to give jjjO dV= 0. Then the other side should be jJ F * ndS = 0. But the flux is not 
zero when all flow is outward: 

The unit normal vector to the sphere p = constant is n = Rip. 
The outward flow F n = ( ~ 1 ~ ~ )  (Rip) = p2/p4 is always positive. 
Then jj F ndS = jj ds/p2 = 4np2/p2 = 4n. We have reached 4n = 0. 
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This paradox in three dimensions is the same as for R/r2 in two dimensions. 
Section 15.3 reached 2n = 0, and the explanation was a point source at the origin. 
Same explanation here: M, N, P are infinite when p = 0. The divergence is a "delta 
function" times 4n, from the point source. The Divergence Theorem does not apply 
(unless we allow delta functions). That single point makes all the difference. 

Every surface enclosing the origin has flux = 4n. Our calculation was for a sphere. 
The surface integral is much harder when S is twisted (Figure 15.21a). But the Diver- 
gence Theorem takes care of everything, because div F = 0 in the volume V between 
these surfaces. Therefore j jFmndS=O for the two surfaces together. The flux 
jj F ndS = - 4n into the sphere must be balanced by jj F ndS = 4n out of the twisted 
surface. 

(dpldz) dV, 

(dpldz) m/, 
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Fig. 15.21 Point source: flux 4n through all enclosing surfaces. Net flux upward 
= jjj(a~1az)dv. 

Instead of a paradox 4n = 0, this example leads to Gauss's Law. A mass M at the 
origin produces a gravity field F = - GMR/~'. A charge q at the origin produces an 
electric field E = (q/4nso)R/p3. The physical constants are G and so, the mathematical 
constant is the relation between divergence and flux. Equation (I) yields equation (2), 
in which the mass densities M(x, y, z) and charge densities q(x, y, z) need not be 
concentrated at the origin: 

151 Gauss's law in differential form: div F = - 471GM and div E = q/e,. 
Gauss's law in integral form: Flux is proportional to total mass or charge: 

{IF ndS = - {J'nGMd V and {SE ndS = INg d V/E~. (2) 1 
THE REASONING BEHIND THE DIVERGENCE THEOREM 

The general principle is clear: Flow out minus flow in equals source. Our goal is to 
see why the divergence of F measures the source. In a small box around each point, 
we show that div F dV balances F ndS through the six sides. 

So consider a small box. Its center is at (x, y, z). Its edges have length Ax, Ay, Az. 
Out of the top and bottom, the normal vectors are k and -k. The dot product with 
F = Mi + Nj + Pk is + P or - P. The area AS is AxAy. So the two fluxes are close 
to P(x, y, z + 4Az)AxAy and - P(x, y, z - 4Az)AxAy. When the top is combined with 
the bottom, the difference of those P's is AP: 

net flux upward z APAxAy = (AP/Az)AxAyAz (3PIZz)AV. (3) 
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Similarly, the combined flux on two side faces is approximately (aN/ay)AK On the 
front and back it is (dM/ax)AK Adding the six faces, we reach the key point: 

flux out of the box x (aM/dx + aN/dy + dP/az)A K (4) 
This is (div F)AK For a constant field both sides are zero-the flow goes straight 
through. For F = xi + yj + zk, a little more goes out than comes in. The divergence 
is 3, so 3AV is created inside the box. By the balance equation the flux is also 3AK 

The approximation symbol x means that the leading term is correct (probably 
not the next term). The ratio APlAz is not exactly dP/az. The difference is of order 
Az, so the error in (3) is of higher order AVAz. Added over many boxes (about 1/AV 
boxes), this error disappears as Az + 0. 

The sum of (div F)A V over all the boxes approaches [Sj(div F)dK On the other 
side of the equation is a sum of fluxes. There is F *nAS out of the top of one box, 
plus F nAS out of the bottom of the box above. The first has n = k and the second 
has n = - k. They cancel each other-the flow goes from box to box. This happens 
every time two boxes meet. The only fluxes that survive (because nothing cancels 
them) are at the outer surface S. The final step, as Ax, Ay, Az + 0, is that those outside 
terms approach 11 F ndS. Then the local divergence theorem (4) becomes the global 
Divergence Theorem (1). 

Remark on the proof That "final step" is not easy, because the box surfaces don't 
line up with the outer surface S. A formal proof of the Divergence Theorem would 
imitate the proof of Green's Theorem. On a very simple region JjJ (aP/az)dx dy dz 
equals 11 P dx dy over the top minus 11 P dx dy over the bottom. After checking the 
orientation this is 11 Pk ndS. Similarly the volume integrals of dM/ax and dN/dy are 
the surface integrals 11 Mi ndS and 11 Nj ndS. Adding the three integrals gives the 
Divergence Theorem. Since Green's Theorem was already proved in this way, the 
reasoning behind (4) is more helpful than repeating a detailed proof. 

