1.050 Engineering Mechanics

Lecture 22: Isotropic elasticity

1.050 – Content overview

I. Dimensional analysis

- 1. On monsters, mice and mushrooms
- 2. Similarity relations: Important engineering tools

II. Stresses and strength

- 3. Stresses and equilibrium
- 4. Strength models (how to design structures, foundations.. against mechanical failure)

III. Deformation and strain

- 5. How strain gages work?
- 6. How to measure deformation in a 3D structure/material?

IV. Elasticity

- 7. Elasticity model link stresses and deformation
- 8. Variational methods in elasticity

V. How things fail – and how to avoid it

- 9. Elastic instabilities
- 10. Plasticity (permanent deformation)
- 11. Fracture mechanics

Lectures 1-3 Sept.

Lectures 4-15 Sept./Oct.

Lectures 16-19 Oct.

Lectures 20-31 Oct./Nov.

Lectures 32-37 Dec.

1.050 – Content overview

- I. Dimensional analysis
- **II. Stresses and strength**
- **III. Deformation and strain**

IV. Elasticity

Lecture 20: Introduction to elasticity (thermodynamics) Lecture 21: Generalization to 3D continuum elasticity Lecture 22: Special case: isotropic elasticity Lecture 23: Applications and examples

V. How things fail – and how to avoid it

Important concepts: Isotropic elasticity

- **Isotropic elasticity** = elastic properties do not depend on direction
- In terms of the **free energy change**, this means that the change of the free energy does not depend on the direction of deformation
- Rather, it depends on quantities that are **independent on the direction of deformation** (i.e., independent of coordinate system)
- Idea: Use invariants of strain tensor to calculate free energy change
 - Volume change
 - Shape change (shear deformation)
- Note: Invariants are defined as properties of strain tensor that are independent of coordinate system (C.S.)

Important mathematical tools

$$\operatorname{tr}(\underline{\varepsilon}) = \underline{\varepsilon} : \underline{1} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = \frac{d\Omega_d - d\Omega_0}{d\Omega_0}$$

Trace of a tensor

Relates to the chain of volume of REV Independent of C.S. – trace of a tensor is an invariant

$$\left|\underline{\underline{\varepsilon}}\right| = \sqrt{\frac{1}{2}\left(\underline{\underline{\varepsilon}}:\underline{\underline{\varepsilon}}^{T}\right)} = \sqrt{\frac{1}{2}\sum_{i}\sum_{j}\varepsilon_{ij}^{2}}$$

'Magnitude' of a tensor (2nd order norm)

Note: Analogy to the 'magnitude' of a tensor is the norm of a first order tensor (=vector), that is, its length

Overview: Approach

Step 1: Calculate change in volume

$$\mathcal{E}_{v} = \operatorname{tr}(\underline{\mathcal{E}}) = \underline{\mathcal{E}} : \underline{1}$$

Step 2: Calculate magnitude of angle change

Define strain deviator tensor = tensor that describes deformation without the volume change (trace of strain deviator tensor is zero!)

$$\underline{\underline{e}} = \left(\underline{\underline{\varepsilon}} - \frac{1}{3} \operatorname{tr}(\underline{\underline{\varepsilon}})\underline{\underline{l}}\right) \quad \operatorname{tr}(\underline{\underline{\varepsilon}}) = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} - \frac{1}{3} \left(3(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33})\right) = 0$$
$$\varepsilon_d = 2|\underline{\underline{e}}| = 2\sqrt{\frac{1}{2}(\underline{\underline{e}} : \underline{\underline{e}}^T)} = 2\sqrt{\frac{1}{2}\sum_{i}\sum_{j}e_{ij}^2}$$

Step 3: Define two coefficients to link energy change with deformation ("spring model"):

Note

The approach that the free energy under deformation depends only on volume change and overall angle change is not derived from physical principles

Rather, it is an **assumption**, which is made to 'model' the behavior of a solid (**modeling is finding a mathematical representation of a physical phenomenon**)

