Freight Transportation III Transportation Management

> Carrier Systems 1.224 Fall 2003

> > Caplice

1

Transportation Management

MIT Center for Transportation & Logistics - ESD.260

Unified Planning & Execution Process

Transportation Planning

Objective

 Establish primary transportation modes, contract types, routing options to minimize total expected landed cost

Key Points

- Physical network (suppliers, plants, distribution centers) is likely already fixed
- Plan is run annually with quarterly tweaks
- Transportation plan limits what you can do in execution
- Approximate approaches are acceptable, but we have lots of time so why not optimize . . .

Decisions – Mode Choice

	Additional Choices
Mode Choice Criteria	Types w/in Modes, e.g. Trucking
Feasibility	 Truckload
Service Standards	 Less-than-Truckload
	Parcel
Length of Haul	 Expedited versus Standard
 Product Characteristics 	Intermodal / Multi-Modal
 Shipment Characteristics 	Dual-Mode Strategies
Trade-offs between	 Air & Ocean
- Sorvico va Cost	 IM & Truck
	 LTL & TL
 Inventory vs Transportation 	Air & Parcel

Mode	¢/ton- mile	Transit Time	Reliability (absolute)	Loss & Damage		
Rail	2.28	3	4	5		
Truck	26.19	2	3	4		
Water	0.74	5	5	2		
Pipeline	1.46	4	2	1		
Air	61.2	1	1	3		

8

© Yossi Sheffi & Chris Caplice, MIT

Decisions – Contract Type

- What type of relationship do you need to establish with your carriers?
- Continuum of relationships from one-off to ownership
 - Ownership of Assets versus Control of Assets
 - Responsibility for utilization
 - On-going commitment / responsibilities
 - Shared Risk/Reward Flexible contracts

Spot Market	Alternate Carriers	Core Dedicat Carriers Fleet	ed Private Fleet
	Use for random & distressed traffic	Use for most reliable and steady flows	
MIT Center for Transpo	rtation & Logistics - ESD 260	0	Vacci Choffi & Chris Caplico MIT

Decisions – Routing Options

Strategic plan establishes the potential options that can be taken in execution

Network Consolidation Archtypes

Transportation Modeling

Inputs:

- Demand forecast (transaction level data)
- Carrier tariffs, rates, capacities, & service levels
- Business constraints
- Equipment and facility profiles
- Potential routing / carrier options

Analytic Engine

Outputs:

- Total transportation costs
- Mode selection
- Fixed routing and itineraries

15

Recommended sailings

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

Transportation Modeling

Example: Two clients ship product to Rotterdam. There are rail and truck options to multiple ports with various ocean carrier options.

Three Layers of Networks

Physical Network: The actual path that the product takes from origin to destination. Basis for all costs and distance calculations – typically only found once.

Operational Network: The route the shipment takes in terms of decision points. Each arc is a specific mode with costs, distance, etc. Each node is a decision point.

Service Network: A series of paths through the network from origin to destination. Each represents a complete option and has end to end cost, distance, and service characteristics.

Transportation Modeling

Transportation Options

- Carrollton ISO tanks can move via truck or rail to Charleston or Savannah
- Kingsport ISO tanks can move via truck or rail to either Norfolk or Charleston
- Each port has two sailing schedule options to Rotterdam

Transportation Modes

- Each mode is modeled with:
 - Variable & fixed costs
 - Service and capacity levels
 - Sailing schedules (day of week or fixed day)

Potential Scenarios

- Run each company separately (Baseline)
- Run combined operations (leverage volume discount out of Charleston)
- Introduce new security process at ports impact of a one day delay
- Relax delivery windows (measure potential cost reduction)
- Force a 2 port solution (minimize risk of port closure)
- Force an all bulk truck solution
- Explore option of running a dedicated fleet for linehaul or drayage
- Increase demand by 20% on certain lanes

Transportation Modeling

Task: Procurement

Multiple Levels of Procurement

Strategic

- Looking at entire or large portions of network
- Detailed analysis value focused
- Encourages use of sophisticated carrier proposals
- Considers trade-offs between service and cost