The discoverer of the Divergence Theorem was probably Gauss. His notebooks 
only contain the outline of a proof-but after all, this is Gauss. Green and Ostrograd- 
sky both published proofs in 1828, one in England and the other in St. Petersburg 
(now Leningrad). As the theorem was studied, the requirements came to light (smooth- 
ness of F and S, avoidance of one-sided Mobius strips). 

New applications are discovered all the time-when a scientist writes down a bal- 
ance equation in a small box. The source is known. The equation is div F = source. 
After Example 5 we explain F. 

EXAMPLE 4 If the temperature inside the sun is T = In lip, find the heat flow F = 
- grad T and the source div F and the flux 11 F . ndS. The sun is a ball of radius po. 

Solution F is -grad In l/p = +grad In p. Derivatives of In p bring division by p: 

F = (dpldx i + apjdy j + dp/dz k)/p = (xi + yj + zk)/p2. 

This flow is radially outward, of magnitude lip. The normal vector n is also radially 
outward, of magnitude 1. The dot product on the sun's surface is l/po: 

F = ndS = dS/po = (surface area)/po = 4npi/p0 = h p o .  JJ JJ 
Check that answer by the Divergence Theorem. Example 5 will find div F = l/p2. 
Integrate over the sun. In spherical coordinates we integrate dp, sin 4d4, and do: 

Ill div F dV = JO2' Jn  1'0 P2 sin 4 dp dm d9/p2 = (po)(2)(2n) as in (5). 
sun 0 0 
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This example illustrates the basic framework of equilibrium. The pattern appears 
everywhere in applied mathematics-electromagnetism, heat flow, elasticity, even 
relativity. There is usually a constant c that depends on the material (the example 
has c = 1). The names change, but we always take the divergence of the gradient: 

potential f 4 forcefild - c grad f: Then div(- c grad f )  = electric charge 

temperature T -+ flowfield - c grad T. Then div(- c grad T) = heat source 

displacement u 4 stressfield + c grad u. Then div(- c grad u) = outside force. 

You are studying calculus, not physics or thermodynamics or elasticity. But please 
notice the main point. The equation to solve is div(- c grad f )  = known source. The 
divergence and gradient are exactly what the applications need. Calculus teaches the 
right things. 

This framework is developed in many books, including my own text Introduction 
to Applied Mathematics (Wellesley-Cambridge Press). It governs equilibrium, in mat- 
rix equations and differential equations. 

PRODUCT RULE FOR VECTORS: INTEGRATION BY PARTS 

May I go back to basic facts about the divergence? First the definition: 

F(X, y, Z) = Mi + Nj + ~k has div F = v F = a ~ l a x  + a ~ l a y  + aplaz. 

The divergence is a scalar (not a vector). At each point div F is a number. In fluid 
flow, it is the rate at which mass leaves-the "flux per unit volume" or "flux density." 

The symbol V stands for a vector whose components are operations not numbers: 

v = "del" = i alax + j alay + k alaz. (6) 

This vector is illegal but very useful. First, apply it to an ordinary function f(x, y, z): 

Vf ="del f" = i aflax+j af/dy+ k df/az=gradient off.  (7) 

Second, take the dot product V F with a vector function F(x, y, z) = Mi + Nj + Pk: 

V F = "del dot F" = aM/dx + aN/dy + aP/az = divergence of F .  (8) 

Third, take the cross product V x F. This produces the vector curl F (next section): 

V x F = "del cross F" = . . . (to be defined). . . = curl of F .  (9) 

The gradient and divergence and curl are V and V and V x . The three great opera- 
tions of vector calculus use a single notation! You are free to write V or not-to 
make equations shorter or to help the memory. Notice that Laplace's equation 
shrinks to 

Equation (10) gives the potential when the source is zero (very common). F = grad f 
combines with div F = 0 into Laplace's equation div grad f = 0. This equation is so 
important that it shrinks further to V2 f = 0 and even to A f = 0. Of course A f = 
fxx + fyy + f,, has nothing to do with A f = f (x + Ax) - f (x). Above all, remember that 
f is a scalar and F is a vector: gradient of scalar is vector and divergence of vector is 
scalar. 
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Underlying this chapter is the idea of extending calculus to vectors. So far we have 
emphasized the Fundamental Theorem. The integral of df/dx is now the integral of 
div F. Instead of endpoints a and b, we have a curve C or surface S. But it is the rules 
for derivatives and integrals that make calculus work, and we need them now for 
vectors. Remember the derivative of u times v and the integral (by parts) of u dvldx: 

15M Scalar functions u(x, y, z)  and vector fields V (x, y, z) obey the product rule: 

div(uV) = u div V + V (grad zr). (1 1) 

The reverse of the product rule is integration by parts (Gauss's Formula): 

For a plane field this is Green's Fwmurla (and u = 1 gives Green's Theorem): 

Those look like heavy formulas. They are too much to memorize, unless you use 
them often. The important point is to connect vector calculus with "scalar calculus," 
which is not heavy. Every product rule yields two terms: 

Add those ordinary rules and you have the vector rule (1 1) for the divergence of uV. 
Integrating the two parts of div(uV) gives I[ uV ndS by the Divergence Theorem. 

