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Applications of the Integral 


We are experts in one application of the integral-to find the area under a curve. 
The curve is the graph of y = v(x), extending from x = a at the left to x = b at the 
right. The area between the curve and the x axis is the definite integral. 

I think of that integral in the following way. The region is made up of thin strips. 
Their width is dx and their height is v(x). The area of a strip is v(x) times dx. The 
area of all the strips is 1: v(x) dx. Strictly speaking, the area of one strip is 
meaningless-genuine rectangles have width Ax. My point is that the picture of thin 
strips gives the correct approach. 

We know what function to integrate (from the picture). We also know how (from 
this course or a calculator). The new applications to volume and length and surface 
area cut up the region in new ways. Again the small pieces tell the story. In this 
chapter, what to integrate is more important than how. 

8.1 Areas and Volumes by Slices 

This section starts with areas between curves. Then it moves to volumes, where the 
strips become slices. We are weighing a loaf of bread by adding the weights of the 
slices. The discussion is dominated by examples and figures-the theory is minimal. 
The real problem is to set up the right integral. At the end we look at a different way 
of cutting up volumes, into thin shells. All formulas are collected into a j n a l  table. 

Figure 8.1 shows the area between two curves. The upper curve is the graph of 
y = v(x). The lower curve is the graph of y = w(x). The strip height is v(x) -w(x), from 
one curve down to the other. The width is dx (speaking informally again). The total 
area is the integral of "top minus bottom": 

area between two curves = [v(x) -w (x)] dx. (1) 

EXAMPLE 1 The upper curve is y = 6x (straight line). The lower curve is y = 3x2 
(parabola). The area lies between the points where those curves intersect. 

To find the intersection points, solve u(x) = w(x) or 6x = 3x2. 
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Fig. 8.1 Area between curves = integral of v -w. Area in Example 2 starts with x 2 0. 

One crossing is at x = 0, the other is at x = 2. The area is an integral from 0 to 2: 

area = jz (v -w) d x  = ji (6x  - 3 x 2 )  d x  = 3x2 - x 3 ] ;  = 4. 

EXAMPLE 2 Find the area between the circle v = Jmand the 45" line w = x .  

First question: Which area and what limits? Start with the pie-shaped wedge in 
Figure 8.1 b. The area begins at the y axis and ends where the circle meets the line. 
At the intersection point we have u(x)= w(x): 

from = x squaring gives 1 - x2  = x 2  and then 2x2 = 1. 

Thus x2= f .  The endpoint is at x = 1/J2. Now integrate the strip height v - w: 

The area is n/8 (one eighth of the circle). To integrate Jpdx  we apply the 
techniques of Chapter 7: Set x = sin 0, convert to cos20 d0 = f(0 + sin 0 cos O), 
convert back using 0 = sin-' x .  It is harder than expected, for a familiar shape. 

Remark Suppose the problem is to find the whole area between the circle and the 
line. The figure shows v = w at two points, which are x = 1/$ (already used) and 
also x = - I/$. Instead of starting at x = 0, which gave $ of a circle, we now include 
the area to the left. 

Main point: Integrating from x = -I/$ to x = 1 / f i  will give the wrong answer. 
It misses the part of the circle that bulges out over itself, at the far left. In that part, 
the strips have height 2v instead of v - w. The figure is essential, to get the correct 
area of this half-circle. 

HORIZONTAL STRIPS INSTEAD OF VERTICAL STRIPS 

There is more than one way to slice a region. Vertical slices give x integrals. Horizontal 
slices give y integrals. We have a free choice, and sometimes the y integral is better. 
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dx d x l d x  1 1 du e 

Fig. 8.2 Vertical slices (x integrals) vs. horizontal slices (y integrals). 

Figure 8.2 shows a unit parallelogram, with base 1 and height 1. To find its area from 
vertical slices, three separate integrals are necessary. You should see why! With hori- 
zontal slices of length 1 and thickness dy, the area is just Jidy = 1. 

EXAMPLE 3 Find the area under y = In x (or beyond x = eY) out to x = e. 

The x integral from vertical slices is in Figure 8 .2~.  The y integral is in 8.2d. The area 
is a choice between two equal integrals (I personally would choose y): 

Jz=, in x dx = [x in x -XI',= 1 or I:=,eY)dy= [ey - ey]; = 1.(e-

VOLUMES BY SLICES 

For the first time in this book, we now look at volumes. The regions are three- 
dimensional solids. There are three coordinates x, y, z-and many ways to cut up a 
solid. 

Figure 8.3 shows one basic way-using slices. The slices have thickness dx, like 
strips in the plane. Instead of the height y of a strip, we now have the area A of a 
cross-section. This area is different for different slices: A depends on x. The volume 
of the slice is its area times its thickness: dV = A(x) dx. The volume of the whole solid 
is the integral: 

volume = integral of area times thickness = 1 A(x)  dx. (2) 
Note An actual slice does not have the same area on both sides! Its thickness is Ax 
(not dx). Its volume is approximately A(x) Ax (but not exactly). In the limit, the 
thickness approaches zero and the sum of volumes approaches the integral. 

For a cylinder all slices are the same. Figure 8.3b shows a cylinder-not circular. 
The area is a fixed number A, so integration is trivial. The volume is A times h. The 

Fig. 8.3 Cross-sections have area A(x). Volumes are A(x) dx. 
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letter h, which stands for height, reminds us that the cylinder often stands on its end. 
Then the slices are horizontal and the y integral or z integral goes from 0 to h. 

When the cross-section is a circle, the cylinder has volume nr2 h. 

EXAMPLE 4 The triangular wedge in Figure 8.3b has constant cross-sections with 
area A = f(3)(4)= 6. The volume is 6h. 

EXAMPLE 5 For the triangular pyramid in Figure 8.3c, the area A(x) drops from 6 
to 0. It is a general rule for pyramids or cones that their volume has an extra factor 
f (compared to cylinders). The volume is now 2h instead of 6h. For a cone with base 
area nr2, the volume is f nu2 h. Tapering the area to zero leaves only f of the volume. 

Why the f ?  Triangles sliced from the pyramid have shorter sides. Starting from 3 
and 4, the side lengths 3(1 - x/h) and 4(1- x/h) drop to zero at x = h. The area is 
A = 6(1- ~ / h ) ~ .Notice: The side lengths go down linearly, the area drops quadrati- 
cally. The factor f really comes from integrating r2to get i x 3 :  

EXAMPLE 6 A half-sphere of radius R has known volume $($nR3). Its cross-sections 
are semicircles. The key relation is x2 + r2 = R ~ ,for the right triangle in Figure 8.4a. 
The area of the semicircle is A = fnr2  = $n(R2 - x2 ) .So we integrate A(u): 

EXAMPLE 7 Find the volume of the same half-sphere using horizontal slices 
(Figure 8.4b). The sphere still has radius R. The new right triangle gives y2 + r2 = R ~ .  
Since we have full circles the area is nr2 = n(R2- y2). Notice that this is A(y) not 
A(x). But the y integral starts at zero: 

volume = A(y) dy = n(R2 y - f y3)]; = S ~ R - '(as before). 

Fig. 8.4 A half-sphere sliced vertically or horizontally. Washer area nf - ng2. 

SOLIDS OF REVOLUTION 

Cones and spheres and circular cylinders are "solids of revolution." Rotating a hori- 
zontal line around the x axis gives a cylinder. Rotating a sloping line gives a cone. 
Rotating a semicircle gives a sphere. If a circle is moved away from the axis, rotation 
produces a torus (a doughnut). The rotation of any curve y =f (x) produces a solid 
of revolution. 
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The volume of that solid is made easier because every cross-section is a circle. All 
slices are pancakes (or pizzas). Rotating the curve y =f (x) around the x axis gives 
disks of radius y, so the area is A = ny2 = n[f (x)12. We add the slices: 

volume of solid of revolution = f ay2 dx = lba[f (x)I2 dx. 
a a 

EXAMPLE 8 Rotating y = &with A = ~(fi)~ produces a "headlight" (Figure 8.5a): 

volume of headlight =5;
 A dx = nx dx =fnx2]i = 2n. 

If the same curve is rotated around the y axis, it makes a champagne glass. The slices 
are horizontal. The area of a slice is nx2 not ny2. When y = & this area is ny4. 
Integrating from y = 0 to figives the champagne volume n(fi)'/5. 

revolution around the y axis: volume = 1ax2 dy. 

DUPLE 9 The headlight has a hole down the center (Figure 8.5b). Volume =? 

The hole has radius 1. All of the & solid is removed, up to the point where & 
reaches 1. After that, from x = 1 to x = 2, each cross-section is a disk with a hole. 
The disk has radius f =f i and the hole has radius g = 1. The slice is a flat ring or 
a "washer." Its area is the full disk minus the area of the hole: 

area of washer = nf - ng2= a(&)2 -~ ( 1 ) ~= ax - a. 

This is the area A(x) in the method of washers. Its integral is the volume: 

Please notice: The washer area is not n(f -g)2. It is A = nf -ng2. 

Fig. 8.5 y =& revolved; y = 1 revolved inside it; circle revolved to give torus. 

EXAMPLE 10 (Doughnut sliced into washers) Rotate a circle of radius a around the 
x axis. The center of the circle stays out at a distance b > a. Show that the volume 
of the doughnut (or torus) is 2n2 a2b. 
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The outside half of the circle rotates to give the outside of the doughnut. The inside 
half gives the hole. The biggest slice (through the center plane) has outer radius b + a 
and inner radius b - a. 

Shifting over by x, the outer radius is f = b + Jnand the inner radius is 
g = b -J-. Figure 8 . 5 ~  shows a slice (a washer) with area nf - ng2. 

area A = n(b + - n(b - = 4 n b J 2 7 .  

Now integrate over the washers to find the volume of the doughnut: 

That integral $nu2 is the area of a semicircle. When we set x = a sin 8 the area is 
5 a2 cos2 8do. Not for the last time do we meet cos2 8. 

The hardest part is visualizing the washers, because a doughnut usually breaks the 
other way. A better description is a bagel, sliced the long way to be buttered. 

VOLUMES BY CYLINDRICAL SHELLS 

Finally we look at a different way of cutting up a solid of revolution. So far it was 
cut into slices. The slices were perpendicular to the axis of revolution. Now the cuts 
are parallel to the axis, and each piece is a thin cylindrical shell. The new formula 
gives the same volume, but the integral to be computed might be easier. 

Figure 8.6a shows a solid cone. A shell is inside it. The inner radius is x and the 
outer radius is x + dx. The shell is an outer cylinder minus an inner cylinder: 

shell volume n(x + d ~ ) ~  h -h - nx2 h = nx2 h +2nx(ds)h + ~ ( d x ) ~nx2h. (3) 

The term that matters is 2nx(dx)h. The shell volume is essentially 2nx (the distance 
around) times dx (the thickness) times h (the height). The volume of the solid comes 
from putting together the thin shells: 

solid volume = integral of shell volumes = (4) 

This is the central formula of the shell method. The rest is examples. 

Remark on this volume formula It is completely typical of integration that ( d ~ ) ~  and 
AX)^ disappear. The reason is this. The number of shells grows like l/Ax. Terms of 
order AX)^ add up to a volume of order Ax (approaching zero). The linear term 
involving Ax or dx is the one to get right. Its limit gives the integral 2nxh dx. The 
key is to build the solid out of shells-and to find the area or volume of each piece. 

EXAMPLE I I Find the volume of a cone (base area nr2, height b) cut into shells. 

A tall shell at the center has h near b. A short shell at the outside has h near zero. In 
between the shell height h decreases linearly, reaching zero at x = r. The height in 
Figure 8.6a is h = b - bxlr. Integrating over all shells gives the volume of the cone 
(with the expected i): 
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hole radius a 

x 4 2  

Fig. 8.6 Shells of volume 2nxh dx inside cone, sphere with hole, and paraboloid. 

EXAMPLE 12 Bore a hole of radius a through a sphere of radius b > a. 

The hole removes all points out to x = a, where the shells begin. The height of the 
shell is h = 2 J n .  (The key is the right triangle in Figure 8.6b. The height upward 
is J n - t h i s  is half the height of the shell.) Therefore the sphere-with-hole has 

volume = j: 2nxh dx = j: 4 n x J m  dx. 

