Non Destructive Evaluation of Concrete Structures

Acoustic Methods: Diagnostics of Reinforced Concrete Bridges

May 11, 2004

Ray Kordahi

Overview

Introduction to NDE
Overview of Acoustic Emission
Reinforced Concrete Bridges & AE
Cases Studies
Analysis & Discussion
Conclusion

Nondestructive Evaluation

Techniques to assess concrete homogeneity and quality without disturbing or damaging the specimen under control.

NDE techniques are characterized as follows:
Active or passive
Surface (or near surface) or volumetric

Examples of NDE Methods

Visual Inspection

- 1st stage of concrete evaluation
- very useful but limited
- qualitative results

Rebound Hammer

- surface hardness test
- relationship between rebound number & concrete strength?
- quickest, simplest & cheapest NDE test

Examples of NDE Methods

Thermography

- technique to obtain an image distribution over the surface of an object due to temperature differences
- special camera with infra-red radiation
- damage & energy related condition of building
- Pachometer

locate bar position & cover thickness

Radiography

- high energy gamma-ray source
- check bar condition & void location in concrete

Acoustic Emission

It is a passive NDE technique

Acoustic Emissions:

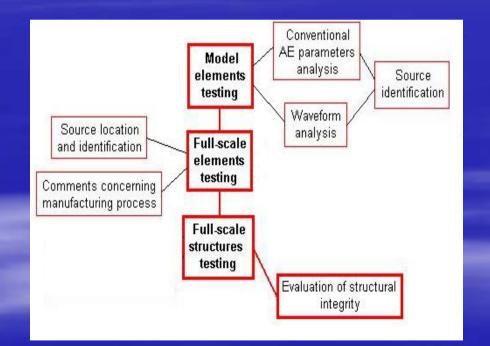
- stress waves caused by sudden internal stress redistribution
- detected by sensors
- location calculation

Acoustic Emission Parameters

- Arrival time
- Peak amplitude
- Rise-time (time interval between first threshold crossing and peak amplitude)
- Signal duration (time interval between first and last threshold crossing)
- Number of threshold crossings (counts) of the threshold
- Energy (integral of squared (or absolute) amplitude over time of signal duration)

Reinforced Concrete Bridges & AE

"31.4 % of our bridges are rated structurally deficient or functionally obsolete. It will require \$80 billion to eliminate the current backlog of bridge deficiencies and maintain repair levels." [ASCE 1998 Report]


Knowledge of current state of the structures is crucial to determine the best repair program taking into account availability of resources.

NDE: techniques that are fast, economic, reliable & non-damaging!

Reinforced Concrete Bridges & AE

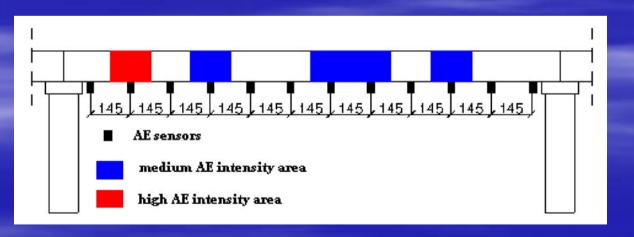
Not just if the bridge is damaged but also the extent of the damaged area.

Tests performed in the lab to have a better understanding of the AE parameters & AE test setup.

1- Bryte Bend Bridge

Location: I-80 traffic over Sacramento River
Structure: steel boxes, max. span 112.8 m
Problem: Active cracks
Test Setup: 6 sensors 375 kHz
Results: Comparison before & after repair. Less energy release

2- Oregon Bridge


- Location: I-5 traffic over the Columbia River between Portland Oregon and Vancouver Washington
- Structure: 2 separate bridge/ 3 lanes each 3,528 ft long each
- Problem: Crack activity, location of cracks
- Test Setup: 5 sensors 175 kHz
- Results: satisfactory results & conform with previous tests results

3- A-Bridge

- Location: unknown
- Structure: post-tensioned beams
- Problem: serious damages
- Test Setup: 12 sensors 55 kHz
- Results: high AE hits & energy release in one of the beam. Conform to visual inspection

4- B-Bridge

- Location: unknown
- Structure: pre-stressed beams
- Problem: determine location of seriously damages beams
- Test Setup: 12 sensors 55 kHz, zonal location performed
- Results: one of the beams was highly damaged & needed to be repaired

5- Aging Dock

- Location: unknown surrounded by water
- Structure: reinforced concrete bridge
- Problem: determine structural integrity of bridge
- Test Setup: 3 sensors @ full load
- Results: crack width 0.8 mm & high AE hits indicating serious damages due to corrosion of reinforcement.

