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Applications of the Integral 


We are experts in one application of the integral-to find the area under a curve. 
The curve is the graph of y = v(x), extending from x = a at the left to x = b at the 
right. The area between the curve and the x axis is the definite integral. 

I think of that integral in the following way. The region is made up of thin strips. 
Their width is dx and their height is v(x). The area of a strip is v(x) times dx. The 
area of all the strips is 1: v(x) dx. Strictly speaking, the area of one strip is 
meaningless-genuine rectangles have width Ax. My point is that the picture of thin 
strips gives the correct approach. 

We know what function to integrate (from the picture). We also know how (from 
this course or a calculator). The new applications to volume and length and surface 
area cut up the region in new ways. Again the small pieces tell the story. In this 
chapter, what to integrate is more important than how. 

8.1 Areas and Volumes by Slices 

This section starts with areas between curves. Then it moves to volumes, where the 
strips become slices. We are weighing a loaf of bread by adding the weights of the 
slices. The discussion is dominated by examples and figures-the theory is minimal. 
The real problem is to set up the right integral. At the end we look at a different way 
of cutting up volumes, into thin shells. All formulas are collected into a j n a l  table. 

Figure 8.1 shows the area between two curves. The upper curve is the graph of 
y = v(x). The lower curve is the graph of y = w(x). The strip height is v(x) -w(x), from 
one curve down to the other. The width is dx (speaking informally again). The total 
area is the integral of "top minus bottom": 

area between two curves = [v(x) -w (x)] dx. (1) 

EXAMPLE 1 The upper curve is y = 6x (straight line). The lower curve is y = 3x2 
(parabola). The area lies between the points where those curves intersect. 

To find the intersection points, solve u(x) = w(x) or 6x = 3x2. 
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Fig. 8.1 Area between curves = integral of v -w. Area in Example 2 starts with x 2 0. 

One crossing is at x = 0, the other is at x = 2. The area is an integral from 0 to 2: 

area = jz (v -w) d x  = ji (6x  - 3 x 2 )  d x  = 3x2 - x 3 ] ;  = 4. 

EXAMPLE 2 Find the area between the circle v = Jmand the 45" line w = x .  

First question: Which area and what limits? Start with the pie-shaped wedge in 
Figure 8.1 b. The area begins at the y axis and ends where the circle meets the line. 
At the intersection point we have u(x)= w(x): 

from = x squaring gives 1 - x2  = x 2  and then 2x2 = 1. 

Thus x2= f .  The endpoint is at x = 1/J2. Now integrate the strip height v - w: 

The area is n/8 (one eighth of the circle). To integrate Jpdx  we apply the 
techniques of Chapter 7: Set x = sin 0, convert to cos20 d0 = f(0 + sin 0 cos O), 
convert back using 0 = sin-' x .  It is harder than expected, for a familiar shape. 

Remark Suppose the problem is to find the whole area between the circle and the 
line. The figure shows v = w at two points, which are x = 1/$ (already used) and 
also x = - I/$. Instead of starting at x = 0, which gave $ of a circle, we now include 
the area to the left. 

Main point: Integrating from x = -I/$ to x = 1 / f i  will give the wrong answer. 
It misses the part of the circle that bulges out over itself, at the far left. In that part, 
the strips have height 2v instead of v - w. The figure is essential, to get the correct 
area of this half-circle. 

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS 

There is more than one way to slice a region. Vertical slices give x integrals. Horizontal 
slices give y integrals. We have a free choice, and sometimes the y integral is better. 
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Fig. 8.2 Vertical slices (x integrals) vs. horizontal slices (y integrals). 

Figure 8.2 shows a unit parallelogram, with base 1 and height 1. To find its area from 
vertical slices, three separate integrals are necessary. You should see why! With hori- 
zontal slices of length 1 and thickness dy, the area is just Jidy = 1. 

EXAMPLE 3 Find the area under y = In x (or beyond x = eY) out to x = e. 

The x integral from vertical slices is in Figure 8 .2~.  The y integral is in 8.2d. The area 
is a choice between two equal integrals (I personally would choose y): 

Jz=, in x dx = [x in x -XI',= 1 or I:=,eY)dy= [ey - ey]; = 1.(e-

VOLUMES BY SLICES 

For the first time in this book, we now look at volumes. The regions are three- 
dimensional solids. There are three coordinates x, y, z-and many ways to cut up a 
solid. 

Figure 8.3 shows one basic way-using slices. The slices have thickness dx, like 
strips in the plane. Instead of the height y of a strip, we now have the area A of a 
cross-section. This area is different for different slices: A depends on x. The volume 
of the slice is its area times its thickness: dV = A(x) dx. The volume of the whole solid 
is the integral: 

volume = integral of area times thickness = 1 A(x)  dx. (2) 
Note An actual slice does not have the same area on both sides! Its thickness is Ax 
(not dx). Its volume is approximately A(x) Ax (but not exactly). In the limit, the 
thickness approaches zero and the sum of volumes approaches the integral. 

For a cylinder all slices are the same. Figure 8.3b shows a cylinder-not circular. 
The area is a fixed number A, so integration is trivial. The volume is A times h. The 

Fig. 8.3 Cross-sections have area A(x). Volumes are A(x) dx. 
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letter h, which stands for height, reminds us that the cylinder often stands on its end. 
Then the slices are horizontal and the y integral or z integral goes from 0 to h. 

When the cross-section is a circle, the cylinder has volume nr2 h. 

EXAMPLE 4 The triangular wedge in Figure 8.3b has constant cross-sections with 
area A = f(3)(4)= 6. The volume is 6h. 