With u = b2 - x2 we almost see du. Multiplying du = -2x dx is an extra factor -271: 

volume = -2n j & du = -2n(+u3i2). 

We can find limits on u, or we can put back u = b2 - x2: 

If a = b (the hole is as big as the sphere) this volume is zero. If a = 0 (no hole) we 
have 4nb3/3 for the complete sphere. 

Question What if the sphere-with-hole is cut into slices instead of shells? 
Answer Horizontal slices are washers (Problem 66). Vertical slices are not good. 

EXAMPLE 13 Rotate the parabola y = x2 around the y axis to form a bowl. 

We go out to x = $ (and up to y = 2). The shells in Figure 8 . 6 ~  have height 
h = 2 - x2. The bowl (or paraboloid) is the same as the headlight in Example 8, but 
we have shells not slices: 

I TABLE area between curves: A = j (v(x)-w(x)) dx 
OF solid volume cut into slices: V = I A(x) dx or A(y) dy AREAS 

AND solid of revolution: cross-section A = ny2 or nx2 
VOLUMES solid with hole: washer area A = nf - ng2 

I solid of revolution cut into shells: V = 2nxh dx. 
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Which to use, slices or shells? Start with a vertical line going up to y = cos x. Rotating 
the line around the x axis produces a slice (a circular disk). The radius is cos x. 
Rotating the line around the y axis produces a shell (the outside of a cylinder). The 
height is cos x. See Figure 8.7 for the slice and the shell. For volumes we just integrate 
7r cos2x dx (the slice volume) or 27rx cos x dx (the shell volume). 

This is the normal choice-slices through the x axis and shells around the y axis. 
Then y =f (x) gives the disk radius and the shell height. The slice is a washer instead 
of a disk if there is also an inner radius g(x). No problem-just integrate small 
volumes. 

What if you use slices for rotation around the y axis? The disks are in Figure 8.7b, 
and their radius is x. This is x = cos- 'y in the example. It is x =f - '(y) in general. 
You have to solve y =f (x) to find x in terms of y. Similarly for shells around the x 
axis: The length of the shell is x =f -'(y). Integrating may be difficult or impossible. 

When y = cos x is rotated around the x axis, here are the choices for volume: 

(good by slices) j n cos2x dx (bad by shells) 5 2ny cos - ' y dy. 

= COS X 

Fig. 8.7 Slices through x axis and shells around y axis (good). The opposite way needs f - '(y). 

8.1 EXERCISES 

Read-through questions 

The area between y = x3 and y = x4 equals the integral of 
a . If the region ends where the curves intersect, we find 

the limits on x by solving b . Then the area equals c . 
When the area between y = $and the y axis is sliced hori- 
zontally, the integral to compute is d . 

In three dimensions the volume of a slice is its thickness dx 
times its e . If the cross-sections are squares of side 1 -x, 
the volume comes from f . From x = 0 to x = 1, this 
gives the volume s of a square h . If the cross-sec- 
tions are circles of radius 1 -x, the volume comes from 
j i . This gives the volume i of a circular k . 

For a solid of revolution, the cross-sections are I . 
Rotating the graph of y =f (x) around the x axis gives a solid 
volume j m . Rotating around the y axis leads to j n . 
Rotating the area between y =f (x) and y =g(x) around the x 
axis, the slices look like 0 . Their areas are P so the 
volume is j q . 

Another method is to cut the solid into thin cylindrical 
r . Revolving the area under y =f (x) around the y axis, 

a shell has height s and thickness dx and volume t . 
The total volume is 1 u . 

Find where the curves in 1-12 intersect, draw rough graphs, 
and compute the area between them. 

1 y = x 2 - 3 a n d y = 1  2 y = ~ 2 - 2 a n d y = 0  

3 y 2 = x a n d x = 9  4 y 2 = ~ a n d x = y + 2  

5 y=x4-2x2 and y=2x2 6 x=y5  and y = x 4  

7 y=x2  andy=-x2+18x 

8 y =  l/x and y =  1/x2 and x = 3  

9 y=cos x and y=cos2x 

10 y = sin nx and y = 2x and x =0 

11 y=ex and y=e2x-1 and x=O 

12 y = e  and y=ex and y=e-" 

13 Find the area inside the three lines y = 4 -x, y = 3x, and 
y = x. 

14 Find the area bounded by y = 12-x, y = &,and y = 1. 

15 Does the parabola y = 1-x2 out to x = 1 sit inside or 
outside the unit circle x2 + y2 = l? Find the area of the "skin" 
between them. 
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16 Find the area of the largest triangle with base on the x 
axis that fits (a) inside the unit circle (b) inside that parabola. 

17 Rotate the ellipse x2/a2 +y2/b2= 1 around the x axis to 
find the volume of a football. What is the volume around the 
y axis? If a =2 and b = 1, locate a point (x, y, z) that is in one 
football but not the other. 

18 What is the volume of the loaf of bread which comes from 
rotating y =sin x (0 <x <n) around the x axis? 

19 What is the volume of the flying saucer that comes from 
rotating y =sin x (0 <x <n) around the y axis? 

20 What is the volume of the galaxy that comes from rotating 
y =sin x (0 d x <n) around the x axis and then rotating the 
whole thing around the y axis? 

Draw the region bounded by the curves in 21-28. Find the 
volume when the region is rotated (a) around the x axis (b) 
around the y axis. 

26 x2-y2=9, x +y =9 (rotate the region where y 2 0) 

27 x2=y3, x3 =y2 

In 29-34 find the volume and draw a typical slice. 

29 A cap of height h is cut off the top of a sphere of radius 
R. Slice the sphere horizontally starting at y =R -h. 

30 A pyramid P has height 6 and square base of side 2. Its 
volume is 3(6)(2)' =8. 

(a) Find the volume up to height 3 by horizontal slices. 
What is the length of a side at height y? 
(b) Recompute by removing a smaller pyramid from P. 

31 The base is a disk of radius a. Slices perpendicular to the 
base are squares. 

32 The base is the region under the parabola y = 1 -x2. 
Slices perpendicular to the x axis are squares. 

33 The base is the region under the parabola y = 1-x2. 
Slices perpendicular to the y axis are squares. 

34 The base is the triangle with comers (0, O), (1, O), (0, 1). 
Slices perpendicular to the x axis are semicircles. 

35 Cavalieri's principle for areas: If two regions have strips 
of equal length, then the regions have the same area. Draw a 
parallelogram and a curved region, both with the same strips 
as the unit square. Why are the areas equal? 

36 Cavalieri's principle for volumes: If two solids have slices 
of equal area, the solids have the same volume. Find the 
volume of the tilted cylinder in the figure. 

37 Draw another region with the same slice areas as the tilted 
cylinder. When all areas A(x) are the same, the volumes 

I are the same. 
38 Find the volume common to two circular cylinders of 
radius a. One eighth of the region is shown (axes are perpen- 
dicular and horizontal slices are squares). 

39 A wedge is cut out of a cylindrical tree (see figure). One 
cut is along the ground to the x axis. The second cut is at 
angle 9, also stopping at the x axis. 

(a) The curve C is part of a (circle) (ellipse) (parabola). 
(b) The height of point P in terms of x is 
(c) The area A(x) of the triangular slice is 
(d) The volume of the wedge is 

40 The same wedge is sliced perpendicular to the y axis. 
(a) The slices are now (triangles) (rectangles) (curved). 
(b) The slice area is (slice height y tan 9). 
(c) The volume of the wedge is the integral 
(d) Change the radius from 1 to r. The volume is 
multiplied by 

41 A cylinder of radius r and height h is half full of water. 
Tilt it so the water just covers the base. 

(a) Find the volume of water by common sense. 
(b) Slices perpendicular to the x axis are (rectangles) (trap- 
ezoids) (curved). I had to tilt an actual glass. 

"42 Find the area of a slice in Problem 41. (The tilt angle has 
tan 9 =2hlr.) Integrate to find the volume of water. 
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The slices in 43-46 are washers. Find the slice area and volume. 56 y = llx, l <x < 100 (around the y axis) 

43 The rectangle with sides x = 1, x = 3, y =2, y = 5 is rotated 57 y = ,/-, 0 <x < 1 (around either axis) 
around the x axis. 

58 y = 1/(1+x2), 0 <x < 3 (around the y axis) 
44 The same rectangle is rotated around the y axis. 

59 y = sin (x2), 0<x <f i (around the y axis) 45 The same rectangle is rotated around the line y = 1. 

46 Draw the triangle with corners (1, O), (1, I), (0, 1). After 60 y = l/,/l- x2, 0 <x < 1 (around the y axis) 

rotation around the x axis, describe the solid and find its 61 y =x2, 0 < x < 2 (around the x axis) 
volume. 

62 y =ex, 0 <x < 1 (around the x axis) 
47 Bore a hole of radius a down the axis of a cone and 
through the base of radius b. If it is a 45" cone (height also 63 y = In x, 1 <x < e (around the x axis) 
b), what volume is left? Check a =0 and a = b. 

64 The region between y = x2 and y =x is revolved around 
48 Find the volume common to two spheres of radius r if the y axis. (a) Find the volume by cutting into shells. (b) Find 
their centers are 2(r -h) apart. Use Problem 29 on spherical the volume by slicing into washers. 
caps. 

65 The region between y =f(x) and y = 1 +f(x) is rotated 
49 (Shells vs. disks) Rotate y = 3 -x around the x axis from around the y axis. The shells have height . The vol- 
x =0 to x =2. Write down the volume integral by disks and ume out to x = a  is . It equals the volume of a 
then by shells. because the shells are the same. 

50 (Shells vs. disks) Rotate y =x3 around the y axis from 66 A horizontal slice of the sphere-with-hole in Figure 8.6b 
y =0 to y = 8. Write down the volume integral by shells and is a washer. Its area is nx2 -nu2 =n(b2- y2 -a2).
disks and compute both ways. (a) Find the upper limit on y (the top of the hole). 
51 Yogurt comes in a solid of revolution. Rotate the line (b) Integrate the area to verify the volume in Example 12. 
y = mx around the y axis to find the volume between y =a 
and y = b. 67 If the hole in the sphere has length 2, show that the volume 

is 4 4 3  regardless of the radii a and b. 
52 Suppose y =f(x) decreases from f(0)=b to f(1)=0. The 
curve is rotated around the y axis. Compare shells to disks: *68 An upright cylinder of radius r is sliced by two parallel 

dy. planes at angle r .  One is a height h above the other. J A  Znxf(x) dx =I",(/ - '( Y ) ) ~  
(a) Draw a picture to show that the volume between the 

Substitute y =f (x) in the second. Also substitute dy =f '(x) dx. planes is nr2 h. 
Integrate by parts to reach the first. 

(b) Tilt the picture by r ,  so the base and top are flat. What 
53 If a roll of paper with inner radius 2 cm and outer radius is the shape of the base? What is its area A? What is the 
10 cm has about 10 thicknesses per centimeter, approximately height H of the tilted cylinder? 
how long is the paper when unrolled? 

69 True or false, with a reason. 
54 Find the approximate volume of your brain. OK to (a) A cube can only be sliced into squares. 
include everything above your eyes (skull too). 

(b) A cube cannot be cut into cylindrical shells. 
Use shells to find the volumes in 55-63. The rotated regions (c) The washer with radii r and R has area n(R - r)2. 
lie between the curve and x axis. (d) The plane w =$ slices a 3-dimensional sphere out of 
55 y = 1 -x2, 0 <x d 1 (around the y axis) a 4-dimensional sphere x2 + y2 + z2+ w2 = 1. 

Length of a Plane Curve 

The graph of y = x3I2is a curve in the x-y plane. How long is  that curve? A definite 
integral needs endpoints, and we specify x = 0 and x = 4. The first problem is to know 
what "length function" to integrate. 

The distance along a curve is the arc length. To set up an integral, we break the 
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problem into small pieces. Roughly speaking, smallpieces of a smooth curve are nearly 
straight. We know the exact length As of a straight piece, and Figure 8.8 shows how 
it comes close to a curved piece. 

(ds)' = (dx)' + (2J(dX)'
dx 

Fig. 8.8 Length As of short straight segment. Length ds of very short curved segment. 