Then one part moves to the other side, producing the minus signs in (12) and (13). 
Integration by parts leaves a boundary term, in three and two dimensions as it did in 
one dimension: uvtdx = - j utvdx + [uv]:. 

EXAMPLE 5 Find the divergence of F = R/p2, starting from grad p = R/p. 

Solution Take V = R and u = llp2 in the product rule (1 1). Then div F = (div R)/ 
P2 + R (grad l/p2). The divergence of R = xi + yj + zk is 3. For grad l/p2 apply the 
chain rule: 

R (grad llp2) = - 2R (grad p)/p3 = - 2R R/p4 = - 2/p2. 

The two parts of div F combine into 3/p2 - 2/p2 = l/p2-as claimed in Example 4. 

EXAMPLE 6 Find the balance equation for flow with velocity V and fluid density p. 

V is the rate of movement of fluid, while pV is the rate of movement of mass. 
Comparing the ocean to the atmosphere shows the difference. Air has a greater 
velocity than water, but a much lower density. So normally F = pV is larger for the 
ocean. (Don't confuse the density p with the radial distance p. The Greeks only used 
24 letters.) 

There is another difference between water and air. Water is virtually incompressible 
(meaning p = constant). Air is certainly compressible (its density varies). The balance 
equation is a fundamental law-the conservation of mass or the "continuity equation" 
for fluids. This is a mathematical statement about a physical flow without sources or 
sinks: 

Continuity Equation: div(pV) + 3plat = 0. (14) 
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Explanation: The mass in a region is j j j p  d V .  Its rate of decrease is - j j j  a p l a t  dV .  
The decrease comes from flow out through the surface (normal vector n).  The dot 
product F n = p V  * n  is the rate of mass flow through the surface. So the integral 
S j F  n d S  is the total rate that mass goes out. By the Divergence Theorem this is 
j j j  div F d V. 

To balance - j j j  d p / d t  d V in every region, div F must equal - a p l d t  at every point. 
The figure shows this continuity equation (14) for flow in the x direction. 

extra mass out mass loss 
- - 

mass in + Imsrr + d @ V )  d S  d t  - d p  d S  di p V  d S  d t  

Fig. 15.22 Conservation of mass during time dt: d(pV)/dx + dpldt = 0. 

15.5 EXERCISES 

Read-through questions 

In words, the basic balance law is a . The flux of F 
through a closed surface S is the double integral b . The 
divergence of Mi + Nj + Pk is c , and it measures d . 
The total source is the triple integral e . That equals the 
flux by the f Theorem. 

For F = 5zk the divergence is g . If V is a cube of side 
a then the triple integral equals h . The top surface where 
z = a has n = i and F n = i . The bottom and sides 
have F n = k . The integral jj F ndS equals I . 

The field F = R / ~ ~  has div F = 0 except m . jj F ndS 
equals n over any surface around the origin. This 
illustrates Gauss's Law 0 . The field F = xi + yj - 2zk has 
div F = P and 11 F ndS = q . For this F, the flux out 
through a pyramid and in through its base are r . 

The symbol V stands for s . In this notation div F is 
t . The gradient off is u . The divergence of grad f 

is v . The equation div grad f = 0 is w 's equation. 

The divergence of a product is div(uV) = x . Integration 
by parts is jjj u div V dx dydz = Y + z . In two 

.dimensions this becomes A . In one dimension it becomes 
B . For steady fluid flow the continuity equation is 

div pV = c . 

In 1-10 compute the flux jj F . ndS by the Divergence Theorem. 

1 F = xi + xj + xk, S: unit sphere x2 + y2 + z2 = 1. 

2 F =  -yi+xj, V: unit cube O<.u< 1, O<y<1 ,  O < z <  1. 

3 F = x2i + y2j + z2k, S: unit sphere 

4 F = x2i + 8y2j + z2k, V: unit cube. 

5 F = x i + 2 y j ,  S: sides x=O,  y = 0 ,  z=O, x + y + z =  1. 

6 F = u, = (xi + yj + A l p ,  S: sphere p = a. 

7 F = p(xi + yj + zk), S: sphere p = a 

8 F = x3i + y3j + z3k, S: sphere p = a. 

9 F = z2k, V: upper half of ball p < a. 

10 F = grad (xeY sin z ) ,  S: sphere p = a. 

11 Find jjj div(x2i + yj + 2k)dV in the cube 0 < x, y, z < a. 

Also compute n and jj F ndS for all six faces and add. 

12 When a is small in problem 11, the answer is close to ca3. 
Find the number c. At what point does div F = c? 

13 (a) Integrate the divergence of F = pi in the ball p < a. 

(b) Compute 11 F ndS over the spherical surface p = a. 

