1.054 Mechanics & Design of Concrete Structures

Seismic Isolation Using Passive Control Technologies

Bassam William DAHER

Isolated-Base vs Fixed Base

Seismic Isolation Using Passive Control Technologies

Introduction
 Applications around the Globe
 Standards and Codes for Design
 Experimental results

Traditional Anti-Seismic Structure

- Allowing Struct. Elements or joints to work to dissipate the energy
- Not very safe
- Limited use
- Stronger elements -> Larger stiffness -> larger seismic load
- Stronger elements ->Higher Cost

Seismic Control

Passive Control : no external power source

> Active Control : external power source

Types of Isolators

1-Sand Layer > 2-Graphite-lime mortar layer > 3-Sliding friction layer > 4-Rollers > 5-Rubber Bearings > 1,2,3 are too sensitive to foundation settlement > 4 need careful maintenance > 5 most widely used : no moving parts, unaffected by time, resistant to environment

Isolator Role

> Reduce the response of the structure

Installed between foundation & struct. Or relevant parts of structure

Extend the natural period of the structure

> Acceleration response is reduced

Isolated-Base vs Fixed Base

Features

> Response can be reduced to 1/2 to 1/8

Bldg costs can be reduced 3 to 15%

Wide range of application : New and Old

Freedom of architectural deisgn : can be used in bldgs with irregular configurations

Rubber Bearing

Steel and Rubber sheets

Rubber Bearing → Steel, Rubber, and Lead Core

Rubber Bearing Features

> Effective isolation, ½ to1/8 tradit.response
> Stable no maintenance lifetime >100 years
> They recover from displacement perfectly
> Can accommodate vertical motion of bldg
> Insensitivity to foundation settlement
> They have operated successfully USA,China, Japan

They decrease temperature stress in structures by horiz. deform. During large change of T°

US Applications

> 1994 Northridge EQ > USC Hospital 8 stories > supported on 68 lead rubber isolators and 81 elastomeric isolators > The PGA outside the building was 0.49 g, and the accelerations inside the building were around 0.10 to 0.13 g.

JAPAN Applications

Iargest base-isolated building in the world

West Japan Postal Computer Center, Kobe
This six-storey, (500,000 ft square) structure
Supported on 120 elastomeric isolators isolated
Isolated period of 3.9 sec
PGA = 0.41 g
Reduced by the isolation system to (0.13 g) at 6th floor.

ARMENIA Applications

Design & Cost Comparison of 4 storey building

Values compared	Fixed-base building	Seismically isolated building		
Total shear fore (kN)	40800	10200		
Required reinforcement (t)	360	104		
Required reinforcement per 1 m ² of the area	110	32		
of the building (kg)				
Distance (cm) between the reinforcing bars	20×20, Ø16	40 × 40, Ø8		
and their average diameter (mm) in the walls				
Required strength of the concrete (N/cm ²)	2500	1500		
Required cement (t)	810	428		
Required cement per 1 m ² of the area of the	250	132		
building (kg)				
Cost of reinforcement (US\$)	144000	41600		
Cost of cement (US\$)	32210	17550		
Cost of seismic isolators (US\$)		24700		

Savings = (144,000+32,210) - (41,600+17,550+24,700) =\$92,360 Cost of bearing structure = \$27,000 Total Savings = \$65,360 = 30% Savings

NEW ZEALAND Application

> Museum of NZ Te Papa, Wellington Heaviest seismically isolated in the world > 190 x 104 m, , 23 m height > 5 storey , 35000 sq m Required to Suffer no damage in 250 years !!! No collapse with a 2000 years earthquake > 142 lead rubber bearings, with Teflon slidings under shear walls

NEW ZEALAND Application

	250 year	2000 year	
Isolated Max floor accel.	0.33 g	0.48 g	
Fixed base max. floor accel	1.02 g	1.69 g	
Displacement- Isolated	260 mm	510 mm	

Period of isolated structure = 2.5 s

NEW ZEALAND Application

Results of Feasibility study on damage costs to content and structure Museum of NZ Te Papa

Simulation

- We used a Java powered simulation program developed by Prof.B.F Spencer Jr. from the UIUC
- > a SDOF (single degree of freedom) frame
- > Structure : 100 tons , 1 Hz, damping ratio is 5%.
- \succ Isolation system : mass ratio (mass of base slab divided by mass of superstructure) is 0.10 ,
- > natural frequency 0.5 Hz,
- > the damping ratio will be varied between 5 and 20%
- > Frequency will be varied between 0.7 Hz and 0.3Hz
- > El Centro Earthquake