Tactical

- Collecting rates for some lanes from a few carriers
- Minimal analysis efficiency focused
- No sophisticated proposals from carriers

Execution

- Collecting spot rates for a specific load
- Private / public exchanges
- Considered component of execution system

21

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

Transportation Is Different

- Multiple controlling economics, not just scale
 - Economies of scope
 - Economies of density
- Multiple dimensions to transportation services
 - Cost alone is very rare (believe it or not)
 - Transit time, loss & damage, EDI, tracking
- Forecasting transportation is difficult
 - Exceptionally disaggregated spatially and temporally
 - Derived demand
- Complex administration
 - Typically decentralized decision making
 - Two tiered buy (contract and tender) not always linked

22

Procurement Process

What is it that you are bidding out?
 Historical summary & forecasted analysis
 Carrier performance from historical files
 Identify high surge lanes
 Seasonality analysis

Identify potential changes to network

What is a lane?

MIT Center for Transportation & Logistics - ESD.260 © Yossi Sheffi & Chris Caplice, MIT

♦ What is a lane?

What is a lane?

What is a lane?

Forecasting

- Forecasting is a prerequisite to any procurement process
- Transportation requirement forecasting is particularly difficult:
 - It requires disaggregate forecasting
 - By lane, season (also weekly, monthly quarterly variations), equipment, type of load (hazmat?)
 - It is volatile
 - Almost any system change will affect transportation needs
 - Most ERP systems do not have an integrated transportation requirement planning module

29

Consequences of Bad Forecasting

- A good forecast requires a manual process based on network adjustments beyond a statistical forecast
- Continuous contract adjustments are needed throughout the life of the contract
- Contracts are not binding
- Requirements for alternate winners and an exception/rejection management process

30

Carrier Analysis

How do carriers determine their pricing?

- Usually Poorly
- Typical Practice
 - Start with historical rates and modify based on market
 - Sales typically trumps operations

31

- GIGO
- Limited time to analyze
- Hope to win the business through relationships later (lose the bid, win the business)

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

Traditional Practice

Traditional Practice

Tradtional Practice

Combinatorial Bidding

Packaged Bids

Multi-attribute Procurement

♦ Lane attributes

 <u>Solution</u>: use "generalized cost" with proper weights for LOS and other attributes in the optimization

 <u>Solution</u>: introduce constraints reflecting the business rules that one wants to impose

38

System Constraints

"More than one carrier serving the network."

				Carı	rier"]	Best"							Carr	ier "I	Fast"			
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#1	#2	#3	#4	#5	#6	#7	#8	#9
A→B	1				1		1		1	1				1		1		1
B→C		1			1	1		1	1		1			1	1		1	1
С→А			1			1	1		1			1			1	1		1
C→B				1				1					1				1	
Bid	500	500	500	475	975	950	975	900	1325	525	525	475	525	1000	925	925	900	1375

\$900 + \$925 = \$1825

39

Re-running the optimization with additional constraints: "what if" analysis

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

Scenario Management

MIT Center for Transportation & Logistics – ESD.260 42 © Yossi Sheffi & Chris Caplice, MIT

Scenario Management

OBB Companies

- •First optimization based bid Reynolds Metals 1990
- •First combinatorial bid Sears 1993 (Ledyard et al)
- •First commercial software PTCG 1997
- •As of 2003
 - •>10 software vendors in space
 - >100 companies run >200 OBBs

47

- >\$20 billion of annual spend
- •Savings range 2% to 20%
- •TL, LTL, Ocean, Air

MIT Center for Transportation & Logistics – ESD.260

Lessons

 Strong economies of scope (requires conditional bidding). Multi-attribute evaluation process (requires generalized "costs" and system constraints). A difficult forecasting problem (non-binding contracts). A burdensome administrative challenge (requires a single round process). 	 Allows carriers to achieve better economics. LOS can be handled rigorously. External conditions can be incorporated. Allows for special forecasting methods. Allows one-round process - preferred to multiple rounds (but requires optimization). Automated administrative process.
MIT Center for Transportation & Logistics – ESD.260	© Yossi Sheffi & Chris Caplice, MIT

Lessons

MIT Center for Transportation & Logistics – ESD.260

Task: Execution

- Move products from initial origin to final destination is most cost effective manner while meeting service standards
- Most shippers use software systems (Transportation Management Systems)
- TMS works within strategic plan, procured carriers, and real-time information

How Does a TMS Generate Value?