6- Brandysek Bridge

 Location: R7 expressway between Prague & Slany

Structure: reinforced concrete bridge, 13550 ft

Problem: determine structural integrity of bridge

Test Setup: many sensors, 1MHz

 Results: no high frequency was found. Little corrosion. Results were verified when the bridge was reconstructed

Analysis & Discussion

5	Bridge	Structure	Location	Sensors	Threshold	Problem	Results
E	Bryte	R/C 112.8 m	Sacramento River	6 @ 375 kHz	33 dB	Effect of retrofit	High energy reduction
C	Dregon	2 bridges each 3,528 ft	Columbia River	5 @ 175 kHz	40 dB	Location of active cracks	Accurate results
A	Ą	Post-tensioned		12 @ 55 kHz	55 dB	Evaluation during loading	Bridge to be repaired or reinforced
E	3	Pre-stressed		12 @ 55 kHz	40 dB	Evaluation during loading	Presence of active cracks
A	Aging	R/C				AE activity in repaired vs. unrepaired	AE activity in some beams
-	Brandysek	Pre-stressed	Prague & Slany	1 MHz		Verification of results	No serious corrosion problem

Analysis & Discussion

- The threshold value is crucial to obtain accurate results.
- In most of the tests results were compatible with previous tests
- Additional tests required to obtain quantitative results

Advantages of AE

- Detects activities inside of materials that are active
- Direct contact with reinforcement not required
- Localization is made easy through time differential of signals
- AE monitors continuously in real time, thus security measures can be taken immediately

Disadvantages of AE

High purchase cost
Used for one project at a time
Other NDE methods are needed to provide quantitative results
Signal discrimination and noise reduction are difficult

Conclusion

Cheapest NDE method is visual inspection
 NDE gives valuable information about the quality of concrete if used properly
 Improvements to provide more accurate

results

References

- David W.Prine and Jerome E. Olesky, Acoustic Emission Monitoring of North East Bridge 1377A
 I-5 over the Columbia River, Portland, Oregon, BIRL Industrial Research Laboratory, May 1996
- David W.Prine, Acoustic Emission Monitoring of East Bridge 1377A I-5 over the Columbia River, Portland, Oregon, BIRL Industrial Research Laboratory, November 1994
- David W.Prine, Application of Acoustic Emission and Strain Gage, ASNT Spring Conference 1997
- H.L. Dunegan, Acoustic Emission Monitoring Of Fatigue Crack Growth In Bridges, The DECI Report, November 1998
- J. Rhazi, NDT In Civil Engineering: The Case Of Concrete Bridge Decks, May 2001, Vol.6 No.5
- Josef Stryk, Karel Pospíšil, Rebar Corrosion in Concrete Bridges and its Detection by Acoustic Emission Method
- Karel Pospisil, Josef Stryk, Marta Korenska, Lubos Pazdera, Selected Acoustic Methods For Nondestructive Testing, Non-Destructive Testing in Civil Engineering, 2003
- Leszek Golaski1, Pawel Gebski1 And Kanji Ono2, Diagnostics Of Reinforced Concrete Bridges By Acoustic Emission, Acoustic Emission Group, pp.83-98, October 2002
- Nippon Physical Acoustics, LTD., Acoustic Emission Monitoring of an Aging Dock, 2003
- R. Diederichs and E. Ginzel, Nondestructive Testing Encyclopedia, Vol.7, No.09, September 2002
- Taketo Uomoto, Non Destructive Testing in Civil Engineering, Elsevier, pp.273-291, April 2000
- www.asnt.org
- www.ndt.net
- www.deci.com