Here is the unofficial reasoning that gives the length of the curve. A straight piece 
has (As)2 = (AX)' + (AY)~.Within that right triangle, the height Ay is the slope 
(AylAx) times Ax. This secant slope is close to the slope of the curve. Thus Ay is 
approximately (dyldx) Ax. 

As z J(AX)~+ (dy/dx)'(Ax)' = ,/I+(dyldX)2 Ax. (1) 

Now add these pieces and make them smaller. The infinitesimal triangle has (ds)' = 

(dx)' + (dy)'. Think of ds as Jl+(dyldx)i dx and integrate: 

length of curve = j ds = j d w dx. 

EXAMPLE 1 Keep y = x3I2 and dyldx = #x112. Watch out for 3 and $: 

length = ,/- dx = ($)($)(I + $x)~/']: = &(lO3I2- l3I2). 

This answer is just above 9. A straight line from (0,O) to (4, 8) has exact length 
fi.Note 4' + 8' = 80. Since f i is just below 9, the curve is surprisingly straight. 

You may not approve of those numbers (or the reasoning behind them). We can 
fix the reasoning, but nothing can be done about the numbers. This example y = x3/' 
had to be chosen carefully to make the integration possible at all. The length integral 
is difficult because of the square root. In most cases we integrate numerically. 

EXAMPLE 2 The straight line y = 2x from x = 0 to x = 4 has dyldx = 2: 

length = 5; ,/=dx = 4 f i  = as before (just checking). 

We return briefly to the reasoning. The curve is the graph of y =f (x). Each piece 
contains at least one point where secant slope equals tangent slope: AylAx =ft(c). 
The Mean Value Theorem applies when the slope is continuous-this is required 
for a smooth curve. The straight length As is exactly J(Ax)' + (ft(c)Ax)'. Adding 
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the n pieces gives the length of the broken line (close to the curve): 

As n -, co and Ax,,, -,0 this approaches the integral that gives arc length. 
. 

8A The length of the curve y = f(x )  from x = a to x = 6 is 

EXAMPLE 3 Find the length of the first quarter of the circle y = ,/=. 
Here dyldx = -XI, /=.  From Figure 8.9a, the integral goes from x = 0 to x = 1: 

dx
length = So1,/l+o'l+O' dx = So1dl + -x2 

dx = Jol,,--I - x ~  

The antiderivative is sin-' x.  It equals 7112 at x = 1 .  This length 7112 is a quarter of 
the full circumference 271. 

EXAMPLE 4 Compute the distance around a quarter of the ellipse y2 + 2x2 = 2. 

The equation is y = ,/=and the slope is dyldx = -2x/ , / - .  So I s  is 

That integral can't be done in closed form. The length of an ellipse can only be 
computed numerically. The denominator is zero at x = 1, so a blind application of the 
trapezoidal rule or Simpson's rule would give length = co. The midpoint rule gives 
length = 1.9 1 with thousands of intervals. 

.v = cost, 4' = G s i n t  

Fig. 8.9 Circle and ellipse, directly by y =f (x)  or parametrically by x( t )  and y(t). 

LENGTH OF A CURVE FROM PARAMETRIC EQUATIONS: x(t) AND y(t)  

We have met the unit circle in two forms. One is x2 + y2 = 1. The other is x = cos t ,  
y = sin t .  Since cos2 t + sin2t = 1,this point goes around the correct circle. One advan- 
tage of the "parameter" t is to give extra information-it tells where the point is and 
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also when. In Chapter 1, the parameter was the time and also the angle-because
we moved around the circle with speed 1.

Using t is a natural way to give the position of a particle or a spacecraft. We can
recover the velocity if we know x and y at every time t. An equation y =f(x) tells the
shape of the path, not the speed along it.

Chapter 12 deals with parametric equations for curves. Here we concentrate on
the path length-which allows you to see the idea of a parameter t without too much
detail. We give x as a function of t and y as a function of t. The curve is still
approximated by straight pieces, and each piece has (As)2 = (Ax)2 + (Ay)2. But instead
of using Ay - (dy/dx) Ax, we approximate Ax and Ay separately:

Ax x (dx/dt) At, Ay - (dy/dt) At, As ; /(dx/dt) 2 + (dy/dt)2 At.

8B The length of a parametric curve is an integral with respect to t:

J ds = (dsdt)dt = d/dt) 2 + (dy/ 2 t (6)

EXAMPLE5 Find the length of the quarter-circle using x = cos t and y = sin t:

2 /(dx/dt) 2 + (dy/dt)2 dt = X/sin 2 t + cos2 t dt = dt = .

The integral is simpler than 1/ /1-x2, and there is one new advantage. We can
integrate around a whole circle with no trouble. Parametric equations allow a path to
close up or even cross itself. The time t keeps going and the point (x(t), y(t)) keeps
moving. In contrast, curves y =f(x) are limited to one y for each x.

EXAMPLE6 Find the length of the quarter-ellipse: x = cos t and y = /2 sin t:

On this path y2 + 2x 2 is 2 sin2 t + 2 cos2 t = 2 (same ellipse). The non-parametric
equation y = /2 - 2x 2 comes from eliminating t. We keep t:

length = 1 /(dx/dt)2 + (dy/dt)2 dt = | /sin 2 t + 2 cos2 t dt. (7)

This integral (7) must equal (5). If one cannot be done, neither can the other. They
are related by x = cos t, but (7) does not blow up at the endpoints. The trapezoidal
rule gives 1.9101 with less than 100 intervals. Section 5.8 mentioned that calculators
automatically do a substitution that makes (5) more like (7).

EXAMPLE7 The path x= t2, y = t3 goes from (0, 0) to (4, 8). Stop at t = 2.

To find this path without the parameter t, first solve for t = x1 /2. Then substitute
into the equation for y: y = t3 = x 3 /2. The non-parametricform (with t eliminated) is
the same curve y = x3/2 as in Example 1.

The length from the t-integral equals the length from the x-integral. This is
Problem 22.

EXAMPLE8 Special choice of parameter: t is x. The curve becomes x = t, y = t3/2 .

If x = t then dx/dt = 1. The square root in (6) is the same as the square root in (4).
Thus the non-parametric form y =f(x) is a special case of the parametric form-just
take t = x.

Compare x = t, y = t3/ 2 with x = t
2 , y = t3. Same curve, same length, different speed.

� ,�
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short distance ---ds
EXAMPLE 9 Define "speed" by 

short time dt ' It is /($I + (%I. 
When a ball is thrown straight upward, dx/d t  is zero. But the speed is not dy/dt .  

It is Idy ldt) .The speed is positive downward as well as upward. 

8.2 EXERCISES 

Read-through questions 

The length of a straight segment (Ax across, Ay up) is 
As = a . Between two points of the graph of y(x), By is 
approximately dyldx times b . The length of that piece 
is approximately J ( A ~ ) ~  c . An infinitesimal piece of + 
the curve has length ds = d . Then the arc length integral 
i s j  0 . 

For y = 4 - x  from x=O to x = 3 the arc length is 
f = g . For y =  x3 the arc length integral is h . 

The curve x = cos t ,  y =sin t is the same as i . The 
length of a curve given by x(t), y(t) is I ,/Fdt. For exam- 
ple x = cos t ,  y = sin t from t = 4 3  to t = 4 2  has length 

k . The speed is dsldt = I . For the special case 
x = t ,  y = / ( t )  the length formula goes back to dx. 

Find the lengths of the curves in Problems 1-8. 

1 y = x3I2from (0, 0) to (1, 1) 

2 y = x2I3from (0,O) to (1, 1) (compare with Problem 1 or 
put u =$ + x2I3in the length integral) 

3 y = 3(x2+ 2)312from x = 0 to x = 1 

4 y = &x2 -2)3/2from x = 2 to x = 4 

7 y = 3x3I2- i x1 I2from x = 1 to x = 4 

8 y = x2 from (0, 0) to (1, 1) 

9 The curve given by x = cos3t ,  y = sin3t is an astroid (a 
hypocycloid). Its non-parametric form is x2I3+ y2I3= 1. 
Sketch the curve from t = 0 to t = z/2 and find its length. 

10 Find the length from t = 0 to t = z of the curve- given by 
x = cos t + sin t ,  y = cos t -sin t. Show that the curve is a 
circle (of what radius?). 

11 Find the length from t = 0 to t = n/2 of the curve given by 
x = cos t ,  y = t -sln t. 

12 What integral gives the length of Archimedes' spiral 
x = t cos t, y = t sin t? 

13 Find the distance traveled in the first second (to t = I )  if 
=i t 2 ,  = 5(2t + 1)3/2. 

14 x = (1 -3 cos 2t)cos t and y = (1 + i cos  2t) sin t lead to 
4(1- x2 -y2) j  = 27(x2-y2)2.Find the arc length from t = 0 
to x/4. 

Find the arc lengths in 15-18 by numerical integration. 

15 One arch of y = sin x, from x = 0 to x = K. 

17 y=ln  x from x =  1 to x=e. 

19 Draw a rough picture of y = xl0.  Without computing the 
length of y = xn from (0,O) to (1, I), find the limit as n -+ sc;. 

20 Which is longer between (1, 1) and (2,3), the hyperbola 
y = l / x  or the graph of x + 2y = 3? 

21 Find the speed dsldt on the circle x = 2 cos 3t, y = 2 sin 3t. 

22 Examples 1 and 7 were y = x3I2and x = t2, y = t 3 :  

length = 1: dx, length = d m dt. 

Show by substituting x = that these integrals agree. 

23 Instead of y =f (x )a curve can be given as x =g(y). Then 

ds = = dy.JmJm 
Draw x = 5y from y = 0 to y = 1 and find its length. 

24 The length of x=y3I2  from (0,O) to (1, 1) is 
I ds = ,/=dy. Compare with Problem 1: Same length? 
Same curve? 

25 Find the length of ~ = i ( e ~ + e - ~ )from y=  -1 to y =  1 
and draw the curve. 

26 The length of x =g(y)is a special case of equation (6)with 
y = t and x =g(t). The length integral becomes . 
27 Plot the point x = 3 cos t ,  y = 4 sin t at the five times 
t = 0, 4 2 ,  z, 3x12, 2 ~ .  The equation of the curve is 
( ~ 1 3 ) ~+ (y/4)2= 1, not a circle but an . This curve 
cannot be written as y =f (x )because . 
28 (a) Find the length of x = cos2t ,  y = sin2t, 0 d y < z. 

(b) Why does this path stay on the line x + y = l ?  
(c) Why isn't the path length equal to JI? 
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29 (important) The line y =x is close to a staircase of pieces (b) This particular curve has ds = . Find its 
that go straight across or straight up. With 100 pieces of length length from t =0 to t = 2n. 
Ax = 1/100 or Ay = 1/100, find the length of carpet on the (c) Describe the curve and its shadow in the xy plane. 
staircase. (The length of the 45" line is a.The staircase can 
be close when its length is not close.) 32 Explain in 50 words the difference between a non-para-

metric equation y=f(x) and two parametric equations 
30 The area of an ellipse is nab. The area of a strip around x =x(t), y =y(t). 
it (width A) is n(a + A)(b +A) -nab x n(a + b)A. The distance 33 Write down the integral for the length L of y =x2 from 
around the ellipse seems to be n(a + b). But this distance is (0, 0) to (1, 1). Show that y =$x2 from (0, 0) to (2, 2) is exactly 
impossible to find-what is wrong? twice as long. If possible give a reason using the graphs. 
31 The point x =cos t, y =sin t, z = t moves on a space curve. 34 (for professors) Compare the lengths of the parabola 

(a) In three-dimensional space ( d ~ ) ~  +equals ( d ~ ) ~  y =x2 and the line y =bx from (0,O) to (b, b2). Does the 
. In equation (6),ds is now dt. difference approach a limit as b -+ GO? 

8.3 Area of a Surface of Revolution 

This section starts by constructing surfaces. A curve y =f (x) is revolved around an 
axis. That produces a "surface of revolution," which is symmetric around the axis. If 
we revolve a sloping line, the result is a cone. When the line is parallel to the axis we 
get a cylinder (a pipe). By revolving a curve we might get a lamp or a lamp shade 
(or even the light bulb). 

Secti.on 8.1 computed the volume inside that surface. This section computes the 
surface area. Previously we cut the solid into slices or shells. Now we need a good 
way to cut up the surface. 