MONITOR

V	isi	bi	lit	V

- Improved communications efficiency with all trading partners
- Reduced levels of safety stock inventory.

EXECUTE

• What is the current status of your PO's/orders/shipments?

Automation

- Reduces resources, cost, and time to accomplish activities
- Allows user to manage the exceptions
- Minimizes maverick/rogue behavior and human error

Decision Support

- Provides dramatic cost reductions and efficiency gains
- Make the 'business optimal' decision at every stage of the process

51

Assist logistics professionals in making decisions

PLAN

RECONCILE

Execution Considerations

Considerations

- How do orders drop? Batched vs Continuous?
- How much time is allowed between drop and must-ship? Weeks? Days? Hours? Minutes?
- What percentage of orders change after release?
- How do they change? Quantity? Mix? Destinations? Timing?
- What is the length of haul?
- How many orders are "in play" at any time?

Key Decision Support Decisions

- Carrier Selection
 - Routing and Rating
 - Routing Guide Compliance
 - Continuous Moves
- Consolidation & Routing
 - Postponement of shipments in time
 - Vehicle consolidation (LTL to TL, Parcel to LTL)

Note on Rating vs Routing

Separation of Rating Engine and Routing Guide

- Older systems do not make this distinction
- Carrier selection (routing guide) hardwired into rating engine
 - Limits the flexibility and potential new carrier options

Consolidation & Routing

Find lowest cost routing of orders through consolidation in time, on vehicle, or through facilities.

Most TMS software contains consolidation or optimization modules

National Atlas of the United States, December 8, 2000, http://nationalatlas.gov

MIT Center for Transportation & Logistics – ESD.260

Multiple Vehicle Scheduling Algorithm

MILP, Set Covering, Column Generation

		Route 1	Route 2	Route 3			Route M	
		C1	C2	C3			Cm	
	Stop A	1	0	0	1	0	1	1
	Stop B	1	1	0	0	1	0	1
- - -	Stop C	1	1		1	0	0	1
	Stop D	0	1	1	0	1	1	1
	Stop E	0	0	1	1	0	0	1
- 	Stop F	0	0	0	0	1	0	1
	Stop G	0	0	0	0	0	1	1
		0	0	0	0	0	0	1
		0	0	0	0	0	0	1
	Stop N	0	0	0	0	0	0	1
•Ea	ach Row	represe	nts one o	of the N s	tops	lo routo	and its of	
•⊏c				yenerate				
•Ea	ach matri	IX COeffic	cient, a _{ij} ,	IS {0,1}, I	dentifyi	ng the s	stops on t	he j'th route
•De	efine Z _{ii} ,	{0,1}, "1'	' if Stop	"i" is on R	oute "j"	, else "	0"	
•De	efine Y.	(0.1}. "1"	if the su	$m of Z_{::} >$	0. i=1.	n : else	e "0"	
•Mi	nimize: t	he sum	of $C_j Y_j$,	, j=1,m	- , ,	, ,		

•Subject to: the sum of $a_{ij} Z_{ij} = 1$, j=1,m; tor all i

Optimal Routing Solution

Heuristic Approach – Savings

Clarke-Wright Algorithm

Heuristic Approach – Cluster & Sweep * * * * * * * * * * * * * * * * * *

62

MIT Center for Transportation & Logistics – ESD.260

© Yossi Sheffi & Chris Caplice, MIT

Regardless of Approach

Rules of Thumb

- Good routes are "rounded", not "star shaped"
- Good routes don't cross themselves or others
- Good sectors are "pie shaped", not "checker board"
- Good solutions "look like a daisy"
- Good Practice Tips
 - Always use a Preview-Analyze-Review methodology
 - Periodically visit the internal logic within the TMS
 - Never discount the salty expert who has been doing this longer than you've been alive
 - Identify all special conditions (customer A must be delivered to first) and then validate or reject them

Questions

67