14 Integrate R ndS over the faces of the box 0 < x < 1, 
0 6 y < 2, 0 < z < 3 and check by the Divergence Theorem. 

15 Evaluate F . ndS when F = xi + z2j + y2k and: 

(a) S is the cone z2 = x2 + y2 bounded above by the plane 
z =  1. 

(b) S is the pyramid with corners (O,0, O), (1,0, O), (0, 1 .  O), 
(O,O,  1). 

16 Compute all integrals in the Divergence Theorem when 
F = x(i + j - k) and V is the unit cube 0 < x, y, z 6 1. 

17 Following Example 5 ,  compute the divergence of 
(.xi + yj + +k)/p7. 

18 (grad f )  n is the derivative off in the direction 
. It is also written af/an. If j;, + jyy + fzz = 0 in V, 

derive jj Ff/?n dS = 0 from the Divergence Theorem. 

19 Describe the closed surface S and outward normal n: 
(a) V = hollow ball 1 < x' + y2 + z2 < 9. 
(b) V = solid cylinder .u2 + y% 1. 1z1 < 7. 

(c) V=pyramid x 3 0 ,  2 ' 30 ,  z 3 0 ,  . u + 2 v + 3 + < 1 .  

(d) V = solid cone x2 + y2 < z2 < 1. 

20 Give an example where ISF-ndS is easier than 
div F dV. 
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21 Suppose F = M(x, y)i + Njx, y)j, R is a region in the xy 
plane, and (x, y, z) is in V if (x, y) is in R and JzJ $ 1. 

(a) Describe V and reduce IIIdiv F dV to a double 
integral. 
(b) Reduce F ndS to a line integral (check top, bottom, 
side). 
(c) Whose theorem says that the double integral equals 
the line integral? 

22 Is it possible to have F n = 0 at all points of S and also 
div F = 0 at all points in V? F = 0 is not allowed. 

23 Inside a solid ball (radius a, density 1, mass M = 4na3/3) 
the gravity field is F = - GMR/a3. 

(a) Check div F = - 4nG in Gauss's Law. 
(b) The force at the surface is the same as if the whole 
mass M were 
(c) Find a gradient field with div F = 6 in the ball p $ a 
and div F = 0 outside. 

24 The outward field F = R/p3 has magnitude IF( = l/p2. 
Through an area A on a sphere of radius p, the flux is 

. A spherical box has faces at p, and p2 with A = 
pf sin 4d4d9  and A = pi sin 4d$dO. Deduce that the flux 
out of the box is zero, which confirms div F = 0. 

25 In Gauss's Law, what charge distribution q(x, y, z) gives 
the unit field E = u,? What is the flux through the unit sphere? 

26 If a fluid with velocity V is incompressible (constant den- 
sity p), then its continuity equation reduces to . If it 
is irrotational then F = grad5 If it is both then f satisfies 

equation. 

27 True or false, with a good reason. 
(a) If jj F . ndS = 0 for every closed surface, F is constant. 
(b) If F = grad f then div F = 0. 
(c) If JFJ $ 1  at all points then IIj div F dV $ area of the 
surface S. 
(d) If JFJ $ 1 at all points then Jdiv FJ < 1 at all points. 

28 Write down statements E-F-G-H for source-free fields 
F(x, y, z) in three dimensions. In statement F, paths sharing 
the same endpoint become surfaces sharing the same bound- 
ary curve. In G, the stream function becomes a vector Jield 
such that F = curl g. 

29 Describe two different surfaces bounded by the circle 
x2 + y2 = 1, z = 0. The field F automatically has the same flux 
through both if 

30 The boundary of a bounded region R has no boundary. 
Draw a plane region and explain what that means. What does 
it mean for a solid ball? 

For the Divergence Theorem, the surface was closed. S was the boundary of V. 
Now the surface is not closed and S has its own boundary-a curve called C. We 
are back near the original setting for Green's Theorem (region bounded by curve, 
double integral equal to work integral). But Stokes' Theorem, also called Stokes's 
Theorem, is in three-dimensional space. There is a curved surface S bounded by a 
space curve C. This is our first integral around a space curve. 

The move to three dimensions brings a change in the vector field. The plane field 
F(x, y) = Mi + Nj becomes a space field F(x, y, z) = Mi + Nj + Pk. The work 
Mdx + Ndy now includes Pdz. The critical quantity in the double integral (it was 
aN/ax - aM/dy) must change too. We called this scalar quantity "curl F," but in 
reality it is only the third component of a vector. Stokes' Theorem needs all three 
components of that vector-which is curl F. 

DEFINITION The curl of a vector field F(x, y, z) = Mi + Nj + Pk is the vector field 
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The symbol V x F stands for a determinant that yields those six derivatives: 

curl F = V x F = I 2ldx dldy 2l2z I . 

The three products i  d/dy P and j dldz M and k dldx N have plus signs. The three 
products like k dldy M, down to the left, have minus signs. There is a cyclic symmetry. 
This determinant helps the memory, even if it looks and is illegal. A determinant is 
not supposed to have a row of vectors, a row of operators, and a row of functions. 

