
1.050 Engineering Mechanics I 

Review session 
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1.050 – Content overview

I. Dimensional analysis 

1.	 On monsters, mice and mushrooms 
2.	 Similarity relations: Important engineering tools 

II. Stresses and strength 
3.	 Stresses and equilibrium 
4.	 Strength models (how to design structures, 

foundations.. against mechanical failure) 

III. Deformation and strain 
5.	 How strain gages work? 
6.	 How to measure deformation in a 3D 


structure/material?


IV. Elasticity 
7.	 Elasticity model – link stresses and deformation 
8.	 Variational methods in elasticity 

V.  How things fail – and how to avoid it 
9.	 Elastic instabilities 
10.	 Fracture mechanics 
11.	 Plasticity (permanent deformation) 

Lectures 1-3 
Sept. 

Lectures 4-15 
Sept./Oct. 

Lectures 16-19 
Oct. 

Lectures 20-32 
Oct./Nov. 

Lectures 33-37 
Dec. 2 

1 



Notes regarding final exam 
• Please contact me or stop by at any time for any questions 

• The final will be comprehensive and cover all material discussed in 
1.050. Note that the last two p-sets will be important for the final. 
–	 To get an idea about the style of the final, work out old finals and the practice

final 
–	 There will be 2-3 problems with several questions each (e.g. beam problem/

truss problem, continuum problem) 
–	 We will post old final exams from 2005 and 2006 today 
–	 We will post an additional, new practice final exam on or around Wednesday

next week 
–	 Another list of variables and concepts will be posted next week 
–	 Stay calm, read carefully, and practice time management 
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Stress, strain and elasticity 
-
concepts
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Overview: 3D linear elasticity 
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Elasticity 
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Isotropic elasticity


σ = ⎜
⎛ K − 

2 G ⎟
⎞εv1+ 2Gε = ⎜
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2 G ⎟

⎞(ε11 + ε22 + ε33 )1+ 2Gε 
⎝ 3 ⎠ ⎝ 3 ⎠ 

σ 

σ 

σ 
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⎝ 3 ⎠ 

= ⎛⎜ K − 
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⎟(ε + ε + ε )+ 2Gε 
⎝ 3 ⎠ Linear isotropic elasticity 
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G ⎟
⎠
⎞(ε11 + ε22 + ε33 )+ 2Gε33 Written out for individual 

σ12 = 2Gε12 
stress tensor coefficients 

σ 23 = 2Gε23 

σ13 = 2Gε13 Linear isotropic elasticity 
σ11 = ⎜

⎛ K + 
4 G ⎟

⎞ε11 + ⎜
⎛ K − 

2 G ⎟
⎞ε 22 + ⎜
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⎞ε 33 Written out for individual ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ 
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stress tensor coefficients, 
⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ collect terms that multiply 

σ 33 = ⎛⎜ K − 
2 G ⎞⎟ε11 + ⎛⎜ K − 

2 G ⎞⎟ε 22 + ⎛⎜ K + 
4 G ⎞⎟ε 33 strain tensor coefficients 

⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ 
4σ12 = 2Gε12 c1111 = c2222 = c3333 = K + G
3 

σ 23 = 2Gε 23 2 c1122 = c1133 = c2233 = K − G 
σ13 = 2Gε13 

3 6 
c1212 = c2323 = c1313 = 2G 
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Variable Definition Notes & comments 

ν 
GK 
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1νxxzzyy νεεε = −= 
Poisson’s ratio (lateral 
contraction under uniaxial 
tension) 

E GK 
KGE 
+ 

= 
3 
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xxxx Eεσ = 

Young’s modulus (relates 
stresses and strains under 
uniaxial tension) 

x 

z 

F 

F Æ σ= F/A 

x Æ ε= x/L 7 

Uniaxial beam deformation 

Solving problems with 
strength approach 

Use conditions for S.A. plus 
strength criterion (S.C.) 

8 

4 



Variable Definition Notes & comments 

Two pillars of 
stress-
strength 
approach 

At any point,    must be: 

(1) Statically admissible (S.A.) 

and 

(2) Strength compatible (S.C.) 

σ 
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• Equilibrium conditions “only” specify statically admissible 
stress field, without worrying about if the stresses can 
actually be sustained by the material – S.A. 
From EQ condition for a REV we can integrate up 
(upscale) to the structural scale 
Examples: Many integrations in homework and in class;  
Hoover dam etc. 