EXAMPLE 5 For the triangular pyramid in Figure 8.3c, the area A(x) drops from 6 
to 0. It is a general rule for pyramids or cones that their volume has an extra factor 
f (compared to cylinders). The volume is now 2h instead of 6h. For a cone with base 
area nr2, the volume is f nu2 h. Tapering the area to zero leaves only f of the volume. 

Why the f ?  Triangles sliced from the pyramid have shorter sides. Starting from 3 
and 4, the side lengths 3(1 - x/h) and 4(1- x/h) drop to zero at x = h. The area is 
A = 6(1- ~ / h ) ~ .Notice: The side lengths go down linearly, the area drops quadrati- 
cally. The factor f really comes from integrating r2to get i x 3 :  

EXAMPLE 6 A half-sphere of radius R has known volume $($nR3). Its cross-sections 
are semicircles. The key relation is x2 + r2 = R ~ ,for the right triangle in Figure 8.4a. 
The area of the semicircle is A = fnr2  = $n(R2 - x2 ) .So we integrate A(u): 

EXAMPLE 7 Find the volume of the same half-sphere using horizontal slices 
(Figure 8.4b). The sphere still has radius R. The new right triangle gives y2 + r2 = R ~ .  
Since we have full circles the area is nr2 = n(R2- y2). Notice that this is A(y) not 
A(x). But the y integral starts at zero: 

volume = A(y) dy = n(R2 y - f y3)]; = S ~ R - '(as before). 

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer area nf - ng2. 

SOLIDS OF REVOLUTION 

Cones and spheres and circular cylinders are "solids of revolution." Rotating a hori- 
zontal line around the x axis gives a cylinder. Rotating a sloping line gives a cone. 
Rotating a semicircle gives a sphere. If a circle is moved away from the axis, rotation 
produces a torus (a doughnut). The rotation of any curve y =f (x) produces a solid 
of revolution. 
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The volume of that solid is made easier because every cross-section is a circle. All 
slices are pancakes (or pizzas). Rotating the curve y =f (x) around the x axis gives 
disks of radius y, so the area is A = ny2 = n[f (x)12. We add the slices: 

volume of solid of revolution = f ay2 dx = lba[f (x)I2 dx. 
a a 

EXAMPLE 8 Rotating y = &with A = ~(fi)~ produces a "headlight" (Figure 8.5a): 

volume of headlight =5;
 A dx = nx dx =fnx2]i = 2n. 

If the same curve is rotated around the y axis, it makes a champagne glass. The slices 
are horizontal. The area of a slice is nx2 not ny2. When y = & this area is ny4. 
Integrating from y = 0 to figives the champagne volume n(fi)'/5. 

revolution around the y axis: volume = 1ax2 dy. 

DUPLE 9 The headlight has a hole down the center (Figure 8.5b). Volume =? 

The hole has radius 1. All of the & solid is removed, up to the point where & 
reaches 1. After that, from x = 1 to x = 2, each cross-section is a disk with a hole. 
The disk has radius f =f i and the hole has radius g = 1. The slice is a flat ring or 
a "washer." Its area is the full disk minus the area of the hole: 

area of washer = nf - ng2= a(&)2 -~ ( 1 ) ~= ax - a. 

This is the area A(x) in the method of washers. Its integral is the volume: 

Please notice: The washer area is not n(f -g)2. It is A = nf -ng2. 

Fig. 8.5 y =& revolved; y = 1 revolved inside it; circle revolved to give torus. 

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of radius a around the 
x axis. The center of the circle stays out at a distance b > a. Show that the volume 
of the doughnut (or torus) is 2n2 a2b. 
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The outside half of the circle rotates to give the outside of the doughnut. The inside 
half gives the hole. The biggest slice (through the center plane) has outer radius b + a 
and inner radius b - a. 

Shifting over by x, the outer radius is f = b + Jnand the inner radius is 
g = b -J-. Figure 8 . 5 ~  shows a slice (a washer) with area nf - ng2. 

area A = n(b + - n(b - = 4 n b J 2 7 .  

Now integrate over the washers to find the volume of the doughnut: 

That integral $nu2 is the area of a semicircle. When we set x = a sin 8 the area is 
5 a2 cos2 8do. Not for the last time do we meet cos2 8. 

The hardest part is visualizing the washers, because a doughnut usually breaks the 
other way. A better description is a bagel, sliced the long way to be buttered. 

VOLUMES BY CYLINDRICAL SHELLS 

Finally we look at a different way of cutting up a solid of revolution. So far it was 
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts 
are parallel to the axis, and each piece is a thin cylindrical shell. The new formula 
gives the same volume, but the integral to be computed might be easier. 

Figure 8.6a shows a solid cone. A shell is inside it. The inner radius is x and the 
outer radius is x + dx. The shell is an outer cylinder minus an inner cylinder: 

shell volume n(x + d ~ ) ~  h -h - nx2 h = nx2 h +2nx(ds)h + ~ ( d x ) ~nx2h. (3) 

The term that matters is 2nx(dx)h. The shell volume is essentially 2nx (the distance 
around) times dx (the thickness) times h (the height). The volume of the solid comes 
from putting together the thin shells: 

solid volume = integral of shell volumes = (4) 

This is the central formula of the shell method. The rest is examples. 

Remark on this volume formula It is completely typical of integration that ( d ~ ) ~  and 
AX)^ disappear. The reason is this. The number of shells grows like l/Ax. Terms of 
order AX)^ add up to a volume of order Ax (approaching zero). The linear term 
involving Ax or dx is the one to get right. Its limit gives the integral 2nxh dx. The 
key is to build the solid out of shells-and to find the area or volume of each piece. 

EXAMPLE I I Find the volume of a cone (base area nr2, height b) cut into shells. 

