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Thereare g; equations relating the member forces and the joint displacements,
Also, there are ij equilibrium equations relating the external Jjoint forces and
the member forces. The formulation is consistent, i.e., the number of equations
is equal to the number of unknowns. Ifn 7 = 1, the system is said to be statically
determinate since the force unknowns can be determined using only the equi-
librium equations. The difference, N~ 1j, is generally called the degree of
static indeterminacy, and represents the order of the final system of equations
for the force method. For the displacement method, the fina] system of equations
are of order n,. In what follows, we first establish the member force—joint
displacement relations by generalizing the results of Sec, 15~12. Then, we

assemble the joint force-equilibrium equations. Finally, we introduce the joint
displacement restraints,

17-2. MEMBER EQUATIONS

The reduced member equations were developed in Sec. 15-12. For conve-
nience, we summarize the notation and equations below (see (15-100)):

Z = member force matrix (g, x 1)

Fy=EZ + G (i x 1)
Thy= —~F  — A g
= =P %o — TG ~ Iy EZ
f" = member flexibility matrix (i x i) (a)
f, = reduced member flexibility matrix (¢, x g,) = ETf"E

g

= member deformation matrix (% i) =y — gy T,
7", = initial member deformation roatrix (ixi)y=v"4 G
L2 = ET(4 — 4 )

i

These cquations include the effect of partial end restraint, internal force rcleases,
and reductions due to Symmetry or antisymmetry. We can also use (a) for
complete end restraint by sctting F = I, and G = 0.

Now, we introduce new notation which is more convenient. First, we note
that G contains the end forces at B due to the external member loads acting
on the primary structure defined by 7 = 0. Also, — 7 | — X%4G are the
end forces at 4. Then we write

g —_

Tro=G (17-3)

%A,o = _5;71.0 - %‘III;AG
Next, we note that the equation rclating Z and LA L ds a compatibility
requirement. The term £.Z + ET2" , is the relative deformation in the positive
sense of Z due to the member loads and the member redundants, Z, whereas
ET¥™ is the relative deformation in the negative sense of 7, due to support
(joint) movement. The net relative deformation must be zero for continuity.
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Then, we define |

o~ = reduced member deformation matrix (g, % 1)

r N i
— Ty = ET — XU | 14
o = reduced initial member deformation matrix (g, x 1)
ro

_ gy, = B’ + 1'G)

With this notation, the member equations take the form

Fn =%, +EL s
Fr = Fho— XpabL o
=, + §2 = ETWU% =5 AUy
We generalize the relations for member 1 by setting
= A=n_
- (17-6)

E = E, Z =17,
g oA = f,=f
gl‘llli/i:’%‘:+n_ :%: ﬂl’/‘r: Vr.n / ro — /ro,n r ron
ed to the global frame, we must transform

i joi antiti referr
Since the Jolnt &0 displace from the member frame (frame n) to the

the end forces and displgcements
global frame (frame 0), using
. 07[” — gﬁl)no]lo (b)

gi‘u = __‘%on, Tg'in
The final equations follow.

Member Forces——End Forces

Fo, = (R TENLy + T 17-7)
g,"f:o = w(gzon. T%.;:En)z‘n + 3"‘?;_.0

n.’

Member Forces—Joint Displacements (4, Equations)
nt/r n = 'Vro.n + fr, nZ‘n ] . (17*8)
" Iy, — (B TRV

i i ", 1 -order tensor
The force translation transformation matrix, %, is a second-or ,

i.e., it transforms according toT

I = R T grrgRar (a)
where p and g are arbitrary orthogonal frames. Then,
&L = X = AR (17-9)
i that )
and it follows S . o

n, T gpor . g on, T
%‘u ‘% - ‘? 'In

t See Sec. 10-2.
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Fr. =T o~ TUR™"TE,)L,
Vo = (ESRNUL, — X7 U )

ny

Using (17-10), we can express Z2_and ¥, , as.

(17-11)

We prefer to work with &) since it is a natural property of the member whereas
' depends on the selection of the global frame.

17-3. SYSTEM FORCE-DISPLACEMENT RELATIONS

Equation (17-8) represents the g, force-deformation relations for member n.
By defining general flexibility and deformation matrices, we can express the
complete set of g, member force-deformation relations as a single matrix
equation. We let

Z

i

total member force matrix {g x 1)
{Zb Zly R Zm}

+” = total reduced member deformation matrix (gr x 1)
= {n{/‘n 1 nl/r, 2500 "//‘r, m}

I

+", = total reduccd initial member deformation matrix (gr x 1)
= {7 o, 15V v0, 20> ¥ vo,m) (17-12)
f = total reduced member flexibility matrix (qr X g7)
f1
== fr' 2
. 0

Note that { is quasi-diagonal, symmetrical, and positive definite. With this
notation, the g, force-deformation relations are given by

V=Y, Iz (17-13)

It remains to generalize the deformation-displacement relations.