The key idea is to revolve short straight line segments. Their slope is Ay/Ax. They 
can be the same pieces of length As that were used to find length-now we compute 
area. When revolved, a straight piece produces a "thin ban&' (Figure 8.10). The curved 
surface, from revolving y =f (x), is close to the bands. The first step is to compute the 
surface area of a band. 

A small comment: Curved surfaces can also be cut into tiny patches. Each patch 
is nearly flat, like a little square. The sum of those patches leads to a double integral 
(with dx dy). Here the integral stays one-dimensional (dx or dy or dt). Surfaces of 
revolution are special-we approximatz them by bands that go all the way around. 
A band is just a belt with a slope, and its slope has an effect on its area. 

middle radius x 

area AS = 2xrAs area AS = 2xxAs 

Fig. 8.10 Revolving a straight piece and a curve around the y axis and x axis. 
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Revolve a small straight piece (length As not Ax). The center of the piece goes 
around a circle of radius r. The band is a slice of a cone. When we flatten it out 
(Problems 11- 13) we discover its area. The area is the side length As times the middle 
circumference 2nr : 

The surface area of a band is 2nrAs = 2nrdl+( A ~ / A x ) ~Ax. 

For revolution around the y axis, the radius is r = x. For revolution around the x 
axis, the radius is the height: r = y = f (x). Figure 8.10 shows both bands-the problem 
tells us which to use. The sum of band areas 2nr As is close to the area S of the curved 
surface. In the limit we integrate 2nr ds: 

8C The surface area generated by revolving the curve y = f (x) between x = a 
and x =  b is 

S = 2 n y J l + o z  1: dx around the x axis (r = y) (1) 

S = j: 2nx,/l+(dyldx)Zl+OZ dx around the y axis (r  = x). (2) 

EXAMPLE 1 Revolve a complete semicircle y = ,/- around the x axis. 

The surface of revolution is a sphere. Its area (known!) is 4nR2. The limits on x are 
-R and R. The slope of y = d m  is dyldx = -x/,/R"-X2: 

area S = jR  2nd- JGdx = lR2nR dx = 4 n ~ ' .  
- R  X - R  

EXAMPLE 2 Revolve a piece of the straight line y = 2x around the x axis. 

The surface is a cone with (dy/dx)2 = 4. The band from x = 0 to x = 1 has area 
2 n d :  

This answer must agree with the formula 2nr As (which it came from). The line from 
(0,O) to (l ,2) has length As = fi.Its midpoint is ( t ,1). Around the x axis, the middle 
radius is r = 1 and the area is 2 n d .  

EXAMPLE 3 Revolve the same straight line segment around the y axis. Now the 
radius is x instead of y = 2x. The area in Example 2 is cut in half: 

For surfaces as for arc length, only a few examples have convenient answers. 
Watermelons and basketballs and light bulbs are in the exercises. Rather than stretch- 
ing out this section,' we give a final area formula and show how to use it. 

The formula applies when there is a parameter t. Instead of (x, f (x)) the points on 
the curve are (x(t), y(t)). As t varies, we move along the curve. The length formula 

= ( d ~ ) ~  is expressed in terms oft. ( d ~ ) ~  + ( d ~ ) ~  
For the surface of revolution around the x axis, the area becomes a t-integral: 

1 80 The surface area is 2ny ds = 2ny(t) ,/(dx/dt)' + (dy[dt)2 dt. (3) 1 
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EXAMPLE 4 The point x = cos t, y = 5 + sin t travels on a circle with center at (0, 5). 
Revolving that circle around the x axis produces a doughnut. Find its surface area. 

Solution ( d ~ l d t ) ~+ (dy/dt)2= sin2 t + cos2 t = 1. The circle is complete at t = 2n: 

j 2ny ds = Sin 2n(5 + sin t) dt = [2n(5t - cos t)]:= = 20n2. 

8.3 EXERCISES 

Read-through questions 

A surface of revolution comes from revolving a a around 
b . This section computes the c . When the curve is 

a short straight piece (length As), the surface is a d . Its 
area is AS = e . In that formula (Problem 13) r is the 
radius of f . The line from (0,O)to (1, 1) has length g , 
and revolving it produces area h . 

When the curve y =f (x) revolves around the x axis, the 
surface area is the integral i . For y = x2 the integral to 
compute is i . When y = x2 is revolved around the y axis, 
the area is S = k . For the curve given by x = 2t, y = t2, 
change ds to I dt. 

Find the surface area when curves 1-6 revolve around the x 
axis. 

1 y=&, 2 6 x 6 6  

3 y=7x,  - 1 6 x 6 1  (watchsign) 

In 7-10 find the area of the surface of revolution around the y 
axis. 

7 y = x 2 ,  0 6 x 6 2  8 y = i ~ 2 + i ,  0 6 x 6 1  

9 y = x +  1, 0 6 x 6 3  10 y= . r~"~ ,  0 6 x 6 1  

11 A cone with base radius R and slant height s is laid out 
flat. Explain why the angle (in radians) is 0 = 2nRls. Then the 
surface area is a fraction of a circle: 

($) ns2 (t)ns2area = = = nRs. 

12 A band with slant height As = s - s' and radii R and R' is 
laid out flat. Explain in one line why its surface area is 
nRs -nR1s'. 

13 By similar triangles Rls = R'ls' or Rs' = R's. The middle 
radius r is i (R  + R'). Substitute for r and As in the proposed 
area formula 2nr AS, to show that this gives the correct area 
nRs -nR1s'. 

14 Slices of a basketball all have the same area of cover, 
if they have the same thickness. 

(a) Rotate y = around the x axis. Show that 
dS = 2n dx. 
(b) The area between x = a and x = a + h is 
(c) $ of the Earth's area is above latitude 

15 Change the circle in Example 4 to x = a  cos t and y = 

b + a sin t. Its radius is and its center is . 
Find the surface area of a torus by revolving this circle around 
the x axis. 

16 What part of the circle x = R cos t, y = R sin t should 
rotate around the y axis to produce the top half of a sphere? 
Choose limits on t and verify the area. 

17 The base of a lamp is constructed by revolving the quar- 
ter-circle y = 4- (x = 1 to x = 2) around the y axis. 
Draw the quarter-circle, find the area integral, and compute 
the area. 

18 The light bulb is a sphere of radius 112 with its bottom 
sliced off to fit onto a cylinder of radius 1/4 and length 113. 
Draw the light bulb and find its surface area (ends of the 
cylinder not included). 

19 The lamp shade is constructed by rotating y = l / x  around 
the y axis, and keeping the part from y = 1 to y = 2. Set up 
the definite integral that gives its surface area. 

20 Compute the area of that lamp shade. 
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21 Explain why the surface area is infinite when y = llx is cover the disk. Hint: Change to a unit sphere sliced by planes 
rotated around the x axis (1 6 x < a).But the volume of 3" apart. Problem 14 gives surface area n for each slice. 
"Gabriel's horn" is It can't enough paint to 23 A watermelon (maybe a football) is the result of rotating 
paint its surface. 

half of the ellipse x =f i cos t ,  y = sin t (which means 

22 A disk of radius 1" can be covered by four strips of tape x2+ 2y2= 2). Find the surface area, parametrically or not. 

(width y).If the strips are not parallel, prove that they can't 24 Estimate the surface area of an egg. 

8.4 Probability and Calculus 

Discrete probability usually involves careful counting. Not many samples are taken 
and not many experiments are made. There is a list of possible outcomes, and a 
known probability for each outcome. But probabilities go far beyond red cards and 
black cards. The real questions are much more practical: 

1. How often will too many passengers arrive for a flight? 
2. How many random errors do you make on a quiz? 
3. What is the chance of exactly one winner in a big lottery? 

Those are important questions and we will set up models to answer them. 
There is another point. Discrete models do not involve calculus. The number of 

errors or bumped passengers or lottery winners is a small whole number. Calculus 
enters for continuous probability. Instead of results that exactly equal 1 or 2 or 3, 
calculus deals with results that fall in a range of numbers. Continuous probability 
comes up in at least two ways: 

(A) An experiment is repeated many times and we take averages. 
(B) The outcome lies anywhere in an interval of numbers. 

In the continuous case, the probability p, of hitting a particular value x = n becomes 
zero. Instead we have a probability density p(x)-which is a key idea. The chance that 
a random X falls between a and b is found by integrating the density p(x): 

Roughly speaking, p(x) d x  is the chance of falling between x and x + dx. Certainly 
p(x) 2 0. If a and b are the extreme limits - co and a,including all possible outcomes, 
the probability is necessarily one: 

This is a case where infinite limits of integration are natural and unavoidable. In 
studying probability they create no difficulty-areas out to infinity are often easier. 

Here are typical questions involving continuous probability and calculus: 

4. How conclusive is a 53%-47% poll of 2500 voters? 
5. Are 16 random football players safe on an elevator with capacity 3600 pounds? 
6. How long before your car is in an accident? 

It is not so traditional for a calculus course to study these questions. They need extra 
thought, beyond computing integrals (so this section is harder than average). But 
probability is more important than some traditional topics, and also more interesting. 
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Drug testing and gene identification and market research are major applications. 
Comparing Questions 1-3 with 4-6 brings out the relation of discrete to continuous-
the differences between them, and the parallels. 

It would be impossible to give here a full treatment of probability theory. I believe 
you will see the point (and the use of calculus) from our examples. Frank Morgan's 
lectures have been a valuable guide. 

DISCRETE RANDOM VARIABLES 

A discrete random variable X has a list of possible values. For two dice the outcomes 
are X = 2,3, ...,12. For coin tosses (see below), the list is infinite: X = 1,2,3, ... . 

A continuous variable lies in an interval a <X d b. 

EXAMPLE 1 Toss a fair coin until heads come up. The outcome X is the number of 
tosses. The value of X is 1 or 2 or 3 or ...,and the probability is i that X = 1 (heads 
on the first toss). The probability of tails then heads is p2 = a. The probability that 
X = n is p,, = (&"-this is the chance of n - 1 tails followed by heads. The sum of all 
probabilities is necessarily 1: 

EXAMPLE 2 Suppose a student (not you) makes an average of 2 unforced errors per 
hour exam. The number of actual errors on the next exam is X = 0or 1 or 2 or .. . . 
A reasonable model for the probability of n errors-when they are random and 
independent-is the Poisson model (pronounced Pwason): 

2" 
p,, =probability of n errors = 7 e- '. 

n. 


The probabilities of no errors, one error, and two errors are po, pl, and p,: 

The probability of more than two errors is 1 - .I35 - .27 - .27 = .325. 
This Poisson model can be derived theoretically or tested experimentally. The total 

probability is again 1, from the infinite series (Section 6.6) for e2: 

EXAMPLE 3 Suppose on average 3 out of 100 passengers with reservations don't 
show up for a flight. If the plane holds 98 passengers, what is the probability that 
someone will be bumped! 

If the passengers come independently to the airport, use the Poisson model with 2 
changed to 3. X is the number of no-shows, and X = n happens with probability pn : 

There are 98 seats and 100 reservations. Someone is bumped if X = 0 or X = 1: 

chance of bumping = po + p1 = e- + 3e- x 4/20. 

We will soon define the average or expected value or mean of X-this model has p = 3. 
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CONTINUOUS RANDOM VARIABLES 

If X is the lifetime of a VCR, all numbers X 2 0 are possible. If X is a score on the 
SAT, then 200 <X <800. If X is the fraction of computer owners in a poll of 600 
people, X is between 0 and 1. You may object that the SAT score is a whole number 
and the fraction of computer owners must be 0 or 11600 or 21600 or . . . . But it is 
completely impractical to work with 601 discrete possibilities. Instead we take X to 
be a continuous random variable, falling anywhere in the range X 2 0 or [200,800] or 
0 <X < 1. Of course the various values of X are not equally probable. 

EXAMPLE 4 The average lifetime of a VCR is 4 years. A reasonable model for break- 
down time is an exponential random variable. Its probability density is 

p(x)= ae-"I4 for 0 <x < GO. 

The probability that the VCR will eventually break is 1: 

The probability of breakdown within 12 years (X from 0 to 12) is .95: 

An exponential distribution has p(x) = ae-"". Its integral from 0 to x is F(x) = 
1 - e - a x  . Figure 8.1 1 is the graph for a = 1. It shows the area up to x = 1. 

To repeat: The probability that a < X < b is the integral of p(x) from a to b. 