EXAMPLE 1 The plane field M(x,  y)i + N(x,  y)j has P = 0 and dM/az = 0 and 
dN/dz = 0. Only two terms survive: curl F = (aNldx-dM/ay)k. Back to Green. 

EXAMPLE 2 The cross product a x R is a spinfield S. Its axis is the fixed vector a = 
al i  + a,  j + a3k. The flow in Figure 15.23 turns around a, and its components are 

Our favorite spin field -yi + xj has (a,, a,, a,) = (0,0, 1 )  and its axis is a = k.  
The divergence of a spin field is M ,  + N ,  + P, = 0 + 0 + 0. Note how the divergence 

uses M, while the curl uses N ,  and P,. The curl of S is the vector 2a: 

This example begins to reveal the meaning of the curl. It measures the spin! The direc- 
tion of curl F is the axis of rotation-in this case along a. The magnitude of curl F is 
twice the speed of rotation. In this case lcurl FI = 2/al and the angular velocity is la]. 

R =x i  + y j  + _-k 

curl S = 2a curl R = 0 
div R = 3 

Fig. 15.23 Spin field S = a x R, position field R, velocity field (shear field) V = zi, any field F. 

EXAMPLE 3 (!!) Every gradient field F = Sf/?x i  + 2f / f y  j + ?Jli?z k has curl F = 0: 

Always fyz equals f,, . They cancel. Also f,, =f,, and f,,=f,, . So curl grad f = 0. 
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EXAMPLE 4 (twin of Example 3) The divergence of curl F is also automatically 
zero: 

Again the mixed derivatives give Pxy = Pyx and Nxz = Nzx and Mzy = Myz.  The terms 
cancel in pairs. In "curl grad" and "div curl", everything is arranged to give zero. 

I 456( The curl of the grackat of every f(x, y, a) is curl grad f = V x Vf = 0. 
Thx: divergence of tlae curl of every F4x, y, z) is div curl F = V V x F = 0. I 

The spin field S has no divergence. The position field R has no curl. R is the gradient 
of f = &x2 + y2 + z2). S is the curl of a suitable F. Then div S = div curl F and 
curl R = curl grad f are automatically zero. 

You correctly believe that curl F measures the "spin" of the field. You may expect 
that curl (F + G) is curl F + curl G. Also correct. Finally you may think that a field 
of parallel vectors has no spin. That is wrong. Example 5 has parallel vectors, but 
their different lengths produce spin. 

EXAMPLE 5 The field V = zi in the x direction has curl V = j in the y direction. 

If you put a wheel in the xz plane, thisfield will turn it. The velocity zi at the top of 
the wheel is greater than zi at the bottom (Figure 15.23~). So the top goes faster and 
the wheel rotates. The axis of rotation is curl V = j. The turning speed is ), because 
this curl has magnitude 1. 

Another velocity field v = - xk produces the same spin: curl v = j. The flow is in 
the z direction, it varies in the x direction, and the spin is in the y direction. Also 
interesting is V + v. The two "shear fields" add to a perfect spin field S = zi - xk, 
whose curl is 2j. 

THE MEANING OF CURL F 

Example 5 put a paddlewheel into the flow. This is possible for any vector field F, 
and it gives insight into curl F. The turning of the wheel (if it turns) depends on its 
location (x, y, z). The turning also depends on the orientation of the wheel. We could 
put it into a spin field, and if the wheel axis n is perpendicular to the spin axis a, the 
wheel won't turn! The general rule for turning speed is this: the angular velocity of 
the wheel is %curl F) n. This is the bbdirectional spin," just as (grad f )  o was the 
"directional derivative"-and n is a unit vector like u. 

There is no spin anywhere in a gradient field. It is irrotational: curl grad f = 0. 
The pure spin field a x R has curl F = 2a. The angular velocity is a n (note that 

) cancels 2). This turning is everywhere, not just at the origin. If you put a penny on 
a compact disk, it turns once when the disk rotates once. That spin is "around itself," 
and it is the same whether the penny is at the center or not. 

The turning speed is greatest when the wheel axis n lines up with the spin axis a. 
Then a n is the full length (a(. The gradient gives the direction of fastest growth, and 
the curl gives the direction of fastest turning: 

maximum growth rate off is lgrad f 1 in the direction of grad f 

maximum rotation rate of F is f lcurl FI in the direction of curl F. 
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STOKES' THEOREM 

Finally we come to the big theorem. It will be like Green's Theorem-a line integral 
equals a surface integral. The line integral is still the work f F . dR around a curve. 
The surface integral in Green's Theorem is Sj(N, - My) dx dy. The surface is flat (in 
the xy plane). Its normal direction is k, and we now recognize N, - My as the k 
component of the curl. Green's Theorem uses only this component because the nor- 
mal direction is always k. For Stokes' Theorem on a curved surface, we need all three 
components of curl F. 