A tall shell at the center has h near b. A short shell at the outside has h near zero. In 
between the shell height h decreases linearly, reaching zero at x = r. The height in 
Figure 8.6a is h = b - bxlr. Integrating over all shells gives the volume of the cone 
(with the expected i): 
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Fig. 8.6 Shells of volume 2nxh dx inside cone, sphere with hole, and paraboloid. 

EXAMPLE 12 Bore a hole of radius a through a sphere of radius b > a. 

The hole removes all points out to x = a, where the shells begin. The height of the 
shell is h = 2 J n .  (The key is the right triangle in Figure 8.6b. The height upward 
is J n - t h i s  is half the height of the shell.) Therefore the sphere-with-hole has 

volume = j: 2nxh dx = j: 4 n x J m  dx. 

With u = b2 - x2 we almost see du. Multiplying du = -2x dx is an extra factor -271: 

volume = -2n j & du = -2n(+u3i2). 

We can find limits on u, or we can put back u = b2 - x2: 

If a = b (the hole is as big as the sphere) this volume is zero. If a = 0 (no hole) we 
have 4nb3/3 for the complete sphere. 

Question What if the sphere-with-hole is cut into slices instead of shells? 
Answer Horizontal slices are washers (Problem 66). Vertical slices are not good. 

EXAMPLE 13 Rotate the parabola y = x2 around the y axis to form a bowl. 

We go out to x = $ (and up to y = 2). The shells in Figure 8 . 6 ~  have height 
h = 2 - x2. The bowl (or paraboloid) is the same as the headlight in Example 8, but 
we have shells not slices: 

I TABLE area between curves: A = j (v(x)-w(x)) dx 
OF solid volume cut into slices: V = I A(x) dx or A(y) dy AREAS 

AND solid of revolution: cross-section A = ny2 or nx2 
VOLUMES solid with hole: washer area A = nf - ng2 

I solid of revolution cut into shells: V = 2nxh dx. 
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Which to use, slices or shells? Start with a vertical line going up to y = cos x. Rotating 
the line around the x axis produces a slice (a circular disk). The radius is cos x. 
Rotating the line around the y axis produces a shell (the outside of a cylinder). The 
height is cos x. See Figure 8.7 for the slice and the shell. For volumes we just integrate 
7r cos2x dx (the slice volume) or 27rx cos x dx (the shell volume). 

This is the normal choice-slices through the x axis and shells around the y axis. 
Then y =f (x) gives the disk radius and the shell height. The slice is a washer instead 
of a disk if there is also an inner radius g(x). No problem-just integrate small 
volumes. 

What if you use slices for rotation around the y axis? The disks are in Figure 8.7b, 
and their radius is x. This is x = cos- 'y in the example. It is x =f - '(y) in general. 
You have to solve y =f (x) to find x in terms of y. Similarly for shells around the x 
axis: The length of the shell is x =f -'(y). Integrating may be difficult or impossible. 

When y = cos x is rotated around the x axis, here are the choices for volume: 

(good by slices) j n cos2x dx (bad by shells) 5 2ny cos - ' y dy. 

= COS X 

Fig. 8.7 Slices through x axis and shells around y axis (good). The opposite way needs f - '(y). 

8.1 EXERCISES 

Read-through questions 

The area between y = x3 and y = x4 equals the integral of 
a . If the region ends where the curves intersect, we find 

the limits on x by solving b . Then the area equals c . 
When the area between y = $and the y axis is sliced hori- 
zontally, the integral to compute is d . 

In three dimensions the volume of a slice is its thickness dx 
times its e . If the cross-sections are squares of side 1 -x, 
the volume comes from f . From x = 0 to x = 1, this 
gives the volume s of a square h . If the cross-sec- 
tions are circles of radius 1 -x, the volume comes from 
j i . This gives the volume i of a circular k . 

For a solid of revolution, the cross-sections are I . 
Rotating the graph of y =f (x) around the x axis gives a solid 
volume j m . Rotating around the y axis leads to j n . 
Rotating the area between y =f (x) and y =g(x) around the x 
axis, the slices look like 0 . Their areas are P so the 
volume is j q . 

Another method is to cut the solid into thin cylindrical 
r . Revolving the area under y =f (x) around the y axis, 

a shell has height s and thickness dx and volume t . 
The total volume is 1 u . 

Find where the curves in 1-12 intersect, draw rough graphs, 
and compute the area between them. 

1 y = x 2 - 3 a n d y = 1  2 y = ~ 2 - 2 a n d y = 0  

3 y 2 = x a n d x = 9  4 y 2 = ~ a n d x = y + 2  

5 y=x4-2x2 and y=2x2 6 x=y5  and y = x 4  

7 y=x2  andy=-x2+18x 

8 y =  l/x and y =  1/x2 and x = 3  

9 y=cos x and y=cos2x 

10 y = sin nx and y = 2x and x =0 

11 y=ex and y=e2x-1 and x=O 

12 y = e  and y=ex and y=e-" 

13 Find the area inside the three lines y = 4 -x, y = 3x, and 
y = x. 

14 Find the area bounded by y = 12-x, y = &,and y = 1. 

15 Does the parabola y = 1-x2 out to x = 1 sit inside or 
outside the unit circle x2 + y2 = l? Find the area of the "skin" 
between them. 
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16 Find the area of the largest triangle with base on the x 
axis that fits (a) inside the unit circle (b) inside that parabola. 

17 Rotate the ellipse x2/a2 +y2/b2= 1 around the x axis to 
find the volume of a football. What is the volume around the 
y axis? If a =2 and b = 1, locate a point (x, y, z) that is in one 
football but not the other. 

18 What is the volume of the loaf of bread which comes from 
rotating y =sin x (0 <x <n) around the x axis? 

19 What is the volume of the flying saucer that comes from 
rotating y =sin x (0 <x <n) around the y axis? 

20 What is the volume of the galaxy that comes from rotating 
y =sin x (0 d x <n) around the x axis and then rotating the 
whole thing around the y axis? 