We define % as the total joint displacement matrix referred to the global
frame.
(tix1)

= {3, U, ..., U} (17-14)
and express ¥~ as
: V= AU (17-15)
The partitioned form is
LA I PO BTN I VA Y i

Vo2l _ | H ’91.2.2 : L M_g; (17-16)

o

l

' i




558 GENERAL FORMULATION—LINEAR SYSTEM CHAP. 17

ber n. The submatrices in row nare of ord§r
that there are only two non-zero elements 10
_ The assembly of o7 is defined by

Row n of o corresponds to mem
q, % i. Now, we see from (17-8)
row n and they are at columns ., i1
Mnm, — E:‘@on
S = BT ((7-17)

T
. E,?;{/ ong‘g'

i

'«dm:(}
S:#n'%)n'-—
5'-:_'1,2,.,.,j

0= 1,2,...,”1

It is of interest to express .o in factored form. First, we define the following

matrices: U, = U, U, U, (ImX 1)
o = U W} )
'Qal
02
R = 2 ) (im x im)
L pZG"i
B,
. E% im % ) (17-18)
| E,
£ ]
2
X = %2‘ (im x im)
L L
0 N
[
Qe = g‘r%. (im x im)
L X |

Using this notation, the expression for ¥~ takes the form
v = ETRU . — ETXTRAU - : @
= ETRU, — XU )
Next. we relate % ., ¥ - to %, using member-joint connectivity matrices for
the positive (C.) and negative (C-) ends:
Ly = C. (17-19)
Y =C.%U
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Note that rows nof C ., C_ correspond to member n. There is only one nonzero
element in a row. FFor row n, we enter +1; in column n, of C, and column
n. of C_. Finaily, combining (a) and (17-19), we have

Vv = (ETRC, — E"ATRC_)YU

= (ET®)C, — Z>TC_)u (17-20)
and it follows that
= 7 — ETTRC ..
o = ETRC, — ETXTRC (17-210)

= E"A(C, — X~7C)
For an ideal truss, (17-21) reduces to (see Equation 6—-28)
o =ao(C, — C.) (b)

where o contains the direction cosines for the bars.

17-4. SYSTEM EQUILIBRIUM EQUAT!ONS

We have used the member force-equilibrium equations in developing the
member force-displacement relations, so it remains only to satisfy equilibrium
of the joints. There arc i equations for each joint, and a total of §j equations.
The expressions for the end forces in terms of the member forces are given
by (17--7). Assembling the joint force-equilibrium equations involves only
summing at each joint the cnd forces incident on the joint.

We define £ as the total external joint force matrix referred to the global
frame:

P = PP ..., P} (17-22)
(ijx 1)
and #7; as the initial (Z = 0) joint force matrix:
Py = P Py P (17-23)
(ijx 1)
The elements of 2; are the joint forces due to external forces acting on the
members with Z = 0. We express the complete set of equations as

74 (Zia] [Bu | B | | Bl (L

Pz P By | B T Bl 12

e R G T e B e SN (17-24)
: : L :

g/)? - (I),j, %jl } @jZ ’@jm Zm

We assemble 22, and 4, working with successive members. The contribution
of member n follows from (17~7):

In f’?["

7e. in row n, (17-25)

Fo o in row n_
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560
Column n of 8:
Byon = R""E,
%n_n = _@on, T'Q:‘ZEM [17_26)
= —XR"E,
'%su =0
S % Ny, N
s=12,...,]
Comparing (17-26) with (17-17), we see that
B =" (17-27)
We let _ B B !
'-0/::*',0 = {‘-g];}.,n 9:;%...7 9'0{7::1”} (17_28)
F =TT, T
Then, we can express &, as
?, =C R F ., + CTR" % _ (17-29)

17-5. INTRODUCTION OF JOINT DISPLACEMENT RESTRAINTS;
GOVERNING EQUATIONS

The governing equations for the unrestrained system are

P =P+ BL=P + AL (17-30)
o =, + FL = AU

Now, we suppose r joint displacements are prescribed. We rearrange QU so
that the prescribed displacements are last. We also rearrange 22 and 2

U‘ (nax 1)
U U = o=

U?_ (rx 1)
(P maxd (17-31)
‘@QP"—{PZ} (rx1)
, P (] (axh
P—Pr= i‘v’l’; (rx1)

where U,, Py, and P, are prescribed. We use B, A to represent the rearranged
forms of 8, A :

(g X na) (qz *r)

o —-A=[A | A

Bl B A{ B (na xq7) (17—32)
BoB=1"g I T AT exa
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Finally, we write the equations for the restrained system as

P,=P,, +BZ=P, +AlZ (neqs) (17-33)
P2 = PI,Z -+ BZZ = PI,Z + A;Z (r eqS.) (17"‘34)
v =12 + v, =AU, + A,U, (qr €qs.)

_ 17-35

The unknowns are the gr member forces (Z), the n, displacements (U;), and
the r reactions (P,).

If the restraints are parallel to the directions of the global frame, the trans-
formation of &7 to A (or £ to B) involve only a permutaticn of the columas of
&7 (rows of Z8). The same permutation is applied to the rows of 22,.

Suppose joint ¢ is partially restrained and the restraint directions do not
coincide with the global frame directions. We first transform the force and dis-
placement matrices for joint ¢ from the global frame to the restraint frame, using

U = R T

: (17-36)
P = ROP,

This step involves postmultiplying column g of .o by #°* T and premultiplying
row g of #;, B by Z°%. We write the transformed equations as

P =P+ BL

V= A, + L = AU a7=37

where the superscript J indicates that joint forces and displacements are referred
to local restraint frames. The final equations are obtained by permuting the
columns of 77 (rows of #’), the rows of 22/, and then partitioning.