Fig. 8.11 Probabilities add to C p,, = 1. Continuous density integrates to p(x) d x  = 1. 

EXAMPLE 5 We now define the most important density function. Suppose the 
average SAT score is 500, and the standard deviation (defined below-it measures the 
spread around the average) is 200. Then the normal distribution of grades has 

This is the normal (or Gaussian) distribution with mean 500 and standard deviation 
200. The graph of p(x) is the famous bell-shaped curve in Figure 8.12. 

A new objection is possible. The actual scores are between 200 and 800, while the 
density p(x) extends all the way from - a0 to m. I think the Educational Testing 
Service counts all scores over 800 as 800. The fraction of such scores is pretty small- 
in fact the normal distribution gives 
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Fig. 8.12 The normal distribution (bell-shaped curve) and its cumulative density F(x).  

Regrettably, e-"' has no elementary antiderivative. We need numerical integration. 
But there is nothing the matter with that! The integral is called the "error function," 
and special tables give its value to great accuracy. The integral of e-X212 from - co 
to co is exactly fi.Then division by f i keeps j p(x) dx = 1. 

Notice that the normal distribution involves two parameters. They are the mean 
value (in this case p = 500) and the standard deviation (in this case a = 200). Those 
numbers mu and sigma are often given the "normalized" values p = 0 and a = 1: 

P(X) = -
- (x - ,421202 becomes p(x) = -L e-"'I2. 

a& Jz;; 

The bell-shaped graph of p is symmetric around the middle point x = p. The width 
of the graph is governed by the second parameter a-which stretches the x axis and 
shrinks the y axis (leaving total area equal to 1). The axes are labeled to show the 
standard case p = 0, a = 1 and also the graph for any other p and a. 

We now give a name to the integral of p(x). The limits will be - co and x, so the 
integral F(x) measures the probability that a random sample is below x: 

Prob {X< x] = r-"_, p(x) dx = cumulative density function F(x). (7) 

F(x) accumulates the probabilities given by p(x), so dF/dx = p(x). The total prob- 
ability is F(co) = 1. This integral from - co to.. co covers all outcomes. 

Figure 8.12b shows the integral of the bell-shaped normal distribution. The middle 
point x = p has F = ). By symmetry there is a 50-50 chance of an outcome below the 
mean. The cumulative density F(x)  is near .l6 at p -a and near .84 at p + a. The 
chance of falling in between is .84 - .16 = .68. Thus 68% of the outcomes are less 
than one deviation a away from the center p. 

Moving out to p - 20 and p + 20, 95% of the area is in between. With 95% 
confidence X is less than two deviations from the mean. Only one sample in 20 is 
further out (less than one in 40 on each side). 

Note that a = 200 is not the precise value for the SAT! 

MEAN, VARIANCE, AND STANDARD DEVIATION 

In Example 1, X was the number of coin tosses until the appearance of heads. The 
probabilities were p1 =$, p, = a, p3 = Q, . . . . What is the average number of tosses? 
We now find the "mean" p of any distribution p(x)-not only the normal distribution, 
where symmetry guarantees that the built-in number p is the mean. 

To find p, multiply outcomes by probabilities and add: 

p = mean = np,, = l(pl) + 2(p2)+ 3(p3)+ (8)- - a .  
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The average number of tosses is l ( f )  + 2($) + 3(i)+ .-..This series adds up (in 
Section 10.1) to p = 2. Please do the experiment 10 times. I am almost certain that 
the average will be near 2. 

When the average is A = 2 quiz errors or 3, = 3 no-shows, the Poisson probabilities 
are pn =Ane-vn! Check that the formula p =X np, does give 3, as the mean: 

For continuous probability, the sum p =X np, changes to p = j xp(x) dx. We 
multiply outcome x by probability p(x) and integrate. In the VCR model, integration 
by parts gives a mean breakdown time of p =4 years: 

Together with the mean we introduce the variance. It is always written 02, and in 
the normal distribution that measured the "width" of the curve. When a2  was 2002, 
SAT scores spread out pretty far. If the testing service changed to o2 = 12, the scores 
would be a disaster. 95% of them would be within +2  of the mean. When a teacher 
announces an average grade of 72, the variance should also be announced-if it is 
big then those with 60 can relax. At least they have company. 

8E The mean p is the expected value of X. The variance 02 is the expected 
value of (X -mean)2= (X -P ) ~ .  Multiply outcome times probability and add: 

pna =C npn a2=C(n-P ) ~  (discrete) 

dxp = j"O, xp(x) dx o2= 5" (x -~ ) ~ p ( x )  (continuous) 

The standard deviation (written o) is the square root of 02. 

EXAMPLE 6 (Yes-no poll, one person asked) The probabilities are p and 1 - p. 

A fraction p = f of the population thinks yes, the remaining fraction 1 -p = 3 thinks 
no. Suppose we only ask one person. If X = 1 for yes and X = 0 for no, the expected 
value of X is p =p = f. The variance is o2 = p(l - p) =6: 

a = O ( 3 ) + l ( f ) = '  3 and 0 2 = ( O - f ~ ( ~ ) + ( 1 - f ) 2 ( f ) = $ .  

The standard deviation is o = ,/2/9. When the fraction p is near one or near zero, 
the spread is smaller-and one person is more likely to give the right answer for 
everybody. The maximum of o2 =p(l -p) is at p = f ,  where o =4. 

The table shows p and o2 for important probability distributions. 

Model Mean Variance Application 

P1 =P, Po= 1 -P  P ~ ( 1-P) yes-no 

Poisson p, = E,"e-A/n! 1" 3. random occurrence 

Exponential p(x) = ae-"" l/a 1 /a2 waiting time 

distribution 
around mean 



8.4 ProbabllHy and Calculus 

THE LAW OF AVERAGES AND THE CENTRAL LIMIT THEOREM 

We come to the center of probability theory (without intending to give proofs). The 
key idea is to repeat an experiment many times-poll many voters, or toss many 
dice, or play considerable poker. Each independent experiment produces an outcome 
X, and the average from N experiments is R.  It is called "X bar": 

8=XI + X, + ... + X ,  
= average outcome. 

N 


All we know about p(x) is its mean p and variance a2. It is amazing how much 
information that gives about the average 8: 

No matter what the probabilities for X, the probabilities for R move toward the normal 
bell-shaped curve. The standard deviation is close to a / f i  when the experiment is 
repeated N times. In the Law of Averages, "almost sure" means that the chance of 
R not approaching p is zero. It can happen, but it won't. 

Remark 1 The Boston Globe doesn't understand the Law of Averages. I quote from 
September 1988: "What would happen if a giant Red Sox slump arrived? What would 
happen if the fabled Law of Averages came into play, reversing all those can't miss 
decisions during the winning streak?" They think the Law of Averages evens every- 
thing up, favoring heads after a series of tails. See Problem 20. 

EXAMPLE 7 Yes-no poll of N = 2500 voters. Is a 53%-47% outcome conclusive? 

The fraction p of "yes" voters in the whole population is not known. That is the reason 
for the poll. The deviation a = ,/=is also not known, but for one voter this is 
never more than * (when p = f). Therefore a l p  for 2500 voters is no larger than 
+/,/%, which is 1%. 

The result of the poll was R = 53%. With 95% confidence, this sample is within 
two standard deviations (here 2%) of its mean. Therefore with 95% confidence, the 
unknown mean p = p of the whole population is between 51% and 55%. This p~11 is 
conclusive. 

If the true mean had been p = 50%, the poll would have had only a ,0013 chance 
of reaching 53%. The error margin on each side of a poll is amazingly simple; it is 
always I/*. 

Remark 2 The New York Times has better mathematicians than the Globe. Two 
days after Bush defeated Dukakis, their poll of N = 11,645 voters was printed with 
the following explanation. "In theory, in 19 cases out of 20 [there is 95%] the results 
should differ by no more than one percentage point [there is 1 / a ]  from what 
would have been obtained by seeking out all voters in the United States." 

EXAMPLE 8 Football players at Caltech (if any) have average weight p = 210 pounds 
and standard deviation a = 30 pounds. Are N = 16 players safe on an elevator with 
capacity 3600 pounds? 16 times 210 is 3360. 
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The average weight is approximately a normal random variable with ji = 210 and 
5 = 3 0 / p  = 3014. There is only a 2% chance that 8 is above ji + 25 = 225 (see 
Figure 8.12b-weights below the mean are no problem on an elevator). Since 16 
times 225 is 3600, a statistician would have 98O/0 confidence that the elevator is safe. 
This is an example where 98% is not good enough-I wouldn't get on. 

EXAMPLE 9 (The famous Weldon Dice) Weldon threw 12 dice 26,306 times and 
counted the 5's and 6's. They came up in 33.77% of the 315,672 separate rolls. Thus 

= .3377 instead of the expected fraction p = f- of 5's and 6's. Were the dice fair? 

The variance in each roll is a2= p(1- p) = 219. The standard deviation of 8 is 
6 = a j f i  = m/J315672 z -00084. For fair dice, there is a 95% chance that 8 
will differ from f- byless than 26. (For Poisson probabilities that is false. Here R is 
normal.) But .3377 differs from .3333 by more than 55. The chance of falling 5 standard 
deviations away from the mean is only about 1 in 10,000.t 

So the dice were unfair. The faces with 5 or 6 indentations were lighter than the 
others, and a little more likely to come up. Modern dice are made to compensate for 
that, but Weldon never tried again. 

8.4 EXERCISES 

Read-through questions In a yes-no poll when the voters are 50-50, the mean for 
one voter is p = O(3)+ l(3) = Y . The variance is

Discrete probability uses counting, a probability uses + (1 -p)2pl = z . For a poll with N = 100,a is calculus. The function p(x) is the probability b . The (0 - , ~ ) ~ p ,  
A . There is a 95% chance that 8 (the fraction saying yes) 

chance that a random variable falls between a and b is c . 
The total probability is 5" p(x) dx = d . In the dis- 

will be between B and c . 

crete case C p, = e . The mean (or expected value) 1 If p1 = 3, p, =$, p3 = &, . . ., what is the probability of an 
is p = S  f in the continuous case and p = Z np,  in outcome X < 4? What are the probabilities of X = 4 and 
the g . X > 4? 

The Poisson distribution with mean j. has p, = h . The 2 With the same p, = (i)",what is the probability that X is 
sum C p, = 1 comes from the i series. The exponential odd? Why is p, = (4)" an impossible set of probabilities? 
distribution has p(x) = e-" or 2e-2" or i . The standard What multiple c(4)" is possible? 
Gaussian (or k ) distribution has G p ( x )  = e-'*I2. Its 
graph is the well-known I curve. The chance that the 3 Why is p(x) = e- 2x not an acceptable probability density 
variable falls below x is F(x) = m . F is the n density for x 2 O? Why is p(x) = 4e- 2x -e-" not acceptable? 

function. The difference F(x + dx) -F(x) is about o , *4 If p, = (i)", show that the probability P that X is a prime 
which is the chance that X is between x and x + dx. number satisfies 61 16 < P < 71 16. 

The variance, which measures the spread around p, is 
5 If p(x) = e-" for x 2 0, find the probability that X 3 2 anda2 = 1 p in the continuous case and a2  = Z q in the 

discrete case. Its square root a is the r . The normal the approximate probability that 1 < X < 1.01. 

distribution has p(x) = s . If X is the t of N samples 6 If p(x) = C/x3 is a probability density for x 2 1, find the 
from any population with mean p and variance a2, the Law constant C and the probability that X < 2. 
of Averages says that X will approach u . The Central 
Limit Theorem says that the distribution for 8 approaches 7 If you choose x completely at random between 0 and z, 

v . Its mean is w and its variance is x . what is the density p(x) and the cumulative density F(x)? 

?Joe DiMaggio's 56-game hitting streak was much more improbable-I think it is statistically 
the most exceptional record in major sports. 
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In 8-13 find the mean value p =E npnor p =j xp(x) dx. 

12 p(x)=e-" (integrate by parts) 

13 p(x)=ae-"" (integrate by parts) 

14 Show by substitution that 

15 Find the cumulative probability F (the integral of p) in 
Problems 11, 12, 13. In terms of F, what is the chance that a 
random sample lies between a and b? 