Draw the region bounded by the curves in 21-28. Find the 
volume when the region is rotated (a) around the x axis (b) 
around the y axis. 

26 x2-y2=9, x +y =9 (rotate the region where y 2 0) 

27 x2=y3, x3 =y2 

In 29-34 find the volume and draw a typical slice. 

29 A cap of height h is cut off the top of a sphere of radius 
R. Slice the sphere horizontally starting at y =R -h. 

30 A pyramid P has height 6 and square base of side 2. Its 
volume is 3(6)(2)' =8. 

(a) Find the volume up to height 3 by horizontal slices. 
What is the length of a side at height y? 
(b) Recompute by removing a smaller pyramid from P. 

31 The base is a disk of radius a. Slices perpendicular to the 
base are squares. 

32 The base is the region under the parabola y = 1 -x2. 
Slices perpendicular to the x axis are squares. 

33 The base is the region under the parabola y = 1-x2. 
Slices perpendicular to the y axis are squares. 

34 The base is the triangle with comers (0, O), (1, O), (0, 1). 
Slices perpendicular to the x axis are semicircles. 

35 Cavalieri's principle for areas: If two regions have strips 
of equal length, then the regions have the same area. Draw a 
parallelogram and a curved region, both with the same strips 
as the unit square. Why are the areas equal? 

36 Cavalieri's principle for volumes: If two solids have slices 
of equal area, the solids have the same volume. Find the 
volume of the tilted cylinder in the figure. 

37 Draw another region with the same slice areas as the tilted 
cylinder. When all areas A(x) are the same, the volumes 

I are the same. 
38 Find the volume common to two circular cylinders of 
radius a. One eighth of the region is shown (axes are perpen- 
dicular and horizontal slices are squares). 

39 A wedge is cut out of a cylindrical tree (see figure). One 
cut is along the ground to the x axis. The second cut is at 
angle 9, also stopping at the x axis. 

(a) The curve C is part of a (circle) (ellipse) (parabola). 
(b) The height of point P in terms of x is 
(c) The area A(x) of the triangular slice is 
(d) The volume of the wedge is 

40 The same wedge is sliced perpendicular to the y axis. 
(a) The slices are now (triangles) (rectangles) (curved). 
(b) The slice area is (slice height y tan 9). 
(c) The volume of the wedge is the integral 
(d) Change the radius from 1 to r. The volume is 
multiplied by 

41 A cylinder of radius r and height h is half full of water. 
Tilt it so the water just covers the base. 

(a) Find the volume of water by common sense. 
(b) Slices perpendicular to the x axis are (rectangles) (trap- 
ezoids) (curved). I had to tilt an actual glass. 

"42 Find the area of a slice in Problem 41. (The tilt angle has 
tan 9 =2hlr.) Integrate to find the volume of water. 
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The slices in 43-46 are washers. Find the slice area and volume. 56 y = llx, l <x < 100 (around the y axis) 

43 The rectangle with sides x = 1, x = 3, y =2, y = 5 is rotated 57 y = ,/-, 0 <x < 1 (around either axis) 
around the x axis. 

58 y = 1/(1+x2), 0 <x < 3 (around the y axis) 
44 The same rectangle is rotated around the y axis. 

59 y = sin (x2), 0<x <f i (around the y axis) 45 The same rectangle is rotated around the line y = 1. 

46 Draw the triangle with corners (1, O), (1, I), (0, 1). After 60 y = l/,/l- x2, 0 <x < 1 (around the y axis) 

rotation around the x axis, describe the solid and find its 61 y =x2, 0 < x < 2 (around the x axis) 
volume. 

62 y =ex, 0 <x < 1 (around the x axis) 
47 Bore a hole of radius a down the axis of a cone and 
through the base of radius b. If it is a 45" cone (height also 63 y = In x, 1 <x < e (around the x axis) 
b), what volume is left? Check a =0 and a = b. 

64 The region between y = x2 and y =x is revolved around 
48 Find the volume common to two spheres of radius r if the y axis. (a) Find the volume by cutting into shells. (b) Find 
their centers are 2(r -h) apart. Use Problem 29 on spherical the volume by slicing into washers. 
caps. 

65 The region between y =f(x) and y = 1 +f(x) is rotated 
49 (Shells vs. disks) Rotate y = 3 -x around the x axis from around the y axis. The shells have height . The vol- 
x =0 to x =2. Write down the volume integral by disks and ume out to x = a  is . It equals the volume of a 
then by shells. because the shells are the same. 

50 (Shells vs. disks) Rotate y =x3 around the y axis from 66 A horizontal slice of the sphere-with-hole in Figure 8.6b 
y =0 to y = 8. Write down the volume integral by shells and is a washer. Its area is nx2 -nu2 =n(b2- y2 -a2).
disks and compute both ways. (a) Find the upper limit on y (the top of the hole). 
51 Yogurt comes in a solid of revolution. Rotate the line (b) Integrate the area to verify the volume in Example 12. 
y = mx around the y axis to find the volume between y =a 
and y = b. 67 If the hole in the sphere has length 2, show that the volume 

is 4 4 3  regardless of the radii a and b. 
52 Suppose y =f(x) decreases from f(0)=b to f(1)=0. The 
curve is rotated around the y axis. Compare shells to disks: *68 An upright cylinder of radius r is sliced by two parallel 

dy. planes at angle r .  One is a height h above the other. J A  Znxf(x) dx =I",(/ - '( Y ) ) ~  
(a) Draw a picture to show that the volume between the 

Substitute y =f (x) in the second. Also substitute dy =f '(x) dx. planes is nr2 h. 
Integrate by parts to reach the first. 