The transformation of % to U can be expressed as a matrix product,

U = D% = R U (17-38)
where Z°’ contains the rotation matrices for the joint restraint frames,
_%01
%02
R = - (17-39)

el

and I is the row permutation matrix. One can generate IT by starting with
I and permuting the rows according to the new listing of the joint displace-
ments, ie., with the prescribed displacements last. Now, D is an orthogonal
matrix,
D! = D7 (17-40)
Then, ’
U = D'U

P - DP? (@
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and it follows that

PI = D@]
A = /DT (17-41)
B=AT=Dx» '
The partitioned forms are obtained by partitioning D
Dl (ny X ijy
= |- 7-42
D [DZJ (r=ijf} (1 . )

Finally, we can write
A; = oDF = BY

- T _ pT
A, = /D] = B! (17-43)
PI, y =Dy
P, , = D2,
To determine the requirement for initial stability, we consider (17-33),
B,Z =P, - P,, (a)

which represents n,; equations in g, unknowns. For the cquations to be con-
sistent for an arbitrary loading, the rank of B, must equal n,. Therefore, the
stability requirément for the system is

By =1A) =ny (17-44)

Since B is of order n, x ¢y, 2 nccessary but not sufficient condition for stability
is

Gr>ng =14 —r (17-45)
Equation (17-44) is the stability requirement for a geometrically linear system.
It is also the initial stability requirement for a geometrically nonlinecar system.
In the next chapter, we develop the stability criteria for a geometrically non-
linear system subjected to a finite loading.

17-6. NETWORK FORMULATION

In the formulation presented in the previous articles, we worked with the
actual joint displacements and cxternal joint forces referred to the global frame.
The governing equations are given by (17-30), which we list below for
convenience:

P =P+ AL @
V=", + {1 = AU
where
A = (ETRNC, — x>7C_) ®)
P = CTQ?”” W+ "R T
One assembles o, 2}, using (17-17), (17-25), which are actually the expansions
of (b). By introducing new joint variables, we can express .o7 in terms of only one
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connectivity matrix, C, — C_ = C. The rule (17-17) for assembling o7 still
applies except that now 7, = —.f

m- .

Let Y denote some arbitrary point. Suppose we express the actual force and
displacement matrices for joint k in terms of their equivalents at point Y
We define .

Py = slatxcdlly equivalent force at ¥ due to 228, the
actual force matrix at joint k.
sy, = displacement at ¥ duc to rigid body motion about (17-46)
Jomt k.
The actual and equwalem quantities are related by
P = Xy
U = Ay, (47=47
where '
wo _ |4 0
A kY XZY l[)
. h,O“_ LTl X | (d = o) outof
Xty = | GE =5 [ Sty gy | plane (79
(sz - X¥3) f (xk1 — x3y) ! 0
1
planar

We could operate on (b), but it is more convenjent to start with (17-11):

Von = (ETRNU, ~ X0 T (©)
Now, by deﬁnition,
o Xy =X .. ‘ @
Substituting for U{, using (17-47), and noting that
AL A =
we obtain ' o ©
(E){ @0"‘9"»14}’)(0]/?/ ne I/ n-) (17'48)
The remaining steps are the same as followed previously. We let
Uy = {US |, U, ..., WU . -
and er'te Y { Y, 1 Y, 2 Y, }} (17 49)
V= oAUy (17-50)
The generation of .7 follows from (17-48). For now n,
| Ay m, = =y = EIRL, (17-51)
M}’,ns =0 ((Iu x 1)
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To express ofy in factored form, we let

gy o
e S 4
x°, = ’
+ = A2, ¥

(im % im) (17-52)

oy'o
A me Y

Then,
aly = ETRXT(C, — C.)

. 17-53)
= E"RX%"C (

We transform the joint forces, using (17-47), and write the resulting equations
as
@y[ + &i; Z
Vo, + L = o Uy

To relate corresponding terms in (a) and (17-54), we generalize (17-47):

Py
v

I

(17-54)

Il

Py =LnP (17-55)
U = XUy
Xiv
Jr = Zoy. (i x i)
xe,
It follows that oly = AXT (17-56

0 gp
Pyr = EnPr

The expression for o7y reduces to (17-53) when (d) and (¢} are introduced.

The formulation developed above can be interpreted as a network formula-
tion since the connectivity term appears seperately in the factored form of 7.
A simplified version which does not allow for member force releases has been
presented by Fenves and Branin (see Ref. 1). The only operational advantage
of not working with the actual joint quantities is in the generation of .o7,,,, and
&/, . This advantage is trivial compared to the additional operations required
to generate Py, Py, to introduce the displacement restraints, and finally, to
transform %y to % once the solution is obtained. Another serious disadvantage
is that the equations tend to become ill-conditioned.

Fenves and Branin’s primary objective was to show that the governing
equations for a member system can be cast in a form such that geometrical and
topological effects are separated, i, a network formulation. DiMaggio and
Spillars (Ref. 2) have also presented a network formulation for a rigid jointed
member system. Actually their formulation is a special case of our first formula-
tion. It is not, strictly speaking, a true network formulation since connectivity
is not completely separated from geometry (see (17-21)). The only way that one
can separate connectivity from geometry is to redefine the joint variables. Note
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that the ideal truss is an exception. Connectivity and geometry are naturally
uncoupled for this system.