Figure 15.24 shows a hat-shaped surface S and its boundary C (a closed curve). 
Walking in the positive direction around C, with your head pointing in the direction 
of n, the surface is on your left. You may be standing straight up (n = k in Green's 
Theorem). You may even be upside down (n = - k is allowed). In that case you must 
go the other way around C, to keep the two sides of equation (6) equal. The surface is 
still on the left. A Mobius strip is not allowed, because its normal direction cannot be 
established. The unit vector n determines the "counterclockwise direction" along C. 

150 (Stokes' Theorem) fc F d R = jIs (curl F) ndS. 

The right side adds up small spins in the surface. The left side is the total circulation 
(or work) around C. That is not easy to visualize-this may be the hardest theorem 
in the book-but notice one simple conclusion. If curl F = 0 then 8 F dR = 0. This 
applies above all to gradient fields-as we know. 

A gradient field has no curl, by (4). A gradient field does no work, by (6). In three 
dimensions as in two dimensions, gradient fields are conservativefields. They will be 
the focus of this section, after we outline a proof (or two proofs) of Stokes' Theorem. 

The first proof shows why the theorem is true. The second proof shows that it 
really is true (and how to compute). You may prefer the first. 

First proof Figure 1 5.24 has a triangle ABC attached to a triangle ACD. Later there 
can be more triangles. S will be piecewiseflat, close to a curved surface. Two triangles 
are enough to make the point. In the plane of each triangle (they have different n's) 
Green's Theorem is known: 

8 F * d R = j j c u r l F - n d S  f F * d R =  jj curlF-ndS. 
A B + B C + C A  ABC A C + C D + D A  ACD 

Now add. The right sides give 11 curl F ndS over the two triangles. On the left, the 
integral over CA cancels the integral over AC. The "crosscut" disappears. That leaves 
AB + BC + CD + DA. This line integral goes around the outer boundary C-which 
is the left side of Stokes' Theorem. 

Fig. 15.24 Surfaces S and boundary curves C. Change in B -+ curl E -+ current in C. 
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Second proof Now the surface can be curved. A new proof may seem excessive, but 
it brings formulas you could compute with. From z = f(x, y) we have 

For ndS, see equation 15.4.1 1. With this dz, the line integral in Stokes' Theorem is 

8 F d~ = 8 M d~ + N dy + ~ ( a f l a ~  d~ + aflay dy). 
C shadow of C 

(7) 

The dot product of curl F and ndS gives the surface integral JJ curl F ndS: 
S 

To prove (7) = (8), change M in Green's Theorem to M + Paflax. Also change N to 
N + Paflay. Then (7) = (8) is Green's Theorem down on the shadow (Problem 47). 
This proves Stokes' Theorem up on S. Notice how Green's Theorem (flat surface) 
was the key to both proofs of Stokes' Theorem (curved surface). 

EXAMPLE 6 Stokes' Theorem in electricity and magnetism yields Faraday's Law. 

Stokes' Theorem is not heavily used for calculations-equation (8) shows why. But 
the spin or curl or vorticity of a flow is absolutely basic in fluid mechanics. The other 
important application, coming now, is to electric fields. Faraday's Law is to Gauss's 
Law as Stokes' Theorem is to the Divergence Theorem. 

Suppose the curve C is an actual wire. We can produce current along C by varying 
the magnetic field B(t). The flux q = JJ B ndS, passing within C and changing in time, 
creates an electric field E that does work: 

/. 

Faraday's Law (integral form): work = E dR = - dqldt. I 
That is physics. It may be true, it may be an approximation. Now comes mathematics 
(surely true), which turns this integral form into a differential equation. Information 
at points is more convenient than information around curves. Stokes converts the 
line integral of E into the surface integral of curl E: 

$ E m  dR = 11 curl E ndS and also - &plat = 55 - (aB/at) ndS. 
C S S 

These are equal for any curve C, however small. So the right sides are equal for any 
surface S. We squeeze to a point. The right hand sides give one of Maxwell's equations: 

Faraday's Law (differential form): curl E = - aBldt. 

CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS 

The chapter ends with our constant and important question: Which fields do no 
work around closed curves? Remember test D for plane curves and plane vector 
fields: 

if aM/dy = dN/dx then F is conservative and F = grad f and $ F - dR = 0. 

Now allow a three-dimensional field like F = 2xy i + (x2 + z)j + yk. Does it do work 
around a space curve? Or is it a gradient field? That will require aflax = 2xy and 
afjdy = x2 + z and af/az = y. We have three equations for one function f(x, y, z). 
Normally they can't be solved. When test D is passed (now it is the three-dimensional 
test: curl F = 0) they can be solved. This example passes test D, and f is x2y + yz. 
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ISP  F(x, y, z) = Mi + Nj + Pk is a conservative field if it has these properties: 
A. The work F da around every closed path in space is zero. 
B. The work f $F dR depends only on P and Q, not on the path in space. 
C. F is a graden? fild M = a f /ax and N = af/dy and P = df/az. 
D. The components satisfy My = N,, M, = P,, and N, = P, (curl F is zero). 
A field with one of these properties has them all. D is the quick test. 