(b) Tilt the picture by r ,  so the base and top are flat. What 
53 If a roll of paper with inner radius 2 cm and outer radius is the shape of the base? What is its area A? What is the 
10 cm has about 10 thicknesses per centimeter, approximately height H of the tilted cylinder? 
how long is the paper when unrolled? 

69 True or false, with a reason. 
54 Find the approximate volume of your brain. OK to (a) A cube can only be sliced into squares. 
include everything above your eyes (skull too). 

(b) A cube cannot be cut into cylindrical shells. 
Use shells to find the volumes in 55-63. The rotated regions (c) The washer with radii r and R has area n(R - r)2. 
lie between the curve and x axis. (d) The plane w =$ slices a 3-dimensional sphere out of 
55 y = 1 -x2, 0 <x d 1 (around the y axis) a 4-dimensional sphere x2 + y2 + z2+ w2 = 1. 

Length of a Plane Curve 

The graph of y = x3I2is a curve in the x-y plane. How long is  that curve? A definite 
integral needs endpoints, and we specify x = 0 and x = 4. The first problem is to know 
what "length function" to integrate. 

The distance along a curve is the arc length. To set up an integral, we break the 
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problem into small pieces. Roughly speaking, smallpieces of a smooth curve are nearly 
straight. We know the exact length As of a straight piece, and Figure 8.8 shows how 
it comes close to a curved piece. 

(ds)' = (dx)' + (2J(dX)'
dx 

Fig. 8.8 Length As of short straight segment. Length ds of very short curved segment. 

Here is the unofficial reasoning that gives the length of the curve. A straight piece 
has (As)2 = (AX)' + (AY)~.Within that right triangle, the height Ay is the slope 
(AylAx) times Ax. This secant slope is close to the slope of the curve. Thus Ay is 
approximately (dyldx) Ax. 

As z J(AX)~+ (dy/dx)'(Ax)' = ,/I+(dyldX)2 Ax. (1) 

Now add these pieces and make them smaller. The infinitesimal triangle has (ds)' = 

(dx)' + (dy)'. Think of ds as Jl+(dyldx)i dx and integrate: 

length of curve = j ds = j d w dx. 

EXAMPLE 1 Keep y = x3I2 and dyldx = #x112. Watch out for 3 and $: 

length = ,/- dx = ($)($)(I + $x)~/']: = &(lO3I2- l3I2). 

This answer is just above 9. A straight line from (0,O) to (4, 8) has exact length 
fi.Note 4' + 8' = 80. Since f i is just below 9, the curve is surprisingly straight. 

You may not approve of those numbers (or the reasoning behind them). We can 
fix the reasoning, but nothing can be done about the numbers. This example y = x3/' 
had to be chosen carefully to make the integration possible at all. The length integral 
is difficult because of the square root. In most cases we integrate numerically. 

EXAMPLE 2 The straight line y = 2x from x = 0 to x = 4 has dyldx = 2: 

length = 5; ,/=dx = 4 f i  = as before (just checking). 

We return briefly to the reasoning. The curve is the graph of y =f (x). Each piece 
contains at least one point where secant slope equals tangent slope: AylAx =ft(c). 
The Mean Value Theorem applies when the slope is continuous-this is required 
for a smooth curve. The straight length As is exactly J(Ax)' + (ft(c)Ax)'. Adding 



8 Applications of the Integral 

the n pieces gives the length of the broken line (close to the curve): 

As n -, co and Ax,,, -,0 this approaches the integral that gives arc length. 
. 

8A The length of the curve y = f(x )  from x = a to x = 6 is 

EXAMPLE 3 Find the length of the first quarter of the circle y = ,/=. 
Here dyldx = -XI, /=.  From Figure 8.9a, the integral goes from x = 0 to x = 1: 

dx
length = So1,/l+o'l+O' dx = So1dl + -x2 

dx = Jol,,--I - x ~  

The antiderivative is sin-' x.  It equals 7112 at x = 1 .  This length 7112 is a quarter of 
the full circumference 271. 

EXAMPLE 4 Compute the distance around a quarter of the ellipse y2 + 2x2 = 2. 

The equation is y = ,/=and the slope is dyldx = -2x/ , / - .  So I s  is 

That integral can't be done in closed form. The length of an ellipse can only be 
computed numerically. The denominator is zero at x = 1, so a blind application of the 
trapezoidal rule or Simpson's rule would give length = co. The midpoint rule gives 
length = 1.9 1 with thousands of intervals. 

.v = cost, 4' = G s i n t  

Fig. 8.9 Circle and ellipse, directly by y =f (x)  or parametrically by x( t )  and y(t). 

LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x(t) AND y(t)  

We have met the unit circle in two forms. One is x2 + y2 = 1. The other is x = cos t ,  
y = sin t .  Since cos2 t + sin2t = 1,this point goes around the correct circle. One advan- 
tage of the "parameter" t is to give extra information-it tells where the point is and 
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also when. In Chapter 1, the parameter was the time and also the angle-because
we moved around the circle with speed 1.

Using t is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we know x and y at every time t. An equation y =f(x) tells the
shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length-which allows you to see the idea of a parameter t without too much
detail. We give x as a function of t and y as a function of t. The curve is still
approximated by straight pieces, and each piece has (As)2 = (Ax)2 + (Ay)2. But instead
of using Ay - (dy/dx) Ax, we approximate Ax and Ay separately:

Ax x (dx/dt) At, Ay - (dy/dt) At, As ; /(dx/dt) 2 + (dy/dt)2 At.

8B The length of a parametric curve is an integral with respect to t:

J ds = (dsdt)dt = d/dt) 2 + (dy/ 2 t (6)

EXAMPLE5 Find the length of the quarter-circle using x = cos t and y = sin t:

2 /(dx/dt) 2 + (dy/dt)2 dt = X/sin 2 t + cos2 t dt = dt = .