Whether one interprets the governing equations for a member system from a
network viewpoint is of academic interest only. In the displacement method,
the equations reduce to the equations for the direct stiffness method. The
only possible advantage of the network interpretation is in the force method.
There one can use certain concepts of the mesh methodt to select a primary
structure, provided that there are no member force releases or partial joint
restraints. However, the selection of a primary structure for a rigid-jointed
frame having fixed supports is quite simple, and even this advantage is debatable.

17-7. DISPLACEMENT METHOD

The governing equations are given by (17-33), (17-34), and (17-35). Once
the member forces are known, we can find the reactions from (17-34). Now,
we start by solving (17-35) for Z in terms of the displacements,

Z = Z[ + kAl.Ul + kAzijz

where (17-57)
Z.; = initial member force matrix (gyr x 1)
= =KV, = {—Kk. 0 s} (17-58)
k = f~! = reduced member stiffness matrix (g7 X ¢r)
f;{ kr. 1
- f,:% . kr, 2
. f:'f! . kr. n

Note that k is quasi-diagonal, symmetrical, and positive definite. The matrix,
Z.,;, contains the initial member forces duc to external loads acting on the
members and initial deformation resulting from fabrication errors or tempera-
ture changcs.

We substitute for Z in (17-33) and write the result as

Fl = Fo.l + K11‘U1 + K;zﬂz (17—59)
where
K = ATkA, (ng x ny)
K12 = A{kAZ (”d X r)

— — 17-60
Po, 1= PI,l -+ A’{‘Z] (”(1 X 1) ( )

The clements of P, ; are the joint forces due to the initial end forces. Since
A, is of rank n, (when the system is stable) and k is positive definite, it follows]

T See Sec. 9-5.
1 See Prob. 2-18.
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that K, is positive definite. Conversely, if K, is not positive definite, the system
is unstable. The joint displacements are determined by solving (17-59) and the
member forces are obtained by back substitution in (17-57).

Operating on the restrained equations, as we have done above, is not cfficient
since the various coefficient matrices must be generated by matrix multiplica-
tion. By first manipulating the unrestrained equations and then introducing
the displacement restraints, one can avoid any matrix multiplication. This
procedure corresponds to the direct stifiness method.

Operating on (17-30), we obtain

7 =17, + kodU (17-61)
and
. T T g
=P, + HU

Equation (17-62) is identical to (16~8). The generation of 2, A~ reduces to
{16-9), (16~10) when we introduce the factored forms of 2, o7, Z,;.

First, we review the definitions of the member stiffness matrices, k3, ,,,
kS, ., ki_... The effective member stiffness matrix (sce (16—104)) has been

defined as

kg, n = Enkr, nEZ (a)
Transforming k to the global frame and applying (16~ 107) leads to
. k‘e’. .= %(m, Tk:' 11\%0" . (b)
= (ETR")k,, (ETR")
and
kﬁ+n+ = kg n
k. = -k &n"
R ©

ki . =k, T
Now, substituting for .o/ using (17-21), the expression for A~ takes the form

KA = (C, — CTak(C, — &> "C) (d)
where

k; = (ETR)"k(E" ) (17-63)
Finally, we expand (d):

A = CLkC, + CL(—kZs ")C-
+ CL(=keZs )TC, + CL@ k2™ NC.-
One can easily show that (17-64) reduces to (16—10) when the properties of

C ., C_ are taken into account.
The initial end actions for member n are}

57;)1.“ i = R T‘a»/:;:h- o + (‘»%0“’ TEH)(_‘kV, ud//nro, n)
10;;;71_, i = ’@O"’ T'g’jﬁ_, o %‘z@(m’ TEM( - kr, nnf/‘ro. n)
t See Eqgs. (17-7), (17-8), and (17-11).

(17-64)

(©
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Using the factored forms for Py, o, and

ooin Z;, the expression for P, takes the

Py =CiR"F, , + CTRTF _
+ (CL — CLa)YRTE(~kv") (17-65)

The general form of 2, defined according to (16-9) is
' Py =CLT  + CtZz . (17-66)

Substituting () in (17-65) results in (17-66).
In Sec. 164, we presented a procedure for introducing joint displacement
restraints and represented the modified equations as

AU = P (ijegs.) ®

Now, (I) consists of (17-59) plus r relations for the prescri i
biai ’ AL escribed displac .
We obtain (f) by starting with p isplacements

.Kll_.LwP_ _QL - P, - Po,l - K,0,
RN 8 DITS S B ®

and permuting the rows and columns. This operation can be represented in
terms of the permutation matrix, I, defined by

U =’
g)l —_ H}'P (h)
Then,
A HTB(«~‘3 %w%-]n |
P5 =17 {?i_t..g’;}: :;_Kii@?.} (l)
U,

It follows that J£™* is positive definitc when K, is positive definite, i.e., when
the system is stable. S

17-8. FORCE METHOD

We start with the governing equations for the restrained systeni:

. B,Z=F, -P,, (n, egs.) @
BiU, +BiU, =" = 4", +1Z (g, eqs) (b)
P, = P; . + B,Z (r egs.) (c)

quation (a) represents n, equations in gr unknowns where g = n, Also
B, is of rank n; The system is statically dcterminate when qr = n,; We let
qr be the degree of static indeterminacy, ie., the number of member force
redundants:

Ar = 4r — Ny (17-67)
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Since By is of rank n,, we can solve (a) for n, member forces in terms of the net
prescribed joint forces (P, — P; ;) and » member forces. The compatibility
equations for the member force redundants are obtained by eliminating U,
from (b). This is possible since (b) represents g, equations whereas U, is only
of order ny x 1. In the next section, we specialize the principle of virtual forces
for 2 member system and utilize it to establish the compatibility equations.