Max Velocity vs Damper's Period in Seconds

Max Acceleration vs Damper Period

Max Displacement vs Damper's Period

frequency (Hz)	0.7	0.6	0.5	0.4	0.3	Damping
period (sec)	1.43	1.67	2.00	2.50	3.33	
Max.displacement	84.8	63.8	54.7	43.9	31.8	20%
mm						
	86.9	64	54.4	43.1	30.6	15%
	90.4	65.3	54.8	42.9	29.7	10%
	95.6	69.1	55.9	43.5	29.6	5%
Max Velocity	41.89	33.39	24.57	16.22	9.37	20%
cm/s						
	42.01	33.06	23.73	15	8.65	15%
	42.69	33.21	23.35	14.13	8.15	10%
	44.06	34.01	23.49	14.01	8.05	5%
Max Acceleration	0.343	0.258	0.221	0.177	0.129	20%
g						
	0.351	0.259	0.220	0.174	0.123	15%
	0.365	0.264	0.221	0.173	0.120	10%
	0.386	0.279	0.226	0.176	0.119	5%

Interpretation-1

Maximum Displacement

Fixed Base 745.1 mm
Isolated 95.6 mm
Reduction 8 times

Interpretation-2

Maximum Velocity

Fixed Base 467.26 cm/s
 Isolated 44.06 cm/s
 Reduction 10 times

Interpretation-3

Maximum Acceleration

Fixed Base 3.0157 g
Isolated 0.386 g
Reduction 8 times

Interpretation

Reduction up to 8 times in the acceleration, velocity and displacement

In accordance with the most optimistic results from literature review (case of China).

Conclusions

- Innovative technique to protect buildings
- Not widespread use
- Significant Cost and Risk Reductions
- Successful Real life examples (USC, Kobe)
- > Standardization will improve proliferation
- > Simulation results in accordance with literature conclusions

- I-Mazzolani FM & Serino G. Most recent developments and applications of seismic isolation of civil buildings in Italy. Proceedings of the International Post-SmiRT Conference Seminar on Isolation , Energy Dissipation and Control of Vibrations of Structures, Capri, Italy, 23-25 August 1993: 71-110
- 2- Mazzolani FM .Passive control technologies for seismic-resistant buildings in Europe.Progress in Structural Engineering and Materials.Volume 3, Issue 3, Date: July/September 2001, Pages: 277-287
- 3- Zhou FL. Seismic isolation of civil buildings in the People's Republic of China. Progress in Structural Engineering and Materials. Volume 3, Issue 3, Date: July/September 2001, Pages: 268-276
- 4- Dolce M. Design guidelines for isolated buildings in Italy International Post-SmiRT Conference Seminar on Isolation ,Energy Dissipation and Control of Vibrations of Structures, Capri, Italy, 23-25 August 1993
- 5- Melkumyan MG . Seismic isolation of civil buildings in Armenia. Progress in Structural Engineering and Materials. Volume 4, Issue 4, Date: October/December 2002, Pages: 344-352
- 6-Robinson WH. Seismic isolation of civil buildings in New Zealand. Progress in Structural Engineering and Materials. Volume 2, Issue 3, Date: July/September 2000, Pages: 328-334
- > 7- Kelly JM . Base Isolation. Origins and Development. *EERC News*, Volume 12, Issue 1, January 1991.
- 8- Poole RA, Clendon JE. New Zealand Parliament buildings: seismic protection by base isolation. Bulletin of the New Zealand National Society for Earthquake Engineering1992: Volume 25, Issue 3, Pages: 147-160.
- 9-Boardman PR & Kelly TP. Seismic design of the Museum of New Zealand. *Technical Conference*. New Zealand National Society for Earthquake Engineering. 1993. Page 80.
- 10-Zongjian Lan et al. An Experimental Study on Seismic Responses of Multifunctional Vibration-absorption Reinforced Concrete Megaframe Structures. *Earthquake Engineering and Structural Dynamics*. Volume 33, Issue 1, Date: January 2004, Pages: 1-14.
- > 11-B.F Spencer Jr. Java Powered simulation for Base Isolation. *Multidisciplinary Center for Earthquake Engineering Research (MCEER)*. University of Illinois at Urbana Champaign.