The integral is simpler than 1/ /1-x2, and there is one new advantage. We can
integrate around a whole circle with no trouble. Parametric equations allow a path to
close up or even cross itself. The time t keeps going and the point (x(t), y(t)) keeps
moving. In contrast, curves y =f(x) are limited to one y for each x.

EXAMPLE6 Find the length of the quarter-ellipse: x = cos t and y = /2 sin t:

On this path y2 + 2x 2 is 2 sin2 t + 2 cos2 t = 2 (same ellipse). The non-parametric
equation y = /2 - 2x 2 comes from eliminating t. We keep t:

length = 1 /(dx/dt)2 + (dy/dt)2 dt = | /sin 2 t + 2 cos2 t dt. (7)

This integral (7) must equal (5). If one cannot be done, neither can the other. They
are related by x = cos t, but (7) does not blow up at the endpoints. The trapezoidal
rule gives 1.9101 with less than 100 intervals. Section 5.8 mentioned that calculators
automatically do a substitution that makes (5) more like (7).

EXAMPLE7 The path x= t2, y = t3 goes from (0, 0) to (4, 8). Stop at t = 2.

To find this path without the parameter t, first solve for t = x1 /2. Then substitute
into the equation for y: y = t3 = x 3 /2. The non-parametricform (with t eliminated) is
the same curve y = x3/2 as in Example 1.

The length from the t-integral equals the length from the x-integral. This is
Problem 22.

EXAMPLE8 Special choice of parameter: t is x. The curve becomes x = t, y = t3/2 .

If x = t then dx/dt = 1. The square root in (6) is the same as the square root in (4).
Thus the non-parametric form y =f(x) is a special case of the parametric form-just
take t = x.

Compare x = t, y = t3/ 2 with x = t
2 , y = t3. Same curve, same length, different speed.

� ,�
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short distance ---ds
EXAMPLE 9 Define "speed" by 

short time dt ' It is /($I + (%I. 
When a ball is thrown straight upward, dx/d t  is zero. But the speed is not dy/dt .  

It is Idy ldt) .The speed is positive downward as well as upward. 

8.2 EXERCISES 

Read-through questions 

The length of a straight segment (Ax across, Ay up) is 
As = a . Between two points of the graph of y(x), By is 
approximately dyldx times b . The length of that piece 
is approximately J ( A ~ ) ~  c . An infinitesimal piece of + 
the curve has length ds = d . Then the arc length integral 
i s j  0 . 

For y = 4 - x  from x=O to x = 3 the arc length is 
f = g . For y =  x3 the arc length integral is h . 

The curve x = cos t ,  y =sin t is the same as i . The 
length of a curve given by x(t), y(t) is I ,/Fdt. For exam- 
ple x = cos t ,  y = sin t from t = 4 3  to t = 4 2  has length 

k . The speed is dsldt = I . For the special case 
x = t ,  y = / ( t )  the length formula goes back to dx. 

Find the lengths of the curves in Problems 1-8. 

1 y = x3I2from (0, 0) to (1, 1) 

2 y = x2I3from (0,O) to (1, 1) (compare with Problem 1 or 
put u =$ + x2I3in the length integral) 

3 y = 3(x2+ 2)312from x = 0 to x = 1 

4 y = &x2 -2)3/2from x = 2 to x = 4 

7 y = 3x3I2- i x1 I2from x = 1 to x = 4 

8 y = x2 from (0, 0) to (1, 1) 

9 The curve given by x = cos3t ,  y = sin3t is an astroid (a 
hypocycloid). Its non-parametric form is x2I3+ y2I3= 1. 
Sketch the curve from t = 0 to t = z/2 and find its length. 

10 Find the length from t = 0 to t = z of the curve- given by 
x = cos t + sin t ,  y = cos t -sin t. Show that the curve is a 
circle (of what radius?). 

11 Find the length from t = 0 to t = n/2 of the curve given by 
x = cos t ,  y = t -sln t. 

12 What integral gives the length of Archimedes' spiral 
x = t cos t, y = t sin t? 

13 Find the distance traveled in the first second (to t = I )  if 
=i t 2 ,  = 5(2t + 1)3/2. 

14 x = (1 -3 cos 2t)cos t and y = (1 + i cos  2t) sin t lead to 
4(1- x2 -y2) j  = 27(x2-y2)2.Find the arc length from t = 0 
to x/4. 

Find the arc lengths in 15-18 by numerical integration. 

15 One arch of y = sin x, from x = 0 to x = K. 

17 y=ln  x from x =  1 to x=e. 

19 Draw a rough picture of y = xl0.  Without computing the 
length of y = xn from (0,O) to (1, I), find the limit as n -+ sc;. 

20 Which is longer between (1, 1) and (2,3), the hyperbola 
y = l / x  or the graph of x + 2y = 3? 

21 Find the speed dsldt on the circle x = 2 cos 3t, y = 2 sin 3t. 

22 Examples 1 and 7 were y = x3I2and x = t2, y = t 3 :  

length = 1: dx, length = d m dt. 

Show by substituting x = that these integrals agree. 

23 Instead of y =f (x )a curve can be given as x =g(y). Then 

ds = = dy.JmJm 
Draw x = 5y from y = 0 to y = 1 and find its length. 

24 The length of x=y3I2  from (0,O) to (1, 1) is 
I ds = ,/=dy. Compare with Problem 1: Same length? 
Same curve? 

25 Find the length of ~ = i ( e ~ + e - ~ )from y=  -1 to y =  1 
and draw the curve. 

26 The length of x =g(y)is a special case of equation (6)with 
y = t and x =g(t). The length integral becomes . 
27 Plot the point x = 3 cos t ,  y = 4 sin t at the five times 
t = 0, 4 2 ,  z, 3x12, 2 ~ .  The equation of the curve is 
( ~ 1 3 ) ~+ (y/4)2= 1, not a circle but an . This curve 
cannot be written as y =f (x )because . 
28 (a) Find the length of x = cos2t ,  y = sin2t, 0 d y < z. 