We suppose the first 1, columns of B, are linearly independent. If the system
is initially stable, the member force matrix Z can always be rearranged so that
this condition is satisfied. We partition Z after row ny:

Zp (nd x ij)
Z =z, 17-68
{(gr x 1) {ZR} (qr x 1) ( )

The elements of Zy are the force redundants for the system. We refer to the
system obtained by setting Zz = 0 as the primary system. Continuing, we
partition B; and B, consistent with (17-68):

(na % qr) (na x ng) (na X gr)
B, = [ Bi»r } Bix ]
| (17-69)
B, = [ B,p I Bag ]
(r X qp) {r xng) r xqpr)

The equilibrium equations take the form
BpZp =P, — P,y — BixZyg (17-70)
P, =P; , + B,pZp + ByrZy (17-71)
We write the solution of (17~70) as
Zp =Zp , + Zp gy (17-72)

The force influence matrices can be expressed as
(max1)

Zp,, = (B;p) ' (P, — Pp o) (17-73)

(na % gRr)

Zpx = —(Bp) "Bz

but it is not necessary to determine (B,p)~!. Actually, the solution procedure
can be completely automated.t The complete solution for 7. is

(gr X qRr)

Zp Z
7 = {ﬂ._a;‘?_} + l:_,f;’i{l Zx (17-74)

Note that the member forces due to Zj are self-equilibrating, i.c., they satisfy
B,Z = 0. Finally, we substitute for Z, in the expression for P, and write the

result as
P, =P, ,+ P, xZs (17-75)

T See Sec. 9-2.
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where
(rx1)

Pyo=Pr,+ByZ,

Prr =By + B:rZp r
(r X qR)

(17-76)

It remains to determine Zj.

Equation (b) represents ¢, equations in n, unknowns, U i Since gy = ny +
qr there are g excess equations. We partition (b) consistent with the partioning
of Z,

B, BL ] (7 4 :
B}.ﬂ U, + [;f_J 0, = el ol e | fon ] (Ze]
1R Bix *r ¥ ok for 1 fre | (2
and obtain the following two sets of equations relating to Uy and Z:

B, U, + B?Tp_ﬁz = Vp =" + tpplp + Ty (nyeqs) (17-77)
B:U; + Bl U, = 47 = Vor + Trrlp + frrZr (qr €qs.) (d)

Thp J:oint displacements can be determined from (17-77) once Zj is known.
Eliminating U, from (d) leads to
Pl RU, = #'5 + Z; 7 p :

Vor + irZp + fepZy + 25 o7, p + fppZp + frrZiz) (17-78)

il

Equation‘(17~78) represents the compatibility equations for the force redun-
dants. Finally, we substitute for Z, using (17-72) and write the resulting
equations as
f, 7z = A ' (17-79)
where
@r X qr)

{70 = fre + Zg pfppZp x + ZL gfpr + (ZF, wfpp)”
(qr x 1) o - .
=P R0, — (¥, p + forZp o) — L ((¥ ) p + fppZp,,)
These equations are similar in form to the corresponding equations for the

ideal truss developed in Scc. 9--2.
The flexibility matrix, {,,, can be expressed as

£, - [%i’»JLJT [.f:I%F_J,_f__,&:! [.71%’-_&
e Uee | fee ) (17-81
_ | Zer] ([ 2ok !
I‘IR IQR

Now, f is positive definite for a deformable system. Then, it follows that f,
is also positive definite. In a later article, we consider the case where certa.ig
member deformations may be prescribed.

Once the preliminary force analyses have been carried out, the remaining
steps are straightforward. We generate {7 A, solve for Zg, and then determine

(1 7—80).
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Zp, P, by back substitution. If the displacements are also desired, they can be
determined by solving (17-77).

The final number of equations for the force method is usually smaller than
for the displacement method (g vs. n,). However, the force method requires
considerably more operations to generate the cquations. The force method
can be completely automated, but not as convenicntly as the direct stiffness
method. Also, automating the preliminary force analyses requires solving an
additional set of n, equations. Another disadvantage of the force method is
that the compatibility equations tend to be ill-conditioned unless one is careful
in selecting force redundants.

17-9. VARIATIONAL PRINCIPLES

In Chapter 7, we developed variational principles for the displacement and
force formulations for an ideal truss. Now. in this section, we develop the
corresponding variational principles for a member system. The extension is
quite straightforward since the governing equations are almost identical in

form.
We start with the force-equilibrium equations,t

, P="P +A"Z (a)

The partitioned form is
P1 = PI,I + A1TZ (b)
P, =P, + AJZ (c)

To interpret (a) as a stationary rcquirement, we consider the deformation-
displacement relation,
4// = AU == Alel + A2U2 ° (d)
The first differential of #” due to an increment in U is
dv" = AAU = A AU, + A4, AU, (17-82)