16 Can-Do Airlines books 100 passengers when their plane 
only holds 98. If the average number of no-shows is 2, what 
is the Poisson probability that someone will be bumped? 

17 The waiting time for a bus has probability density 
(l/lO)e-xllO, with p = 10 minutes. What is the probability of 
waiting longer than 10 minutes? 

18 You make a 3-minute telephone call. If the waiting time 
for the next incoming call has p(x) =e-", what is the prob- 
ability that your phone will be busy? 

19 Supernovas are expected about every 100 years. What is 
the probability that you will be alive for the next one? Use a 
Poisson model with R = .O1 and estimate your lifetime. (Super- 
novas actually occurred in 1054 (Crab Nebula), 1572, 1604, 
and 1987. But the future distribution doesn't depend on the 
date of the last one.) 

20 (a) A fair coin comes up heads 10 times in a row. Will 
heads or tails be more likely on the next toss? 
(b) The fraction of heads after N tosses is a. The expected 
fraction after 2N tosses is . 

21 Show that the area between p and p + a under the bell- 
shaped curve is a fixed number (near 1/3), by substituting 
Y=-: 

What is the area between p -a and p? The area outside 
(p -a, p +a)? 

22 For a yes-no poll of two voters, explain why 

Find p and a2. N voters give the "binomial distribution." 

Pmbabilily and Calculus 

23 Explain the last step in this reorganization of the formula 
for a2 : 

a2=1(X-p)lp(x) dx =1(x2-2xp +p2)~(x)dx 

=j xZp(x) dx -2p j xp(x) dx +p2 j p(x) dx 

= x2p(x) dx -p2. 

24 Use (x -p)'p(x) dx and also 1x2p(x) dx -p2 to find cr2 
for the uniform distribution: p(x) = 1 for 0 <x < 1. 

25 Find a2 if po = 113, p1 = 113, p2 = 113. Use Z (n -p)2pn and 
also Z n2Pn-p2. 

26 Use Problem 23 and integration by parts (equation 7.1.10) 
to find a2 for the exponential distribution p(x) =2e-2x for 
x 2 0, which has mean 3. 
27 The waiting time to your next car accident has probability 
density p(x) =3e-"I2. What is p? What is the probability of 
no accident in the next four years? 

28 With p =3, 4, 4, ..., find the average number p of coin 
tosses by writing p,+2p2+3p3+ --.as (pl+p2+p3+ -.)+ 
(p2+p3+p4+ " ' )+(~3+P4+P5+ -)+ ...-
29 In a poll of 900 Americans, 30 are in favor of war. What 
range can you give with 95% confidence for the percentage 
of peaceful Americans? 

30 Sketch rough graphs of p(x) for the fraction x of heads in 
4 tosses of a fair coin, and in 16 tosses. The mean value is 3. 
31 A judge tosses a coin 2500 times. How many heads does 
it take to prove with 95% confidence that the coin is unfair? 

32 Long-life bulbs shine an average of 2000 hours with stan- 
dard deviation 150 hours. You can have 95% confidence that 
your bulb will fail between and hours. 

33 Grades have a normal distribution with mean 70 and stan- 
dard deviation 10. If 300 students take the test and passing is 
55, how many are expected to fail? (Estimate from 
Figure 8.12b.) What passing grade will fail 1/10 of the .class? 

34 The average weight of luggage is p = 30 pounds with devi- 
ation a =8 pounds. What is the probability that the luggage 
for 64 passengers exceeds 2000 pounds? How does the answer 
change for 256 passengers and 8000 pounds? 

35 A thousand people try independently to guess a number 
between 1 and 1000. This is like a lottery. 

(a) What is the chance that the first person fails? 
(b) What is the chance Po that they all fail? 
(c) Explain why Po is approximately lle. 

36 (a) In Problem 35, what is the chance that the first person 
is right and all others are wrong? 
(b) Show that the probability P1 of exactly one winner is 
also close to lle. 
(c) Guess the probability Pn of n winners (fishy question). 
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8.5 Masses and Moments 

This chapter concludes with two sections related to engineering and physics. Each 
application starts with a finite number of masses or forces. Their sum is the total 
mass or  total force. Then comes the "continuous case," in which the mass is spread 
out instead of lumped. Its distribution is given by a density function p (Greek rho), 
and the sum changes to an integral. 

The first step (hardest step?) is to get the physical quantities straight. The second 
step is to move from sums to integrals (discrete to continuous, lumped to distributed). 
By now we hardly stop to think about it-although this is the key idea of integral 
calculus. The third step is to evaluate the integrals. For that we can use substitution 
or integration by parts or tables or a computer. 

Figure 8.13 shows the one-dimensional case: masses along the x axis. The total 
mass is the sum of the masses. The new idea is that of moments-when the mass or 
force is multiplied by a distance: 

moment of mass around the y axis = mx = (mass) times (distance to axis). 

Fig. 8.13 The center of mass is at 2 =(total moment)/(total mass) =average distance. 

The figure has masses 1, 3, 2. The total mass is 6. The "lever arms" or "moment 
arms" are the distances x = 1, 3,7. The masses have moments 1 and 9 and 14 (since 
mx is 2 times 7). The total moment is 1 + 9 + 14 = 24. Then the balance point is at 
2 = M,/M = 2416 = 4. 

The total mass is the sum of the m's. The total moment is the sum of m, times x, 
(negative on the other side of x = 0). If the masses are children on a seesaw, the 
balance point is the center of gravity 2-also called the center of mass: 

- 1m,u, - total moment 
DEFINITION x=--

E m ,  totalmass 

If all masses are moved to 2, the total moment (6 times 4) is still 24. The moment 
equals the mass C m, times 2.  The masses act like a single mass a t  2.  

Also: If we move the axis to 2, and leave the children where they are, the seesaw 
balances. The masses on the left of 2 = 4 will offset the mass on the right. Reason: 
The distances to the new axis are x, - 2. The moments add to zero by equation (1): 

moment around new axis = x m,(xn - 2)= 1m,xn -x m.2 = 0. 

Turn now to the continuous case, when mass is spread out along the line. Each 
piece of length Ax has an average density p, = (mass of piece)/(length of piece) = 

AmlAx. As the pieces get shorter, this approaches dmldx-the density at the point. 
The limit of (small mass)/(small length) is the density p(x). 

Integrating that derivative p = dmldx, we recover the total mass: C p,Ax becomes 

total mass M = j p(x) dx. (2) 

When the mass is spread evenly, p is constant. Then M = pL = density times length. 
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The moment formula is similar. For each piece, the moment is mass p,Ax 
multiplied by distance x-and we add. In the continuous limit, p(x) dx is multiplied 
by x and we integrate: 

total moment around y axis = My= I xp(x) dx. (3) 

Moment is mass times distance. Dividing by the total mass M gives "average 
distance": 

moment - My- 5 xp(x) dx 
center of mass 2 = ----

mass M J p(x) dx ' (4) 

Remark If you studied Section 8.4 on probability, you will notice how the formulas 
match up. The mass I p(x) dx is like the total probability p(x) dx. The moment 

xp(x) dx is like the mean I xp(x) dx. The moment of inertia (x -~ ) ~ p ( x )dx is the 
variance. Mathematics keeps hammering away at the same basic ideas! The only 
difference is that the total probability is always 1. The mean really corresponds to 
the center of mass 2, but in probability we didn't notice the division by p(x) dx = 1. 

EXAMPLE 1 With constant density p from 0 to L, the mass is M = pL. The moment 

The center of mass is 2 = My/M= L/2. It is halfway along. 

EXAMPLE 2 With density e-" the mass is 1, the moment is 1, and 2 is 1: 

I," e--" dx = [-e-"1," = 1 and J," xe-" dx = [-xe-" - e-"1," = 1. 

MASSES AND MOMENTS IN TWO DIMENSIONS 

Instead of placing masses along the x axis, suppose m, is at the point (x,, y,) in the 
plane. Similarly m, is at (x,, y,). Now there are two moments to consider. Around the 
y axis M,, = C mnxn and around the x axis M, = C m, yn. Please notice that the x's go 
into the moment My-because the x coordinate gives the distance from the y axis! 

Around the x axis, the distance is y and the moment is M,. The center of mass is 
the point (2,j)at which everything balances: 

In the continuous case these sums become two-dimensional integrals. The total 
mass is JJ p(x, y) dx dy, when the density is p = mass per unit area. These "double 
integrals" are for the future (Section 14.1). Here we consider the most important case: 
p = constant. Think of a thin plate, made of material with constant density (say 
p = 1). To compute its mass and moments, the plate is cut into strips (Figure 8.14): 

mass M = area of plate (6) 

moment My= J (distance x) (length of vertical strip) dx (7) 

moment M, = 5 (height y) (length of horizontal strip) dy. (8) 
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Fig. 8.14 Plates cut into strips to compute masses and moments and centroids. 

The mass equals the area because p = 1. For moments, all points in a vertical strip 
are the same distance from the y axis. That distance is x. The moment is x times area, 
or x times length times dx-and the integral accounts for all strips. 

Similarly the x-moment of a horizontal strip is y times strip length times dy. 

EXAMPLE 3 A plate has sides x = 0 and y = 0 and y = 4 - 2x. Find M, My, M,. 

mass M = area = 1; y dx = 5; (4 - 2x) dx = [4x - x2]; = 4. 

The vertical strips go up to y = 4 - 2x, and the horizontal strips go out to x = f (4 -y):

Io2 1 : ;moment M, = x(4 - 2x1 dx = [2x2 - -x3 = -

1 1 16
moment M,=Jb yj(4-y)dy=[y2-6Y3]o=i. 

The "center of mass" has 2 = M,/M = 213 and j= M,/M = 413. This is the centroid 
of the triangle (and also the "center of gravity"). With p = 1 these terms all refer to 
the same balance point (2,J) .  The plate will not tip over, if it rests on that point. 

EXAMPLE 4 Find My and M, for the half-circle below x2 + y2 = r2. 

My= 0 because the region is symmetric-Figure 8.14 balances on the y axis. In the 
x-moment we integrate y times the length of a horizontal strip (notice the factor 2): 

Divide by the mass (the area :nr2) to find the height of the centroid: j= M,/M = 
4r/3n. This is less than f r  because the bottom of the semicircle is wider than the top. 

MOMENT OF INERTIA 

The moment of inertia comes from multiplying each mass by the square of its 
distance from the axis. Around the y axis, the distance is x. Around the origin, it is r: 

I y = E x i m n  and I,=Eyim,, and Io=Er;mn. 

Notice that I, + I, = I, because xi  + yi = r:. In the continuous case we integrate. 
The moment of inertia around the y axis is I, = Jjx2 p(x, y) dx dy. With a constant 

density p = 1, we again keep together the points on a strip. On a vertical strip they 
share the same x. On a horizontal strip they share y: 

I, = 1(x2) (vertical strip length) dx and I, = j (y2) (horizontal strip length) dy. 



8.5 Masses and Moments 

In engineering and physics, it is rotation that leads to the moment of inertia. Look 
at the energy of a mass m going around a circle of radius r. It has I, = mr2. 

kinetic energy = fmv2 = + m ( r ~ ) ~= fI, w2. (9) 

The angular velocity is w (radians per second). The speed is v = rw (meters per second). 
An ice skater reduces I, by putting her arms up instead of out. She stays close to 

the axis of rotation (r is small). Since her rotational energy i Iow2  does not change, 
w increases as I, decreases. Then she spins faster. 

Another example: It takes force to turn a revolving door. More correctly, it takes 
torque. The force is multiplied by distance from the turning axis: T = Fx, so a push 
further out is more effective. 

To see the physics, replace Newton's law F = ma = m dv/dt by its rotational form: 
T = I dwldt. Where F makes the mass move, the torque T makes it turn. Where m 
measures unwillingness to change speed, I measures unwillingness to change rotation. 

EXAMPLE 5 Find the moment of inertia of a rod about (a) its end and (b) its center. 

The distance x from the end of the rod goes from 0 to L. The distance from the center 
goes from -L/2 to L/2. Around the center, turning is easier because I is smaller: 

I,,, = 1; x2 dx = i~~ I,,,,,, = f!'i_'ti2x2 dx = & L ~ .  

Fig. 8.15 Moment of inertia for rod and propeller. Rolling balls beat cylinders. 