(b) Why does this path stay on the line x + y = l ?  
(c) Why isn't the path length equal to JI? 
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29 (important) The line y =x is close to a staircase of pieces (b) This particular curve has ds = . Find its 
that go straight across or straight up. With 100 pieces of length length from t =0 to t = 2n. 
Ax = 1/100 or Ay = 1/100, find the length of carpet on the (c) Describe the curve and its shadow in the xy plane. 
staircase. (The length of the 45" line is a.The staircase can 
be close when its length is not close.) 32 Explain in 50 words the difference between a non-para-

metric equation y=f(x) and two parametric equations 
30 The area of an ellipse is nab. The area of a strip around x =x(t), y =y(t). 
it (width A) is n(a + A)(b +A) -nab x n(a + b)A. The distance 33 Write down the integral for the length L of y =x2 from 
around the ellipse seems to be n(a + b). But this distance is (0, 0) to (1, 1). Show that y =$x2 from (0, 0) to (2, 2) is exactly 
impossible to find-what is wrong? twice as long. If possible give a reason using the graphs. 
31 The point x =cos t, y =sin t, z = t moves on a space curve. 34 (for professors) Compare the lengths of the parabola 

(a) In three-dimensional space ( d ~ ) ~  +equals ( d ~ ) ~  y =x2 and the line y =bx from (0,O) to (b, b2). Does the 
. In equation (6),ds is now dt. difference approach a limit as b -+ GO? 

8.3 Area of a Surface of Revolution 

This section starts by constructing surfaces. A curve y =f (x) is revolved around an 
axis. That produces a "surface of revolution," which is symmetric around the axis. If 
we revolve a sloping line, the result is a cone. When the line is parallel to the axis we 
get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp shade 
(or even the light bulb). 

Secti.on 8.1 computed the volume inside that surface. This section computes the 
surface area. Previously we cut the solid into slices or shells. Now we need a good 
way to cut up the surface. 

The key idea is to revolve short straight line segments. Their slope is Ay/Ax. They 
can be the same pieces of length As that were used to find length-now we compute 
area. When revolved, a straight piece produces a "thin ban&' (Figure 8.10). The curved 
surface, from revolving y =f (x), is close to the bands. The first step is to compute the 
surface area of a band. 

A small comment: Curved surfaces can also be cut into tiny patches. Each patch 
is nearly flat, like a little square. The sum of those patches leads to a double integral 
(with dx dy). Here the integral stays one-dimensional (dx or dy or dt). Surfaces of 
revolution are special-we approximatz them by bands that go all the way around. 
A band is just a belt with a slope, and its slope has an effect on its area. 

middle radius x 

area AS = 2xrAs area AS = 2xxAs 

Fig. 8.10 Revolving a straight piece and a curve around the y axis and x axis. 
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Revolve a small straight piece (length As not Ax). The center of the piece goes 
around a circle of radius r. The band is a slice of a cone. When we flatten it out 
(Problems 11- 13) we discover its area. The area is the side length As times the middle 
circumference 2nr : 

The surface area of a band is 2nrAs = 2nrdl+( A ~ / A x ) ~Ax. 

For revolution around the y axis, the radius is r = x. For revolution around the x 
axis, the radius is the height: r = y = f (x). Figure 8.10 shows both bands-the problem 
tells us which to use. The sum of band areas 2nr As is close to the area S of the curved 
surface. In the limit we integrate 2nr ds: 

8C The surface area generated by revolving the curve y = f (x) between x = a 
and x =  b is 

S = 2 n y J l + o z  1: dx around the x axis (r = y) (1) 

S = j: 2nx,/l+(dyldx)Zl+OZ dx around the y axis (r  = x). (2) 

EXAMPLE 1 Revolve a complete semicircle y = ,/- around the x axis. 

The surface of revolution is a sphere. Its area (known!) is 4nR2. The limits on x are 
-R and R. The slope of y = d m  is dyldx = -x/,/R"-X2: 

area S = jR  2nd- JGdx = lR2nR dx = 4 n ~ ' .  
- R  X - R  

EXAMPLE 2 Revolve a piece of the straight line y = 2x around the x axis. 

The surface is a cone with (dy/dx)2 = 4. The band from x = 0 to x = 1 has area 
2 n d :  

This answer must agree with the formula 2nr As (which it came from). The line from 
(0,O) to (l ,2) has length As = fi.Its midpoint is ( t ,1). Around the x axis, the middle 
radius is r = 1 and the area is 2 n d .  

EXAMPLE 3 Revolve the same straight line segment around the y axis. Now the 
radius is x instead of y = 2x. The area in Example 2 is cut in half: 

For surfaces as for arc length, only a few examples have convenient answers. 
Watermelons and basketballs and light bulbs are in the exercises. Rather than stretch- 
ing out this section,' we give a final area formula and show how to use it. 

The formula applies when there is a parameter t. Instead of (x, f (x)) the points on 
the curve are (x(t), y(t)). As t varies, we move along the curve. The length formula 

= ( d ~ ) ~  is expressed in terms oft. ( d ~ ) ~  + ( d ~ ) ~  
For the surface of revolution around the x axis, the area becomes a t-integral: 

1 80 The surface area is 2ny ds = 2ny(t) ,/(dx/dt)' + (dy[dt)2 dt. (3) 1 
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EXAMPLE 4 The point x = cos t, y = 5 + sin t travels on a circle with center at (0, 5). 
Revolving that circle around the x axis produces a doughnut. Find its surface area. 