Then, the requirement that
PTAU = P[ AU + Z" dv" (17-83)
be satisfied for arbitrary AU is equivalent to (a). If we consider U, to be pre-

scribed, (17-83) results in only (b). We refer to (17-83) as the principle of virtual

displacements for a member system.
In the displacement method, we substitute for Z in the joint force-equilibrium

equations, using
Z =k = 7)) = (AU - ¢, ()
The form of (17-83) suggests that we define a scalar quantity, V = V(U),

having the property
dV = 27dv" = dV(U) (17-84)

1 We work with the governing equations for the restrained system. See (17-33), (17-34), (17--35).
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Qne can interpret V as the strain energy function for the members. For the
linear case, V' can be expressed as :
V= - )~ v,
= %_»‘(AU - /‘O)Tk(AU - AVO)
Continuing, we define the potential energy function, I1,, as
I,=v+P/'U - PTU (17-86)

The Euler equatioqs for II, are the unpartitioned joint force-equilibrium
equations express.ed n terms of U. Finally, we introduce the joint displacement
constraint condition, U, =U,, by writing (17-86) as

I, =V +P U +P[,U, - PIU, - PI(U, - U,)  (17-87)

whef'; Uy, U,, and P, are variables. The Euler cquations for (17-87) are the
partitioned equilibrium equations (Equations (b), (c)) expressed in terms of the
dlsplacements with U, sct equal to U, ie., they are the governing equations
for the displacement formulation presented in Sec. 17-7.

If only the equations for P, are desired, we sct U, = U, in (17-87),

I, =Vv+ Pl U, - Py, (17-88)

(17-85)

where :
V= 3AU; + A, 0, — 7,) k(A U; + A,U, — v,)  (17-89)
;fhe Euler equation for (17-88) is (17-59), and the second differential has the
orm
d’Tl, = AUT(ATKA AU,
= A[JIKII AUl
Smg; tf( t is positive definite, we can state that the displacements defining the
equilibrium position correspond to a minimum value of ! -
e | of I, defined by (17-88) A
Wq cqnsidgr next the force-method formulation. We let AP, AZ be a statically
permissible virtual-force system. By definition,

AP = ATAZ = BAZ (17-91)

Preml}ltiplying both sides of (d) with AZT and introducing (17-91) leads to
the principle of virtual forces,

(17-90)

APTU = AZTy (17-92)
Note that ( 1'7—92) is valid only for a statically permissible virtual-force system
Le., one which satisfies (17-91). ,

The compatibility equations follow directly from the principle of virtual

for;es by requiring the virtual-force system to be self-equilibrating. If AZ
satisfies ‘ J

AP, =B, AZ = 0 (17-93)
APIU, = AZ™¥ (17-94)

then (17--92) reduces to
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This result is valid for an arbitrary self-equilibrating virtual-forcg system. The
formulation presented in the previous section corresponds to taking

Z
AL = [’TM‘] AZr (17-95)

qy
AP, = P, g ALy

We define the member complementary energy function, V* = V*(Z), such
that

Av* = AZ™1(Z) (17-96)

For the linear case,
o v =4, + L (f)
and yr = 37787 + 274, (17-97)

We also define the total complementary energy function, I1,, as
0, = v* — P10, = U7, P,) (17-98)

The deformation compatibility equations, (17-94), can be inte_rpreted as thej
stationary requirement for T, subject to the following constraints on Z, P,
B.Z =P, = Pro (@
l)z = PI,Z + le;
The constraint conditions are the joint force-equilibrium equations. Operatl_ng
on (g), and noting that Py, Pr i, P, , are prescribed, lead to the constraint
conditions on the force variations
B, AZ =0 - )
AP, = B; AL

Note that (h) require the virtual-force system o be statically permissible and

self-equilibrating. )
In the previous section, we expressed Z, P, as -

Zp Zy r
= e BRGNS I .
2= foef [ o
P, =P, , + Py rZg

This representation satisfics (g) and {h) identically for arbitrary AZR.. Sub-
stituting for Z, P, in (17-98) and expanding V* using (17-97), we obtain

~ ZP-” L ZPJi
O, = ZR[Z7 r | Yowd ["/ o T f{@“‘} + 3 [‘1; ]Z"] (17-99)

—ZFP% xU, + const

The Euler equations for (17-99) are (17-79), and the second differential has the

f
o PTL, = AZLE, AZy (17-100)
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Since f;, is positive definite, it follows that the true forces, ie., the forces that
satisfy compatibility as well as equilibrium, correspond to a minimum value
of T1..

Instead of developing separate principles for the displacements and force
redundants, we could have started with a general variational principle whose
Euler equations are the complete set of governing equations. One can easily
show that the stationary requirement for

M, = Z'B1U, + BIU,) — V* - PTU,

+ P U, + PL,U, — P(U, — Ty)
considering Z, U;, U,, and P, as variables, lead to the partitioned joint
force-equilibrium equations and the member force-joint displacement relations.
This principle is a specialized {form of Reissner’s principle.

We obtain (17-87) from (17-101) by introducing the force-displacement
relations as a constraint condition on Z,

Z = k(B]U, + BIU, — )

(17-101)

= K = 1) &
and noting that, by definition,
Z'BIU; + BIU,) — V* =V ()

Introducing the joint force-equilibrium equations as constraint conditions
reduces Il to —II, as defined by (17--98).