• Strength compatibility adds the condition that in addition 
to S.A., the stress field must be compatible with the 
strength capacity of the material – S.C. 
In other words, at no point in the domain can the stress 
vector exceed the strength capacity of the material
Examples: Sand pile, foundation etc. – Mohr circle 

Variable Definition Notes & comments 

DS Strength domain for beams 

Moment capacity for beams For rectangular cross-section 
b,h 

N = N0 = bhσ 0N = N x limx Strength capacity for beams lim 0 

M Ny xf (M y , Nx ) = + −1 ≤ 0
M 0 Nx 

2M N⎛ ⎞y xf (M y , Nx ) = + ⎜⎜ ⎟⎟ −1 ≤ 0
M 0 ⎝ Nx ⎠ M-N interaction (linear) 

f (M y , Nx ) ≤ 0 

M-N interaction (actual); 
convexity 
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Variable Definition Notes & comments 

Safe 
strength 
domain 

: load bearing capacity of 
i-th load case 

Linear combination is safe 
(convexity) 
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Mohr circle 

Display 3D strain tensor in 2D
projection – enables us to ‘see’ largest 

shear stresses, largest normal 
stresses… 

Thereby facilitates application of
strength criterion 
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Variable Definition Notes & comments 
Strength domain (general 

Dk definition)

Equivalent to condition for S.C.


c
Dk ,Tresca Tresca criterion 

Max. shear stress 

∀n 
v : 

Dk ,Tension−cutoff 

Max. tensile stress 

c 

0( ≤Tf ) −= cσ
v 

Tension cutoff criterion 
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Variable Definition Notes & comments 

,Mohr Coulomb−Dk 

=µ 

σ 

τ 

c cohesion 
c=0 dry sand 

Max. shear stress 
function of σ Mohr-Coulomb 

σ 

τ 

14 

Angle of repose 
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Variable Definition Notes & comments 

S = ∫ 
S 

dSS Cross-sectional area 

I = ∫ 
S 

z dSI 2 Second order area moment 

EI y 
z 

y EI 
dx 

dEIM ϑξ 
== − 2 

02 Beam bending stiffness 
(relates bending moment and 
curvature) 

ES 

f 
dx 

d xx = −2 

02ξ Governing differential 
equation, axial forces 

EI 
f 

dx 

d zz = 4 

04ξ Governing differential 
equation, shear forces 

• Step 1: Write down BCs (stress BCs and 
displacement BCs), analyze the problem to be 
solved (read carefully!) 

• Step 2: Write governing equations for 
• Step 3: Solve governing equations (e.g. by

integration), results in expression with unknown
integration constants 

• Step 4: Apply BCs (determine integration 
constants) 

..., xz ξξ 
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Solution procedure to solve 
beam elasticity problems 

Energy approach 

Approximate solution or find exact 
solution 

16 
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Upper/lower bounds


⎧max(− ε (σ ' ))⎫ 
⎪⎪σ ' S.A. com 

⎪⎪ r 
− εcom(σ ' ) ≤ ⎨ is equal to ⎬ ≤ εpot (ξ ' ) 

σ ' S.A. ⎪ min ε (ξ 
r 
' ) ⎪ ξ 

r 
' K.A. 

⎪ ⎪⎩ ξ 
r 
' K.A. pot ⎭ 

Lower bound Solution Upper bound 
Complementary energy Potential energy 
approach approach 

r 
εcom(σ ' ) =ψ *(σ ' ) −W *(T ' ) 

r r 
εpot (ξ ' ) =ψ (ε ' ) −W (ξ ' ) 
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Boundary conditions 

Important concept in 1.050 and 
elsewhere 
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Important BCs in beams/frames


Free end r 
F = 0 ξ = 0zr 
M = 0 M = 0y 

Concentrated force 
ξ = 0xQz = −P 
ω = 0y 

P 
Hinge (bending) 

r 
ξ = 0M = 0y 

ω = 0y 

19 

Buckling of beams in 
compression 

Elastic instability 
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Euler beam buckling 
Different boundary conditions 

Buckling 

Fracture mechanics 

How to treat cracks in a continuum 

22


11 



Example: 3D fracture model 
Expressions for G can be found for a variety of geometries and structures: 

d far away from 

For this geometry: σ 
0 z crack 
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Concrete beam 

Measure length of crack 

E.g. add fluorescent fluid 
use UV light 

mama 

http://www.amesresearch.com/images/cshst/block_before.jpg 

Example application 

Detect crack of length ma 
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Photograph of crack (crack length of a(sub m)  
removed due to copyright restrictions. 
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Example application


Detect crack of length ma 

Question:  Will structure fail?  Concrete beam


Solution: Solving beam problem provides us with stress distribution in section 


σ (z; x) = 
M y

I 
(x) 

z σ (z) = 
h 

σ 
/
0

2 
z

z h / 2 

σ (z)xx xx xx 
− h / 2 

Calculate critical fracture stress and compare with stress in beam structure 

σ xx (z = − 
h ) ≥ σ 0,crit failure1 2σ 0,crit = 

1.122πa 
KIc 

m σ xx (z = − 
h ) < σ 0,crit no failure
2 

13 