A detailed proof of A * B =.> C * D * A is not needed. Only notice how C a D: 
curl grad F is always zero. The newest part is D * A. Ifcurl F = 0 then f F dR = 0. 
But that is not news. It is Stokes' Theorem. 

The interesting problem is to solve the three equations forf, when test D is passed. 
The example above had 

df/dx = 2xy f = 5 2xy dx = x2y plus any function C(y, z) 

dfldy = x2 + z = x2 + dC/dy C = yz plus any function C(Z) 

df/dz = y = y + dcldz c(z) can be zero. 

The first step leaves an arbitrary C(y, z) to fix the second step. The second step leaves 
an arbitrary c(z) to fix the third step (not needed here). Assembling the three steps, 
f = x2y + C = x2y + yz + c = x~~ + yz. Please recognize that the "fix-up" is only pos- 
sible when curl F = 0. Test D must be passed. 

EXAMPLE 7 Is F = (Z - y)i + (x - z)j + (y - x)k the gradient of any f ?  

Test D says no. This F is a spin field a x R. Its curl is 2a = (2,2,2), which is not zero. 
A search for f is bound to fail, but we can try. To match df/dx = z - y, we must have 
f = zx - yx + C(y, z). The y derivative is -x + dC/dy. That never matches N = x - z, 
so f can't exist. 

EXAMPLE 8 What choice of P makes F = yz2i + xz2j + Pk conservative? Findf: 

Solution We need curl F = 0, by test D. First check dM/dy = z2 = dNjdx. Also 

dP/dx = aM/dz = 2yz and dP/dy = dN/az = ~ X Z .  

P = 2xyz passes all tests. To find f we can solve the three equations, or notice that 
f = xyz2 is S U C C ~ S S ~ U ~ .  Its gradient is F. 

A third method defines f (x, y, z) as the work to reach (x, y, z) from (0,0,O). The path 
doesn't matter. For practice we integrate F dR = M dx + N dy + P dz along the 
straight line (xt, yt, zt): 

f ( ~ ,  y, Z) = So1 (y t ) (~t )~(x  dt) + (x t ) (~t )~(y  dt) + 2(xt)(yt)(zt)(z dl) = xyz2. 

EXAMPLE 9 Why is div curl grad f automatically zero (in two ways)? 

Solution First, curl grad f is zero (always). Second, div curl F is zero (always). Those 
are the key identities of vector calculus. We end with a review. 

Green's Theorem: (2N/?x - 2Ml2y)dx dy 

$F ndr = jj(ZM/dr + dN/Fy)dx dy 
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Divergence Theorem : 

Stokes' Theorem : 

Stokes' Theorem and the Curl of F 

F - d R  = curl F * n d S .  j? 
The first form of Green's Theorem leads to Stokes' Theorem. The second form 
becomes the Divergence Theorem. You may ask, why not go to three dimensions in 
the f i s t  place? The last two theorems contain the first two (take P = 0 and a flat 
surface). We could have reduced this chapter to two theorems, not four. I admit that, 
but a fundamental principle is involved: "It is easier to generalize than to specialize." 

For the same reason d f l d x  came before partial derivatives and the gradient. 

15.6 EXERCISES 

Read-through questions 

The curl of Mi + Nj + Pk. is the vector a . It equals the 
3 by 3 determinant b . The curl of x2i + z2k is c . 
For S = yi - (x + z)j + yk the curl is d . This S is a e 

field a x R =+(curl F) x R, with axis vector a = f . For 
any gradient field fxi +f, j + fzk the curl is 9 . That is the 
important identity curl grad f = h . It is based on f,, =f,, 
and i and i . The twin identity is k . 

The curl measures the I of a vector field. A pad- 
dlewheel in the field with its axis along n has turning speed 

m . The spin is greatest when n is in the direction of 
n . Then the angular velocity is 0 . 

Stokes' Theorem is P = q . The curve C is the 
r of the s S. This is t Theorem extended to 
u dimensions. Both sides are zero when F is a gradient 

field because v . 

The four properties of a conservative field are A = w , 
B = x , C = Y , D = . The field y2z2i + 2xy2zk 
(passes)(fails) test D. This field is the gradient off = A . 
The work J F  .dR from (O,0, 0) to (1, 1, 1) is B (on which 
path?). For every field 17, JJcurl F o n d s  is the same out 
through a pyramid and ulp through its base because c . 

Problems 1-6 find curl F. 

F = z i + x j + y k  2 F = grad(xeY sin z) 

F =(x +y+z)( i  + j + k) 4 F =(x  +y)i-(x +y)k 

F = pn(xi + yj + zk) 6 F = ( i + j ) x R  

Find a potential f for the field in Problem 3. 

Find a potential f for the field in Problem 5. 

When do the fields xmii and xnj have zero curl? 