17-10. INTRODUCTION OF MEMBER DEFORMATION CONSTRAINTS

Suppose a member is assumed to be either completely or partially restrained
with respect to deformation due to force. The rigidity assumption is introduced
by setting the corresponding deformation parameters equal to zero in the local
flexibility matrix, g. For example, if axial extension is to be neglected, we set
1/AE = 0. For complete rigidity, we set g = 0, Now, in what follows, we -
discuss the case where neglecting member deformation parameters causes the
member flexibility matrix f, to be singular. This happens, for example, when
axial extension is neglected for a straight member. The rank is decreasedt by
1 and thc axial force-deformation relation degenerates to

L -
no__ .n no__ ~n —n
Uy = Upy — Uygy = Vo, + A"“Flm = U, 1 (@)

where T, ; is the initial axial deformation due to temperature and fabrication .
error. Note that now the axial force has to be determined from the equilibrium
equations. For complete rigidity, f, = 0, and the force-displacement relations
(see (17-5)) degenerate to :

V', =V, = ETU, — BrasTun, (b)
1 See (16-75).
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One can interpret (a), (b) as either member deformation constraints or as con-
straint conditions on the joint displacements. In general, the decrease in rank
of the system flexibility matrix f is equal to the number of constraint conditions.

We consider first the force method. The governing equations are given by

fz,ZR =A (qr €9qs.) (©

[ %] [}_&5-
£, I, I, (d)

Suppose these are ¢ deformation constraints. Then, f is of rank g — ¢. In
order to solve (¢), f;, must be nonsingular, ie., it must be of rank ¢g. This
requires

where

dr — ¢ (g (17-102)

That is, there must be at least g unconstrained member deformations. This
condition is necessary but not sufficient as we will illustrate below. Aside from
insuring that the flexibility matrix is of rank g, there is no difliculty involved in
introducing member deformation constraints in the force formulation.

Example 171
Consider the ideal truss shown. For this systermn,
gr =4
qr =2

We take the forces in bars 3, 4 as the redundants:

7, = Ze =153
fp = F, R = F,

Then,
10
=g 4
and -
1 o0 In 10
f_01 A 0 1
RO 0 1 10
0 1 fdlo 1

We can specify that, at most, two bars are rigid. No difficulty is encountered if only one
bar is rigid. However, we cannot specify that bars 1, 3 or 2, 4 are rigid.

We consider next the displacement formulation. Since f is singular, k does
not exist and, therefore, we cannot invert the complete set of force-displacement
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. ) Fig. E17-1
3 ;? .

;clatlon‘s.,( ie., (17—_57) are not gpplicgblc. In what follows, we first develop the
V\;})p{gpndte equations by mani pulating the original set of governing equations

e then show how the equations can be deduced from the variational princi ] .
for displacements. . Prmepe

The governing equations are
P, =P, + ATz (ry egs.) (a)
V=AY + 1L = AU, + A,U, (¢r cgs.) (b)

Now_, we suppose there are ¢ defor
are l.tstcd such that the last ¢ elem
partition ¥ and Z as follows:

() wr-axt ; :
P = JH 1414
{'I/‘C} ex Z = {z} (17-103)

where #7, contains the constrained

mation constraints and the elements of ¥~
ents are the prescribed deformations. We

. member deformations and 7, t}
wher ' nd Z, the corre-
ponding member forces. We use subscripts ¢, u to indicate quar;titjes asso-

clated with the constrained and u i
iated 3 Inconstrained deformations. Continuj /
partition Ay, A,, ¥, and f consistent with (17-103): e e

Al - i\l_'f (@r—c)xng
qr X ngy _Alc {c X ng)
ay = [An] wron
(g7 xr) AZc (cxr) (17_104)
Ty [P o
o T ALS
(qrx 1) 6,0} ex1)
f,

f = fT = [l'w_t_g_ J

@r xq7) 0 ,I
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The deformation constraints are introduced by s§tting f.= 0:, /N'oted t;at,. in
order for f to be singular, there must be no couplxpg between ¥ u an jc,.l.e.,
f must have the form shown above. Using this notation, the governing equations

take the form

PI = ?I. 1 + Ai[‘uZu + A{CZ(‘ _ (17—105)
V=7, + L, =AU + AU, (17-106)
V.="7.,= AU + A,U, (17-107)

Equation (17-107) represents ¢ congtraint conditions on t%le ufnkriic:v:njé)égi
displacements, U,. The rank of A, is equal to the n}xmbcf (:j / lrlxc ggtmint
constraint equations. One can easily demonstrate that ¢ md‘epf,nf en Zr{;itrary
conditions are required in order to be able to analyze the system for an

loading.

Example 17-2
Suppose we specify that bars 1, 3 are rigid for the system considered in Example 17-1.

The constraint equations are (we take ¥”, = {e, e3})
ey =e =1y — Uy ()

€3 = €3, —Uyg +lay

For (a) to be consistent, we must have

i i b
€10 F €3, = —Uy + Uy (b)

Even if (b) is sa.tisﬁed, we cannot find the forces in bars 1, 3 due to py,.

In what follows, we assume A, is of rank c. We solvg (17 »106)hfor._7‘_,,;132d
substitute in (17-105). This is permissible since f, is nonsingular. The resulting
equations are

Zu = ku(y/‘u - l1fu, o) _ (17*108)
= kuAluUl + ku(AZuUZ - "//‘u. 0)

d v B " .