Generally, models must be validated, for instance through experiments

Alternative approach: Calculation of from 'first principles' – by explicitly considering the atomistic scale of atomic, molecular etc. interactions

Spring 2008: 1.021J Introduction to Modeling and Simulation (Buehler, Radovitzky, Marzari) – continuum methods, particle methods, quantum mechanics

Stress-strain relation

Total stress tensor = sum of contribution from volume change and contribution from shape change:

$$\underline{\underline{\sigma}} = \underline{\underline{\sigma}}_v + \underline{\underline{\sigma}}_d$$

$$\underline{\underline{\sigma}}_{v} = \frac{\partial \Psi_{v}}{\partial \underline{\underline{\varepsilon}}}$$
$$\underline{\underline{\sigma}}_{d} = \frac{\partial \Psi_{d}}{\partial \underline{\underline{\varepsilon}}}$$

Next step: Carry out differentiations

Stress-strain relation

Total stress tensor = sum of contribution from volume change and contribution from shape change:

$$\underline{\underline{\sigma}} = \underline{\underline{\sigma}}_{v} + \underline{\underline{\sigma}}_{d} \qquad \underline{\underline{\sigma}}_{v} = \frac{\partial \Psi_{v}}{\partial \underline{\underline{\varepsilon}}} \qquad \underline{\underline{\sigma}}_{d} = \frac{\partial \Psi_{d}}{\partial \underline{\underline{\varepsilon}}}$$

1. Calculation of $\underline{\sigma}_{v}$

$$\Psi_{v} = \frac{1}{2} K \varepsilon_{v}^{2} \qquad \underbrace{\underline{\sigma}_{v}}_{v} = \frac{\partial \Psi_{v}}{\partial \underline{\varepsilon}} = \frac{\partial \Psi_{v}}{\partial \varepsilon_{v}} : \underbrace{\frac{\partial \varepsilon_{v}}{\partial \underline{\varepsilon}}}_{v} = K \varepsilon_{v} \underbrace{\frac{\partial \Psi_{v}}{\partial \underline{\varepsilon}}}_{v} = K \varepsilon_{v} \underbrace{\frac{\partial \Psi_{v}}{\partial \varepsilon_{v}}}_{\partial \underline{\varepsilon}} = \frac{\partial (\operatorname{tr}(\underline{\varepsilon}))}{\partial \underline{\varepsilon}} = \frac{\partial (\underline{\varepsilon} : \underline{1})}{\partial \underline{\varepsilon}} = \underline{1}$$

Stress-strain relation

2. Calculation of
$$\underline{\underline{\sigma}}_{d} \qquad \Psi_{d} = \frac{1}{2}G\varepsilon_{d}^{2}$$

Note (definition of \mathcal{E}_d): $\mathcal{E}_d = 2\left|\underline{e}\right| = 2\sqrt{\frac{1}{2}\left(\underline{e}:\underline{e}^T\right)}$ Note (definition of \underline{e}): $\underline{e} = \underline{\varepsilon} - \frac{1}{3}\mathcal{E}_v \underline{1} = \underline{\varepsilon} - \frac{1}{3}(\underline{\varepsilon}:\underline{1}) \otimes \underline{1}$ tensor product

3. Putting it all together: $\underline{\sigma} = \underline{\sigma}_v + \underline{\sigma}_d$

$$\underline{\underline{\sigma}} = K\varepsilon_{v}\underline{1} + 2G\underline{\underline{e}} = K\varepsilon_{v}\underline{1} + 2G\left(\underline{\underline{\varepsilon}} - \frac{1}{3}\varepsilon_{v}\underline{1}\right)$$
$$\underline{\underline{e}} = \left(\underline{\underline{\varepsilon}} - \frac{1}{3}\operatorname{tr}(\underline{\underline{\varepsilon}})\underline{1}\right)$$

Deviatoric part of the strain tensor

$$\underline{\underline{\sigma}} = \left(K - \frac{2}{3}G \right) \varepsilon_{v} \underline{1} + 2G \underline{\underline{\varepsilon}}$$

Reorganized...