MOMENT OF INERTIA EXPERIMENT 

Experiment: Roll a solid cylinder (a coin), a hollow cylinder (a ring), a solid ball (a 
marble), and a hollow ball (not a pingpong ball) down a slope. Galileo dropped things 
from the Leaning Tower-this experiment requires a Leaning Table. Objects that fall 
together from the tower don't roll together down the table. 

Question 1 What is the order of finish? Record your prediction Jirst! 

Question 2 Does size make a difference if shape and density are the same? 

Question 3 Does density make a difference if size and shape are the same? 

Question 4 Find formulas for the velocity v and the finish time T. 

To compute v, the key is that potential energy plus kinetic energy is practically 
constant. Energy loss from rolling friction is very small. If the mass is m and the 
vertical drop is h, the energy at the top (all potential) is mgh. The energy at the bottom 
(all kinetic) has two parts: $mv2 from movement along the plane plus +la2from 
turning. Important fact: v = wr for a rolling cylinder or ball of radius r. 
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Equate energies and set c;o = vlr: 

The ratio I/mr2 is critical. Call it J and solve (11 )  for v2: 

2ghv2 = -(smaller J means larger velocity). 
l + J  

The order of J's, for different shapes and sizes, should decide the race. Apparently 
the density doesn't matter, because it is a factor in both I and m-so it cancels in 
J = I /mr2.  A hollow cylinder has J = 1, which is the largest possible-all its mass is 
at the full distance r from the axis. So the hollow cylinder should theoretically come 
in last. This experiment was developed by Daniel Drucker. 

Problems 35-37 find the other three J's. Problem 40 finds the time T by integration. 
Your experiment will show how close this comes to the measured time. 

8.5 EXERCISES 

Read-through questions 

If masses m, are at distances x,, the total mass is M = a . 
The total moment around x = 0 is M ,  = b . The center of 
mass is at 2 = c . In the continuous case, the mass distri- 
bution is given by the d p(x). The total mass is M = 

e and the center of mass is at 2 = f . With p = x, 
the integrals from 0 to L give M = 9 and j xp(x) dx = 

h and 2 = i . The total moment is the same if the 
whole mass M is placed at i . 

In a plane, with masses m, at the points (x,, y,), the moment 
around the y axis is k . The center of mass has X = I 

and j = m . For a plate with density p = 1, the mass M 
equals the n . If the plate is divided into vertical strips of 
height y(x), then M = J y(x) dx and M y  = J 0 dx. For a 
square plate 0 < x, y < L, the mass is M = P and the 
moment around the y axis is M,, = q . The center of mass 
is at (X, j )  = r . This point is the s , where the plate 
balances. 

A mass m at a distance x from the axis has moment of 
inertia I = t . A rod with p = 1 from x = a to x = b has 
I y =  u . For a plate with p = 1 and strips of height y(x), 
this becomes I, = v . The torque T is w times 

x . 

Compute the mass M along the x axis, the moment M, around 
x = 0, and the center of mass 2 = M y / M .  

1 m l = 2 a t x , = 1 , m 2 = 4 a t x 2 = 2  

2 m = 3  at x = 0 ,  1, 2, 6 

3 p = l f o r  - l < x < 3  

5 p = l  f o r O < x < l , p = 2 f o r  1 < x < 2  

6 p=sin  xfor O < x < n  

Find the mass M, the moments M y  and M,, and the center of 
mass (2, j). 

7 Unit masses at (x, y) = (1, 0), (0, I), and (1, 1) 

8 m, = 1 at (1, 0), m2 = 4 at (0, 1) 

9 p = 7  in the square O < x <  1, O < y <  1. 

10 p = 3 in the triangle with vertices (0, 0), (a, O), and (0, b). 

Find the area M and the centroid (i,j)inside curves 11-16. 

11 y = d m ,y = 0, x = 0 (quarter-circle) 

12 y = x, y = 2 -x, y = 0 (triangle) 

13 y = eP2", y = 0, x = 0 (infinite dagger) 

14 y = x2,y = x (lens) 

15 x 2 + y 2 =  1 , . ~ ~ + ~ ~ = 4  (ring) 

16 x2 + y2 = 1, x2 + y2 = 4, y = 0 (half-ring). 

Verify these engineering formulas for I ,  with p = 1: 

17 Rectangle bounded by x = 0, x = a, y = 0, y = b: 
I ,  = a3b/3. 

18 Square bounded by x = -+a, x = $a, y = -+a, y = fa :  
I ,  = ~4112. 

19 Triangle bounded by x = 0, y = 0, x + y = a: I ,  = a4/12. 

20 Disk of radius a centered at x = y = 0: I ,  = na4/4. 
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21 The moment of inertia around the point x = t of a rod 
with density p(x) is I =I (x - t)'p(x) dx. Expand (x - t)2 and 
I into three terms. Show that dlldt =0 when t =2. The 
moment of inertia is smallest around the center of mass. 

22 A region has 2 =0 if My =1 height of strip) dx =0. 
The moment of inertia about any other axis x =c is 
I = (x -c)'(height of strip) dx. Show that I =I, + 
(area)(c2). This is the purallel axis theorem: I is smallest 
around the balancing axis c =0. 

23 (With thanks to Trivial Pursuit) In what state is the center 
of gravity of the United States-the "geographical center" or 
centroid? 

24 Pappus (an ancient Greek) noticed that the volume is 

V =I 2ny(strip width) dy =2nMx=2njM 

when a region of area M is revolved around the x axis. In the 
first step the solid was cut into 

25 Use this theorem of Pappus to find the volume of a torus. 
Revolve a disk of radius a whose center is at height j =b >a. 

26 Rotate the triangle of Example 3 around the x axis and 
find the volume of the resulting cone-first from V =2njM, 
second from inr2 h. 

27 Find M, and M, for a thin wire along the semicircle 
=,/-. ~ a k e  = 1 so M = length =n. 

28 A second theorem of Pappus gives A =2njL as the surface 
area when a wire of length L is rotated around the x axis. 
Verify his formula for a horizontal wire along y =3 (x =0 
to x =L) and a vertical wire (y = 1 to y =L + 1). 

29 The surface area of a sphere is A =4n when r = 1. So A = 
2njL leads to j = for the semicircular wire in 
Problem 27. 

30 Rotating y =mx around the x axis between x =0 and 
x = 1 produces the surface area A = 

31 Put a mass m at the point (x, 0). Around the origin the 
torque from gravity is the force mg times the distance x. This 
equals g times the mx. 

32 If ten equal forces F are alternately down and up at 
x = 1,2, ..., 10, what is their torque? 

33 The solar system has nine masses mn at distances rn with 
angular velocities on.What is the moment of inertia around 
the sun? What is the rotational energy? What is the torque 
provided by the sun? 

34 The disk x2 +y2 <a2 has I, =I",22nr dr =3na4. Why is 
this different from I, in Problem 20? Find the radius of 
gyration P =  ,/m.(The rotational energy $low2 equals 
$MP2w2-when the whole mass is turning at radius f.) 

Questions 35-42 come from the moment of inertia experiment. 

35 A solid cylinder of radius r is assembled from hollow cylin- 
ders of length 1, radius x, and volume (2nx)(l)(dx). The solid 
cylinder has 

mass M =j', 2nxlp dx and I =S', x2 2nxlp dx. 

With p =7 find M and I and J =I / M ~ ~ .  

36 Problem 14.4.40 finds J =215 for a solid ball. It is less 
than J for a solid cylinder because the mass of the ball is 
more concentrated near 

37 Problem 14.4.39 finds J =3 j",in3 4 d4 = for a 
hollow ball. The four rolling objects finish in the order 

38 By varying the density of the ball how could you make it 
roll faster than any of these shapes? 

39 Answer Question 2 about the experiment. 

40 For a vertical drop of y, equation (12) gives the velocity 
along the plane: v2 =2gy/(1+ J). Thus v =cy1I2 for c = 

. The vertical velocity is dyldt =u sin a: 

dy/dt =cy1I2 sin a and I y- 'I2 dy = I  c sin a dt. 

Integrate to find y(t). Show that the bottom is reached 
(y = h) at time T =2&c sin a. 

41 What is the theoretical ratio of the four finishing times? 

42 True or false: 
(a) Basketballs roll downhill faster than baseballs. 
(b) The center of mass is always at the centroid. 
(c) By putting your arms up you reduce I, and I,. 
(d) The center of mass of a high jumper goes over the bar 
(on successful jumps). 
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8.6 Force, Work, and Energy 

Chapter 1 introduced derivatives df /d t  and df / dx .  The independent variable could be 
t or x .  For velocity it was natural to use the letter t .  This section is about two 
important physical quantities-force and work-for which x is the right choice. 

The basic formula is W = Fx.  Work equals force times distance moved (distance in 
the direction of F ). With a force of 100 pounds on a car that moves 20 feet, the work 
is 2000 foot-pounds. If the car is rolling forward and you are pushing backward, the 
work is -2000 foot-pounds. If your force is only 80 pounds and the car doesn't 
move, the work is zero. In these examples the force is constant. 

W = Fx is completely parallel to f = v t .  When v is constant, we only need multi- 
plication. It is a changing velocity that requires calculus. The integral f v( t )  dt adds 
up small multiplications over short times. For a changing force, we add up small 
pieces of work F dx  over short distances: 

W = Fx (constant force) W = J F(x)  dx  (changing force). 

In the first case we lift a suitcase weighing F = 30 pounds up x = 20 feet of stairs. 
The work is W = 600 foot-pounds. The suitcase doesn't get heavier as we go up-it 
only seems that way. Actually it gets lighter (we study gravity below). 

In the second case we stretch a spring, which needs more force as x increases. 
Hooke's law says that F(x)  = kx.  The force is proportional to the stretching distance x .  
Starting from x = 0, the work increases with the square of x :  

F = k x  and w = J ; k x d x = : k x 2 .  (1 )  

In metric units the force is measured in Newtons and the distance in meters. The unit 
of work is a Newton-meter (a joule). The 600 foot-pounds for an American suitcase 
would have been about 800 joules in France. 

EXAMPLE 1 Suppose a force of F = 20 pounds stretches a spring 1 foot. 

(a) Find k. The elastic constant is k = Flx = 20 pounds per foot. 

(b) Find W. The work is i k x 2  = i 20 1' = 10 foot-pounds. 

(c) Find x when F = - 10 pounds. This is compression not stretching: x = - foot. 

Compressing the same spring through the same distance requires the same work. For 
compression x and F are negative. But the work W = f kx2 is still positive. Please 
note that W does not equal kx times x! That is the whole point of variable force 
(change Fx to 5 F(x)  dx) .  

May I add another important quantity from physics? It comes from looking at the 
situation from the viewpoint of the spring. In its natural position, the spring rests 
comfortably. It feels no strain and has no energy. Tension or compression gives it 
potential energy. More stretching or more compression means more energy. The 
change in energy equals the work. The potential energy of the suitcase increases by 
600 foot-pounds, when it is lifted 20 feet. 

Write V ( x )  for the potential energy. Here x is the height of the suitcase or the 
extension of the spring. In moving from x = a to x = b, work = increase in potential: 

This is absolutely beautiful. The work W is the definite integral. The potential V is 
the indefinite integral. If we carry the suitcase up the stairs and back down, our total 
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work is zero. We may feel tired, but the trip down should have given back our energy. 
(It was in the suitcase.) Starting with a spring that is compressed one foot, and ending 
with the spring extended one foot, again we have done no work. V =fkx2 is the same 
for x = -1 and x = 1. But an extension from x = 1 to x = 3 requires work: 

W = change in V = 3k(3)2-3k(1)2. 

Indefinite integrals like V come with a property that we know well. They include 
an arbitrary constant C. The correct potential is not simply $kx2, it is ikx2  + C. To 
compute a change in potential, we don't need C. The constant cancels. But to deter- 
mine V itself, we have to choose C. By fixing V =  0 at one point, the potential 
is determined at all other points. A common choice is V= 0 at x = 0. Sometimes 
V= 0 at x = oo (for gravity). Electric fields can be "grounded" at any point. 