Solution ( d ~ l d t ) ~+ (dy/dt)2= sin2 t + cos2 t = 1. The circle is complete at t = 2n: 

j 2ny ds = Sin 2n(5 + sin t) dt = [2n(5t - cos t)]:= = 20n2. 

8.3 EXERCISES 

Read-through questions 

A surface of revolution comes from revolving a a around 
b . This section computes the c . When the curve is 

a short straight piece (length As), the surface is a d . Its 
area is AS = e . In that formula (Problem 13) r is the 
radius of f . The line from (0,O)to (1, 1) has length g , 
and revolving it produces area h . 

When the curve y =f (x) revolves around the x axis, the 
surface area is the integral i . For y = x2 the integral to 
compute is i . When y = x2 is revolved around the y axis, 
the area is S = k . For the curve given by x = 2t, y = t2, 
change ds to I dt. 

Find the surface area when curves 1-6 revolve around the x 
axis. 

1 y=&, 2 6 x 6 6  

3 y=7x,  - 1 6 x 6 1  (watchsign) 

In 7-10 find the area of the surface of revolution around the y 
axis. 

7 y = x 2 ,  0 6 x 6 2  8 y = i ~ 2 + i ,  0 6 x 6 1  

9 y = x +  1, 0 6 x 6 3  10 y= . r~"~ ,  0 6 x 6 1  

11 A cone with base radius R and slant height s is laid out 
flat. Explain why the angle (in radians) is 0 = 2nRls. Then the 
surface area is a fraction of a circle: 

($) ns2 (t)ns2area = = = nRs. 

12 A band with slant height As = s - s' and radii R and R' is 
laid out flat. Explain in one line why its surface area is 
nRs -nR1s'. 

13 By similar triangles Rls = R'ls' or Rs' = R's. The middle 
radius r is i (R  + R'). Substitute for r and As in the proposed 
area formula 2nr AS, to show that this gives the correct area 
nRs -nR1s'. 

14 Slices of a basketball all have the same area of cover, 
if they have the same thickness. 

(a) Rotate y = around the x axis. Show that 
dS = 2n dx. 
(b) The area between x = a and x = a + h is 
(c) $ of the Earth's area is above latitude 

15 Change the circle in Example 4 to x = a  cos t and y = 

b + a sin t. Its radius is and its center is . 
Find the surface area of a torus by revolving this circle around 
the x axis. 

16 What part of the circle x = R cos t, y = R sin t should 
rotate around the y axis to produce the top half of a sphere? 
Choose limits on t and verify the area. 

17 The base of a lamp is constructed by revolving the quar- 
ter-circle y = 4- (x = 1 to x = 2) around the y axis. 
Draw the quarter-circle, find the area integral, and compute 
the area. 

18 The light bulb is a sphere of radius 112 with its bottom 
sliced off to fit onto a cylinder of radius 1/4 and length 113. 
Draw the light bulb and find its surface area (ends of the 
cylinder not included). 

19 The lamp shade is constructed by rotating y = l / x  around 
the y axis, and keeping the part from y = 1 to y = 2. Set up 
the definite integral that gives its surface area. 

20 Compute the area of that lamp shade. 
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21 Explain why the surface area is infinite when y = llx is cover the disk. Hint: Change to a unit sphere sliced by planes 
rotated around the x axis (1 6 x < a).But the volume of 3" apart. Problem 14 gives surface area n for each slice. 
"Gabriel's horn" is It can't enough paint to 23 A watermelon (maybe a football) is the result of rotating 
paint its surface. 

half of the ellipse x =f i cos t ,  y = sin t (which means 

22 A disk of radius 1" can be covered by four strips of tape x2+ 2y2= 2). Find the surface area, parametrically or not. 

(width y).If the strips are not parallel, prove that they can't 24 Estimate the surface area of an egg. 

8.4 Probability and Calculus 

Discrete probability usually involves careful counting. Not many samples are taken 
and not many experiments are made. There is a list of possible outcomes, and a 
known probability for each outcome. But probabilities go far beyond red cards and 
black cards. The real questions are much more practical: 

1. How often will too many passengers arrive for a flight? 
2. How many random errors do you make on a quiz? 
3. What is the chance of exactly one winner in a big lottery? 

Those are important questions and we will set up models to answer them. 
There is another point. Discrete models do not involve calculus. The number of 

errors or bumped passengers or lottery winners is a small whole number. Calculus 
enters for continuous probability. Instead of results that exactly equal 1 or 2 or 3, 
calculus deals with results that fall in a range of numbers. Continuous probability 
comes up in at least two ways: 

(A) An experiment is repeated many times and we take averages. 
(B) The outcome lies anywhere in an interval of numbers. 

In the continuous case, the probability p, of hitting a particular value x = n becomes 
zero. Instead we have a probability density p(x)-which is a key idea. The chance that 
a random X falls between a and b is found by integrating the density p(x): 

Roughly speaking, p(x) d x  is the chance of falling between x and x + dx. Certainly 
p(x) 2 0. If a and b are the extreme limits - co and a,including all possible outcomes, 
the probability is necessarily one: 

This is a case where infinite limits of integration are natural and unavoidable. In 
studying probability they create no difficulty-areas out to infinity are often easier. 

Here are typical questions involving continuous probability and calculus: 

4. How conclusive is a 53%-47% poll of 2500 voters? 
5. Are 16 random football players safe on an elevator with capacity 3600 pounds? 
6. How long before your car is in an accident? 

It is not so traditional for a calculus course to study these questions. They need extra 
thought, beyond computing integrals (so this section is harder than average). But 
probability is more important than some traditional topics, and also more interesting. 




