

1.050 – Content overview		
I. Dime 1. 2.	nsional analysis On monsters, mice and mushrooms Similarity relations: Important engineering tools	Lectures 1-3 Sept.
II. Stres 3. 4.	sses and strength Stresses and equilibrium Strength models (how to design structures, foundations against mechanical failure)	Lectures 4-15 Sept./Oct.
III. Defc 5. 6.	How strain gages work? How to measure deformation in a 3D structure/material?	Lectures 16-19 Oct.
IV. Elas 7. 8.	ticity Elasticity model – link stresses and deformation Variational methods in elasticity	Lectures 20-32 Oct./Nov.
V. How 9. 10. 11.	things fail – and how to avoid it Elastic instabilities Fracture mechanics Plasticity (permanent deformation)	Lectures 33-37 Dec. 2

Variable	Definition	Notes & comments
v	$\varepsilon_{yy} = \varepsilon_{zz} = -v\varepsilon_{xx}$ $v = \frac{1}{2}\frac{3K - 2G}{3K + G}$	Poisson's ratio (lateral contraction under uniaxial tension)
E	$E = \frac{9KG}{3K+G}$ $\sigma_{xx} = E\varepsilon_{xx}$	Young's modulus (relates stresses and strains under uniaxial tension)
z		Uniaxial beam deformation
$F \rightarrow \sigma = F/A$		
$\longrightarrow x \rightarrow \varepsilon = x/L$		7

Variable	Definition	Notes & comments
Two pillars of stress- strength approach	 At any point, <u>σ</u> must be: (1) Statically admissible (S.A.) and (2) Strength compatible (S.C.) 	
 (2) Strength compatible (S.C. Equilibrium conditions " stress field, without wor actually be sustained by <i>From EQ condition for a</i> (upscale) to the structul Examples: Many integ Hoover dam etc. Strength compatibility a to S.A., the stress field strength capacity of the <i>In other words, at no po</i> 		y" specify statically admissible ng about if the stresses can ie material – S.A. <i>EV we can integrate up</i> <i>scale</i> ions in homework and in class; s the condition that in addition st be compatible with the aterial – S.C.
	Examples: Sand pile, fou	ndation etc. – Mohr circle 9

Variable	Definition	Notes & comments
D_{S}	$\left[\forall x; \left(\overrightarrow{F}_{S}, \overrightarrow{\mathcal{M}}_{S} \right) \in D_{S}\left(x \right) \Leftrightarrow f\left(x, \overrightarrow{F}_{S}\left(x \right), \overrightarrow{\mathcal{M}}_{S}\left(x \right) \right) \leq 0 \right]$	Strength domain for beams
$\left \mathcal{M}_{y}\right _{\lim}=M_{0}$	$ \mathcal{M}_y _{\rm lim} = M_0 = rac{1}{4}\sigma_0 bh^2$ For rectangular cross-section <i>b</i> , <i>h</i>	Moment capacity for beams
$\left N_{x}\right _{\lim}=N_{0}$	$\left N_{x}\right _{\lim}=N_{0}=bh\sigma_{0}$	Strength capacity for beams
	$f(M_{y}, N_{x}) = \frac{ M_{y} }{M_{0}} + \frac{ N_{x} }{N_{x}} - 1 \le 0$	
	$f(M_{y}, N_{x}) = \frac{ M_{y} }{M_{0}} + \left(\frac{ N_{x} }{N_{x}}\right)^{2} - 1 \le 0$	M-N interaction (linear)
$f(M_y, N_x) \le 0$		M-N interaction (actual); convexity
		10

Variable	Definition	Notes & comments
Safe strength domain	$ \begin{array}{c} \forall i; \ 0 \leq Q^{(i)} \leq \alpha_i Q^{(i)}_{\lim} \\ \\ \sum_{i=1,n} \frac{Q^{(i)}}{Q^{(i)}_{\lim}} \leq \sum_{i=1,n} \alpha_i = 1 \\ \\ Q^{(i)}_{\lim} \text{: load bearing capacity of } \\ i\text{-th load case} \end{array} $	Linear combination is safe (convexity)
		11

Variable	Definition	Notes & comments
D_k	$\forall \vec{x}; \ \boldsymbol{\sigma}\left(\vec{x}\right) \in D_k \Leftrightarrow f\left(\vec{x}, \boldsymbol{\sigma}\left(\vec{x}\right)\right) \stackrel{\text{s.c.}}{\leq} 0$	Strength domain (general definition) Equivalent to condition for S.C.
	Tresca: $\forall \vec{n}; f\left(\vec{T}\right) = \tau - c \le 0$ cohesion, $2c = \sigma_0$ Max. shear stress	
$D_{k,\mathrm{Tresca}}$	$\begin{array}{c} \sigma_{m} & \overline{\sigma} \overline{\sigma} \overline{\sigma} \overline{\sigma} \\ \hline \overline{\sigma} \overline{\sigma} \overline{\sigma} \overline{\sigma} \\ \hline \overline{\sigma} \overline{\sigma} \overline{\sigma} \overline{\sigma} \\ \hline \overline{\sigma} \overline{\sigma} \overline{\sigma} \end{array} \xrightarrow{\sigma_{m}} \sigma_{\sigma} \rightarrow \sigma$	Tresca criterion
$D_{k,\mathrm{Tension-cutoff}}$	$\forall \vec{n} : f(\vec{T}) = \sigma - c \le 0^{\circ} \text{Max. tensile stress}$ $\sigma_{\vec{m}} = \sigma_{\vec{n}} \sigma_{\vec$	Tension cutoff criterion

Variable	Definition	Notes & comments
$D_{k,\mathrm{Mohr-Coulomb}}$	Mohr-Coulomb: $\forall \vec{n}; f(\vec{T}) = \tau + \sigma \tan \varphi - c \le 0$ Max. shear stress function of σ <i>c</i> cohesion <i>c</i> =0 dry sand	Mohr-Coulomb
$lpha_{ m lim}$	$\alpha_{\lim} = \varphi$	Angle of repose

Variable	Definition	Notes & comments
S	$S = \int_{S} dS$	Cross-sectional area
Ι	$I = \int_{S} z^2 dS$	Second order area moment
EI	$M_{y} = -EI\frac{d^{2}\xi_{z}^{0}}{dx^{2}} = EI\vartheta_{y}$	Beam bending stiffness (relates bending moment and curvature)
$\frac{d^2\xi_x^0}{dx^2}$	$=-\frac{f_x}{ES}$	Governing differential equation, axial forces
$rac{d^4 \xi_z}{dx^4}$	$\frac{\frac{D}{2}}{EI} = \frac{f_z}{EI}$	Governing differential equation, shear forces
Step 1: Write displacement I solved (read c Step 2: Write Step 3: Solve integration, re integration cor Step 4: Apply constants)	down BCs (stress BCs and BCs), analyze the problem to be arefully!) governing equations for ξ_z , ξ_x governing equations (e.g. by soults in expression with unknown stants BCs (determine integration	Solution procedure to solve beam elasticity problems