When does (a,x + a2y + a,z)k have zero curl? 

In 11-14, compute curl F and find $,F0dR by Stokes' 
Theorem. 

12 F = i x R, C = circle x2 + z2 = 1, y = 0. 

13 F = (i + j) x R, C = circle y2 + z2 = 1, x = 0. 

14 F = (yi - xj) x (xi + yj), C = circle x2 + y2 = 1, z = 0. 

15 (important) Suppose two surfaces S and T have the same 
boundary C, and the direction around C is the same. 

(a) Prove JJ, curl F . ndS = flT curl F . ndS. 
(b) Second proof: The difference between those integrals is 
JJJdiv(cur1 F ) N  By what Theorem? What region is I/? 
Why is this integral zero? 

16 In 15, suppose S is the top half of the earth (n goes out) 
and T is the bottom half (n comes in). What are C and Ir! 
Show by example that IS, F ndS = 11, F ndS is not generally 
true. 

17 Explain why i[ curl F ndS = 0 over the closed boundary 
of any solid V. 

18 Suppose curl F = 0 and div F = 0. (a) Why is F the gradi- 
ent of a potential? (b) Why does the potential satisfy Laplace's 
equation f,, + f,, +f,, = O? 

In 19-22, find a potential f if it exists. 

21 F = ex-zi - ex-zk 22 F = yzi + xzj + (XY + z2)k 

23 Find a field with curl F = (1, 0,O). 

24 Find all fields with curl F = (1, 0,O). 

25 S = a x R is a spin field. Compute F = b x S (constant 
vector b) and find its curl. 
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26 How fast is a paddlewheel turned by the field F = yi - xk 
(a) if its axis direction is n = j? (b) if its axis is lined up with 
curl F? (c) if its axis is perpendicular to curl F? 

27 How is curl F related to the angular velocity o in the spin 
field F = a(- yi + xj)? How fast does a wheel spin, if it is in 
the plane x + y + z = l? 

28 Find a vector field F whose curl is S = yi - xj. 

29 Find a vector field F whose curl is S = a x R. 

30 True or false: when two vector fields have the same curl 
at all points: (a) their difference is a constant field (b) their 
difference is a gradient field (c) they have the same divergence. 

In 31-34, compute 11 curl F ndS over the top half of the sphere 
x2 + y2 + z2 = 1 and (separately) $ F . dR around the equator. 

35 The circle C in the plane x + y + z = 6 has radius r and 
center at (1,2, 3). The field F is 3zj + 2yk. Compute $ F  dR 
around C. 

36 S is the top half of the unit sphere and F = zi + xj + xyzk. 
Find 11 curl F . ndS. 

37 Find g(x, y) so that curl gk = yi + x2j. What is the name 
for g in Section 15.3? It exists because yi + x2j has zero 

38 Construct F so that curl F = 2xi + 3yj - 5zk (which has 
zero divergence). 

39 Split the field F = xyi into V + W with curl V = 0 and 
div W = 0. 

40 Ampere's law for a steady magnetic field B is curl B = pJ 
(J =current density, p = constant). Find the work done by B 
around a space curve C from the current passing through it. 

Maxwell allows varying currents which brings in the electric 
field. 

41 For F = (x2 + y2)i, compute curl (curl F) and grad (div F) 
and F,,+F,,+F,,. 

42 For F = v(x, y, z)i, prove these useful identities: 

(a) curl(cur1 F) = grad (div F) - (F,, + F,, + F,,). 

(b) curl( f F) = f curl F + (grad f )  x F. 

43 If B = a cos t (constant direction a), find curl E from Fara- 
day's Law. Then find the alternating spin field E. 

44 With G(x, y, z) = mi + nj + pk, write out F x G and take 
its divergence. Match the answer with G curl F - F . curl G. 

45 Write down Green's Theorem in the xz plane from Stokes' 
Theorem. 

True or false: V x F is perpendicular to F. 

(a) The second proof of Stokes' Theorem took M* = 

M(x, y, f (x, y)) + P(x, y, f (x, y))af/ ax as the M in Green's 
Theorem. Compute dM*/dy from the chain rule and pro- 
duct rule (there are five terms). 

(b) Similarly N* = N(x, y, f )  + P(x, y, f )df/dy has the x 
derivative N, + N, f, + P, f, + Pz f, f, + Pf,,. Check that 
N,* - M,* matches the right side of equation (S), as needed 
in the proof. 

"The shadow of the boundary is the boundary of the 
shadow." This fact was used in the second proof of Stokes' 
Theorem, going to Green's Theorem on the shadow. Give 
two examples of S and C and their shadows. 

49 Which integrals are equal when C = boundary of S or S = 

boundary of V? 

$ F dR $ (curl F)  . dR $(curl F) . nds 11 F n d ~  

11 div FdS 11 (curl F) ndS 11 (grad div F) . ndS 111 div F d V 

50 Draw the field V = - xk spinning a wheel in the xz plane. 
What wheels would not spin? 