There is another connection between the potential V and the force F. According 
to (2), V is the indefinite integral of F. Therefore F(x) is the derivative of V(x). The 
fundamental theorem of calculus is also fundamental to physics: 

force exerted on spring: F = dV/dx (34  

force exerted by spring: F = - dV/dx (3b) 

Those lines say the same thing. One is our force pulling on the spring, the other is 
the "restoring force" pulling back. (3a) and (3b) are a warning that the sign of F 
depends on the point of view. Electrical engineers and physicists use the minus sign. 
In mechanics the plus sign is more common. It is one of the ironies of fate that 
F = V', while distance and velocity have those letters reversed: v =f '. Note the change 
to capital letters and the change to x. 

GMm 0 
v=--/ .r Motion9: 

f Amx" = - k.v 

Fig. 8.16 Stretched spring; suitcase 20 feet up; moon of mass in; oscillating spring. 

EXAMPLE 2 Newton's law of gravitation (inverse square law): 

force to overcome gravity = GMm/x2 force exerted by gravity = - GMm/x2 

An engine pushes a rocket forward. Gravity pulls it back. The gravitational constant 
is G and the Earth's mass is M. The mass of the rocket or satellite or suitcase is m, 
and the potential is the indefinite integral: 

Usually C = 0, which makes the potential zero at x = co. 

Remark When carrying the suitcase upstairs, x changed by 20 feet. The weight was 
regarded as constant-which it nearly is. But an exact calculation of work uses the 
integral of F(x), not just the multiplication 30 times 20. The serious difference comes 
when the suitcase is carried to x = co.With constant force that requires infinite work. 
With the correct (decreasing) force, the work equals V at infinity (which is zero) minus 
V at the pickup point x, . The change in V is W = GMmlx, . 
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KINETIC ENERGY 

This optional paragraph carries the physics one step further. Suppose you release the 
spring or drop the suitcase. The external force changes to F = 0. But the internal 
force still acts on the spring, and gravity still acts on the suitcase. They both start 
moving. The potential energy of the suitcase is converted to kinetic energy, until it 
hits the bottom of the stairs. 

Time enters the problem, either through Newton's law or Einstein's: 

dv d
(Newton) F = ma = m - (Einstein) F = - (mu). ( 5 )dt dt 

Here we stay with Newton, and pretend the mass is constant. Exercise 21 follows 
Einstein; the mass increases with velocity. There m = m,/ goes to infinity 
as v approaches c, the speed of light. That correction comes from the theory of 
relativity, and is not needed for suitcases. 

What happens as the suitcase falls? From x = a at the top of the stairs to x = b at 
the bottom, potential energy is lost. But kinetic energy imv2 is gained, as we see from 
integrating Newton's law: 

dv dv dx dv 
force F=m-=m--=mu-  

dt dx dt dx 

1 1 
work jabF dx = labmv $ dx = -mv2(b)- -mv2(a).

2 2 

This same force F is given by -dV/dx. So the work is also the change in V: 

Since (6) = (7), the total energy +mu2 + V (kinetic plus potential) is constant: 

This is the law of conservation of energy. The total energy is conserved. 

EXAMPLE 3 Attach a mass m to the end of a stretched spring and let go. The spring's 
energy V = ikx2  is gradually converted to kinetic energy of the mass. At x = 0 the 
change to kinetic energy is complete: the original ikx2  has become ;mu2. Beyond 
x = 0 the potential energy increases, the force reverses sign and pulls back, and kinetic 
energy is lost. Eventually all energy is potential-when the mass reaches the other 
extreme. It is simple harmonic motion, exactly as in Chapter 1 (where the mass was 
the shadow of a circling ball). The equation of motion is the statement that the rate 
of change of energy is zero (and we cancel v = dxldt): 

That is F = ma in disguise. For a spring, the solution x = cos f i t  will be found 
in this book. For more complicated structures, engineers spend a billion dollars a 
year computing the solution. 
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PRESSURE AND HYDROSTATIC FORCE 

Our forces have been concentrated at a single points. That is not the case for pressure. 
A fluid exerts a force all over the base and sides of its container. Suppose a water 
tank or swimming pool has constant depth h (in meters or feet). The water has weight- 
density w % 9800 N/m3 % 62 lb/ft3. On the base, the pressure is w times h. The force 
is wh times the base area A: 

F = whA (pounds or Newtons) p = F / A  = wh (lb/ft2 or N/m2). (10) 

Thus pressure is force per unit area. Here p and F are computed by multiplication, 
because the depth h is constant. Pressure is proportional to depth (as divers know). 
Down the side wall, h varies and we need calculus. 

The pressure on the side is still wh-the same in all directions. We divide the side 
into horizontal strips of thickness Ah. Geometry gives the length l(h) at depth h 
(Figure 8.17). The area of a strip is l(h) Ah. The pressure wh is nearly constant on the 
strip-the depth only changes by Ah. The force on the strip is AF = whlAh. Adding 
those forces, and narrowing the strips so that Ah + 0, the total force approaches an 
integral: 

total force F = 1 whl(h) dh (11) 

1 = 60 
h=O 

A 
= 20 

pressure p = w h  

Fig. 8.17 Water tank and dam: length of side strip = I ,  area of layer = A. 

EXAMPLE 4 Find the total force on the trapezoidal dam in Figure 8.17. 

The side length is 1= 60 when h = 0. The depth h increases from 0 to 20. The main 
problem is to find I at an in-between depth h. With straight sides the relation is 
linear: 1 = 60 + ch. We choose c to give 1= 50 when h = 20. Then 50 = 60 + 420) 
yields c = -i. 

The total force is the integral of whl. So substitute I = 60 - f h: 

F = 1:' wh(60 - fh) dh = [30wh2 -&wh3]i0= 12000w -&(8000w). 

With distance in feet and w = 62 lb/ft3, F is in pounds. With distance in meters and 
w = 9800 N/m3, the force is in Newtons. 

Note that (weight-density w) = (mass-density p)  times (g)= (1000)(9.8). These SI 
units were chosen to make the density of water at 0°C exactly p = 1000 kg/m3. 

EXAMPLE 5 Find the work to pump water out of a tank. The area at depth h is A(h). 

Imagine lifting out one layer of water at a time. The layer weighs wA(h)Ah. The 
work to lift it to the top is its weight times the distance h, or whA(h)Ah. The work 
to empty the whole tank is the integral: 

W = whA(h) dh. (12) 
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Suppose the tank is the bottom half of a sphere of radius R. The cross-sectional area 
at depth h is A = n(R2 - h2). Then the work is the integral (12) from 0 to R. It equals 
W = nwR4/4. 

Units: w = for~e/(distance)~ times R~ = (distan~e)~ gives work W = (force)(distance). 

8.6 EXERCISES 
Read-through questions 

Work equals a times b . For a spring the force is 
F = c , proportional to the extension x (this is d law). 
With this variable force, the work in stretching from 0 to x is 
w = J  e = f . This equals the increase in the g 

energy V. Thus W is a h integral and V is the corre- 
sponding i integral, which includes an arbitrary i . 
The derivative dV/dx equals k . The force of gravity is 
F = I and the potential is V= m . 

In falling, V is converted to n energy K = o . The 
total energy K + V is P (this is the law of CI when 
there is no external force). 

Pressure is force per unit r . Water of density w in 
a pool of depth h and area A exerts a downward force 
F = s on the base. The pressure is p = t . On the 
sides the u is still wh at depth h, so the total force is 
J whl dh, where 1 is v . In a cubic pool of side s, the force 
on the base is F = w , the length around the sides is 
I = x , and the total force on the four sides is F = Y . 
The work to pump the water out of the pool is 
w = J w h ~ d h =  z . 

1 (a) Find the work W when a constant force F = 12 pounds 
moves an object from x = .9 feet to x = 1.1 feet. 
(b) Compute W by integration when the force F = 12/x2 
varies with x. 

2 A 12-inch spring is stretched to 15 inches by a force of 75 
pounds. 

(a) What is the spring constant k in pounds per foot? 
(b) Find the work done in stretching the spring. 
(c) Find the work to stretch it 3 more inches. 

3 A shock-absorber is compressed 1 inch by a weight of 1 
ton. Find its spring constant k in pounds per foot. What 
potential energy is stored in the shock-absorber? 

4 A force F = 20x - x3 stretches a nonlinear spring by x. 
(a) What work is required to stretch it from x = O  to 
x = 2? 
(b) What is its potential energy V at x = 2, if V(0) = 5? 
(c) What is k = dF/dx for a small additional stretch at 
x = 2? 

5 (a) A 120-lb person makes a scale go down x inches. How 
much work is done? 
(b) If the same person goes x inches down the stairs, how 
much potential energy is lost? 

6 A rocket burns its 100 kg of fuel at a steady rate to reach 
a height of 25 km. 

(a) Find the weight of fuel left at height h. 
(b) How much work is done lifting fuel? 

7 Integrate to find the work in winding up a hanging cable 
of length 100 feet and weight density 5 lb/ft. How much addi- 
tional work is caused by a 200-pound weight hanging at the 
end of the cable? 

g The great pyramid (height 500'-you can see it from 
Cairo) has a square base 800' by 800'. Find the area A at 
height h. If the rock weighs w = 100 lb/ft3, approximately how 
much work did it take to lift all the rock? 

9 The force of gravity on a mass m is F = - GMm/x2. With 
G = 6 10- l 7  and Earth mass M = 6 and rocket mass 
rn = 1000, compute the work to lift the rocket from x = 6400 
to x = 6500. (The units are kgs and kms and Newtons, giving 
work in Newton-kms.) 

10 The approximate work to lift a 30-pound suitcase 20 feet 
is 600 foot-pounds. The exact work is the change in the poten- 
tial V = -GmM/x. Show that A V  is 600 times a correction 
factor R2/(R2 - lo2), when x changes from R - 10 to R + 10. 
(This factor is practically 1, when R = radius of the Earth.) 

11 Find the work to lift the rocket in Problem 9 from 
x = 6400 out to x = m. If this work equals the original 
kinetic energy +mu2, what was the original v (the escape 
velocity)? 

12 The kinetic energy )mu2 of a rocket is converted into 
potential energy - G Mm/x. Starting from the Earth's radius 
x = R, what x does the rocket reach? If it reaches x = rn show 
that v = d m .  This escape velocity is 25,000 miles per 
hour. 

13 It takes 20 foot-pounds of work to stretch a spring 2 feet. 
How much work to stretch it one more foot? 

14 A barrel full of beer is 4 feet high with a 1 foot radius and 
an opening at the bottom. How much potential energy is lost 
by the beer as it comes out of the barrel? 



347 8.6 Force, Wrk, and Energy 

15 A rectangular dam is 40 feet high and 60 feet wide. Com- 
pute the total side force F on the dam when (a) the water is 
at the top (b) the water level is halfway up. 

16 A triangular dam has an 80-meter base at a depth of 30 
meters. If water covers the triangle, find 

(a) the pressure at depth h 
(b) the length 1 of the dam at depth h 
(c) the total force on the dam. 

17 A cylinder of depth H and cross-sectional area A stands 
full of water (density w). (a) Compute the work W =J wAh dh 
to lift all the water to the top. (b) Check the units of W. 
(c) What is the work W if the cylinder is only half full? 

18 In Problem 17, compute W in both cases if H =20 feet, 
w =62 lb/ft3, and the base is a circle of radius r = 5 feet. 

19 How much work is required to pump out a swimming 
pool, if the area of the base is 800 square feet, the water is 4 
feet deep, and the top is one foot above the water level? 

20 For a cone-shaped tank the cross-sectional area increases 
with depth: A = ,nr2h2/H2.Show that the work to empty it is 
half the work for a cylinder with the same height and base. 
What is the ratio of volumes of water? 

21 In relativity the mass is m =mo/J1-V'/CZ. Find the cor- 
rection factor in Newton's equation F =moa to give Einstein's 
equation F =d(mv)/dt=(d(mv)/dv)(dv/dt)= mo a. 

22 Estimate the depth of the Titanic, the pressure at that 
depth, and the force on a cabin door. Why doesn't every door 
collapse at the bottom of the Atlantic Ocean? 

23 A swimming pool is 4 meters wide, 10 meters long, and 2 
meters deep. Find the weight of the water and the total force 
on the bottom. 

24 If the pool in Problem 23 has a shallow end only one 
meter deep, what fraction of the water is saved? Draw a cross- 
section (a trapezoid) and show the direction of force on the 
sides and the sloping bottom. 

25 In what ways is work like a definite integral and energy 
like an indefinite integral? Their derivative is the 