$$\underbrace{\sigma}_{\underline{\sigma}} = \left(K - \frac{2}{3}G\right)\varepsilon_{v_{\underline{\pi}}} + 2G\underline{\varepsilon}_{\underline{\sigma}} = \left(K - \frac{2}{3}G\right)(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33})\underline{1} + 2G\underline{\varepsilon}_{\underline{\sigma}}$$

Writing it out in coefficient form:

$$\begin{cases} \sigma_{11} = \left(K - \frac{2}{3}G\right)\left(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) + 2G\varepsilon_{11} \\ \sigma_{22} = \left(K - \frac{2}{3}G\right)\left(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) + 2G\varepsilon_{22} \\ \sigma_{33} = \left(K - \frac{2}{3}G\right)\left(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) + 2G\varepsilon_{33} \\ \sigma_{12} = 2G\varepsilon_{12} \\ \sigma_{23} = 2G\varepsilon_{23} \\ \sigma_{13} = 2G\varepsilon_{13} \end{cases}$$

Rewrite by collecting terms multiplying \mathcal{E}_{ii}

$$\sigma_{11} = \left(K + \frac{4}{3}G\right)\varepsilon_{11} + \left(K - \frac{2}{3}G\right)\varepsilon_{22} + \left(K - \frac{2}{3}G\right)\varepsilon_{33}$$
(1)

$$\sigma_{22} = \left(K - \frac{2}{3}G\right)\varepsilon_{11} + \left(K + \frac{4}{3}G\right)\varepsilon_{22} + \left(K - \frac{2}{3}G\right)\varepsilon_{33}$$
(2)
$$\sigma_{33} = \left(K - \frac{2}{3}G\right)\varepsilon_{11} + \left(K - \frac{2}{3}G\right)\varepsilon_{22} + \left(K + \frac{4}{3}G\right)\varepsilon_{33}$$
(3)

... collecting terms multiplying $\mathcal{E}_{12}, \mathcal{E}_{23}, \mathcal{E}_{13}$

 $\sigma_{12} = 2G\varepsilon_{12}$

 $\sigma_{_{23}} = 2G\varepsilon_{_{23}}$

 $\sigma_{13} = 2G\varepsilon_{13}$

$$\sigma_{11} = \left(K + \frac{4}{3}G\right)\varepsilon_{11} + \left(K - \frac{2}{3}G\right)\varepsilon_{22} + \left(K - \frac{2}{3}G\right)\varepsilon_{33}$$
(1)
$$\downarrow$$
$$c_{1111} = K + \frac{4}{3}G$$
$$c_{1122} = K - \frac{2}{3}G = c_{1133}$$

$$\sigma_{22} = \left(K - \frac{2}{3}G\right)\varepsilon_{11} + \left(K + \frac{4}{3}G\right)\varepsilon_{22} + \left(K - \frac{2}{3}G\right)\varepsilon_{33}$$
(2)

$$c_{2211} = K - \frac{2}{3}G = c_{2233}$$
$$c_{2222} = K + \frac{4}{3}G$$

$$\sigma_{33} = \left(K - \frac{2}{3}G\right)\varepsilon_{11} + \left(K - \frac{2}{3}G\right)\varepsilon_{22} + \left(K + \frac{4}{3}G\right)\varepsilon_{33}$$
(3)
$$\downarrow$$
$$c_{3311} = K - \frac{2}{3}G = c_{3322}$$
$$c_{3333} = K + \frac{4}{3}G$$

All other C_{ijkl} are zero

Summary: Expression of elasticity tensor

$$\begin{cases} c_{1111} = c_{2222} = c_{3333} = K + \frac{4}{3}G \\ c_{1122} = c_{1133} = c_{2233} = K - \frac{2}{3}G \\ c_{1212} = c_{2323} = c_{1313} = 2G \end{cases}$$

Examples – numerical values

Concrete

K = 14 GPa G = 10 GPa

Quartz (sand, stone..)

K = 27 GPa G = 26 GPa

Steel

K = 200 GPa *G* = 140 GPa