Design of Concrete Structures

Richard Unruh

1.541 Mechanics and Design of Concrete Structures

5/18/2004

1

Overview of Presentation

- **#** Introduction
- **#** Fiber Reinforced Concrete
- **#** High Performance Concrete
 - Admixtures
 - Pozzolanic & Cementitious Materials
- **#** High Strength Concrete
- **#** Case Studies
- **#** Conclusions

Introduction

Brief History of Reinforced Concrete

- Used by Babylonians
- Hydraulic Cement invented in 1756 by John Smeaton
- Portland Cement in 1824 by Joseph Aspdin
- R/C in 1849 by Joseph Monier

Recent Advances in Materials

- Fiber Reinforcement
- High Strength Steel
- New/Improved Admixtures
- Pozzolanic/Cementitious materials from industrial waste

Fiber Reinforced Concrete

3 Main Types of Fibers Used

- High Strength Steel
- Glass
- Carbon
- Used to replace/supplement reinforcing bars

Advantages & Limitations for Fiber-Reinforced Concrete

- # Improved Ductility
 (Steel Fibers)
- # Increased Compressive Strength
- # Low weight/strength
 ratio (CFRP)
- # Corrosion Resistance
 (GFRP & CFRP)

Expensive

- Different σ-ε behavior than concrete & steel
- **#** Brittle Failure (CFRP)
- Design criteria not well established

High Performance Concrete

Definition

 Any concrete whose properties have been modified to suit a special purpose

Applications

- Paving
- Fire protection
- Nuclear reactors
- High rise buildings
- Offshore structures
- Bridges

High Performance Concrete

Properties

- High compressive strength
- Extended lifespan
- Improved workability
- Accelerated or retarded set
- High corrosion resistance

Additives

- Chemical Admixtures
 - Plasticizers
 - Set Accelerators/Retarders
 - Air Entrainers
- Pozzolanic & Cementitious Materials
 - Fly Ash
 - Blast Furnace Slag

High Strength Concrete

Definition

- Compressive Strength greater than 6000 psi
- Lab production up to 60,000 psi
- Field production up to 20,000 psi (Petronas Towers)
- 19,000 psi for 2 Union Square in Seattle

Uses

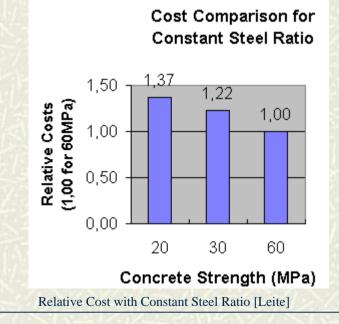
- High rise buildings
- Bridges
- Columns
- Shear walls
- Floor systems
- Foundations

High Strength Concrete

Benefits

- Reduced dimensions
- Reduced reinforcement requirements
- Material & labor savings
- Increase floor space and reduce floor-tofloor height

Limitations


- Loss of ductility
- Higher standard for field inspections
- Special placement & curing requirements
- Special material requirements

Case Study 1: HSC in Brazil

2 main reasons designers chose HSC

- Reduce dimensions fo heavily loaded columns in high-rises
- Economic solution to punching shear in flat slabs

Cost savings up to 37% over normal strength concrete

Case Study 2:FRC in Bridge Girders

- Test bridge is a small road bridge near Brescia, Italy
- Steel fibers added at 1% by volume
- Microsilica &
 SuperFlux added as admixtures

- Benefits of steel fibers included:
 - Bending strength (4X)
 - Tensile strength (1.6X)
 - Improved momentdeflection behavior
 - Increased toughness
 - Extended lifespan

Case Study 3: FRC in Anchorage Zones

- Fiber reinforcement tested for strengthening in posttensioning anchorage zones
- Goal: reduce
 congestion & improve
 concrete quality in
 these areas

- **#** 1% by volume to:
 - replace all secondary reinforcement with 5900 psi
 - Replace 79% with 4710 psi
 - Reduce secondary reinforcement with any compressive strength

Conclusions

HPC has applications in virtually any type of structure

- # HSC can allow for greater spans, smaller dimensions & reduced reinforcement
- # Applications include repair & rehab

Limitations must be understood

Codes need to be adapted & revised to account for differences in behavior

Selected References

Alagusundaramoorthy, P., I.E. Harik & C.C. Choo, "Shear Strength of R/C Beams Wrapped with CFRP Fabric", Research Report KTC-02-14/SPR 200-99-2F, University of Kentucky, Lexington, KY, August 2002.

Leite, Moacir, "High Strength Concrete in New Buildings in Salvador, Brazil", Leite & Miranda Assoc. Engineers, Salvador, Brazil

Nawy, Edward G., Fundamentals of High Strength High Performance Concrete, Longman Group, Essex, England, 1996.

Meda A. & G. Rosati, "Design and Construction of a Bridge in Very High Performance Fiber-Reinforced Concrete", *Journal of Bridge Engineering*, September/October 2003, ASCE, Washington, DC, 2003.

O'Neil, Edward F. & Charles A. Weiss, Jr., "Strength and Durability of Low Cost, High Performance Concrete", U.S. Army Engineer Research and Development Center High Performance Materials and Systems Research Program Information Bulletin 01-1, June 2001.

Yazdani, Nur, Lisa Spainhour & Saif Haroon, "Application of Fiber Reinforced Concrete in the End Zones of Precast Prestressed Bridge Girders, Summary fo Final Report", FDOT Contract Report No. BC-386, Florida State University, December 2002.