- (A{ukuAlu)Ul + Acht = Pl - Pl.l - AJI.uku(Ath 2 //u, 0) (17 109)
AU =7 ,- AU, (17-110)
Now, the coefficient matrix, AT k,A ,, is nonsingular only when the structure

obtained by deleting the restraint forces (Z.,) is stab}e. By su'ite%blyl rede‘ﬁmnf
Z., we can transform (17-109) such that the coefficient matrix is always nor

singular. Suppose we write _
Z.o=Zi+ k(" — V0 1
‘ , U - —111
=Z; + kdA Uy + AU, — ¥ o) 7 )

table - arbitrary symmetrical
where Z. represents the new force variable and k;, is an a y Sy

e e
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positive definite matrix of order c. Substituting for Z, in (17-109), we obtain
P, = P, + ALz, |

" ku ! A uw ! A u U "//'u 0 (a)
(R b - )
H < e i < o

By defining
, k, { f, ,’ !
kK = l ___?___;. ’ — ’ ‘_7_}2 (17-112)

and noting (17-104), we can write (a) as

P =P,  + ATK'(A,U, — 1) + (AJTk’Ax)Ux + AlZ, (b)
Using the notation introduction in Sec. 17-7 (see (17-60) ), we let
K., = ATKA,
Z = —k't, (17-113)

Fo,] :p[_,l “FAnle

Finally, the governing equations take the form

Z, 0 v '
Z= {Z*} = {7} K — ) (17-114)
KUy +AlZ =P, - P, - K,0, = H, (17-115)
AUy =97, — A, U, = H, (17-116)

Since A, must be of rank 1, for stability and we have required ki to be positive
definite, it follows that K, is positive definite. Also, the solution for U, must
satisfy (17-116) and we sec from (17~111) that Z, is equal to Z., the actual
constraint force matrix, for arbitrary k’. ,

The expressions for 7, and P,, with Z, deleted, have the same form as the
unconstrained expressions (17=57) and (17--59). Now, it is not necessary to
fearrange Z such that the constraint forces are last. One can work with the
natural member force listing,

Z=1{z,...,17,) @

and take arbitrary values for the member deformation parameters that are to be
negelected. We obtain Ki1 and H; by first generating J¢'*, gp¥, using the
direct stiffness method and then deleting the rows and columns corresponding
to the prescribed displacements. The constrained deformations, ", can be
listed arbitrarily. Tt is only necessary to specify the locations of the constraint
{orces (elements of Z;) in the natural member force listing. Once the displace-
ments and constraint forces are known, we can determine the force matrix for
member n by first evaluating (see (17-8) and (17-11))

Zn = k; n(nt/‘r,n - 1/—‘;'04 n)

, 17-117
Von = ER") U3, — 23U ) : )
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where k;_, is the modified stiffness matrix, and then adding the constraint forces
in the appropriate locations. In what follows, we describe two procedures for
solving (17—115) and (17-116).

In the first method, we solve (17-115) for Uy,

U, = Kl-llHl - Kl—llA{c'Jt/? (-17“118)
and then substitute in (17-116),
(A K 'AT)Z; = A\ K{{H — H, (17-119)

The coefficient matrix for Z; is positive definite since K, is positive definite
and A, is of rank ¢. Note that, with this procedure, we must invert an ngth
order matrix and also solve a set of ¢ equations. For the unconstrained case,
we have to solve only ny equations.

Example 17-3
We suppose bar 2 (Fig. E17-3) is rigid. The constraint cquation is
€=Uy = €9 (@)

To simplify the example, we consider only the effect of joint forces. Using the notation
introduced above, the various matrices for this example are

Uy = {uy, u}

Fl = {Pul’z}
"//u =& Zu = Fl klt = kl (b)
Ve = e Z,=F, ki=1£K
qr = 2 ng = 2 c=1
(P, 1, Uy, ", are null matrices.)
- Fig. E17-3

3

I 11 [

O e

45°

Bar @ is rigid

We start by assembling A4,
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and then partition according to (17-104):

1 1

A=+ —=

! [\/é \/2J
A“ = [0 1]

Note that we cannot invert (1 7-109), since AT k,A,, is singular.
Now, we assume an arbitrary value for the stiffness of bar 2,

Ky = ak}

where a is an arbitrary positive constant, and assemble K ; :

The governing equations (17-114), (17-115), and {17-116) reduce to
. 1 1
14 —— e
2 1 o T e
a
K, U + ALF, = P,
AU =0

The solution follows from (17-1 18), (17-119). We just have to take

H =P H,=0 7= F

K-t _ Lit+2a —1
u aky | -1 +1

B [
AuKnl:aE‘[‘l +1]

The inverse of K is

Then,

A KTAT, = “'1_
al,
and (17-119) reduces to
1 P 1
k) 2 = E(Pz =)
Fy=p, —p
Substituting for F4 in (17~118), we obtain
' u = 20
key
u; =0

Finally, we substitute for F, uy, u, in (h):

F1=\/§l51

F2=F'z:Pz“P1

579

(d)

e)

(f)

(8

(h)
(i)
()

Y

M

(m)

(n)

(©)

(p)
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Instead of first solving (17-115) for U, in terms of Z/, one can start with
(17-116),
AU =9, — AU, = H, (a)

which represents ¢ relations between the n, displacements. Since A, is of rank
¢, we can express ¢ displacements in terms of n, — ¢ displacements, ie., there
are only ny; — c independent displacements.

We suppose the first ¢ columns of A, are linearly independent. Since A,
is of rank ¢, we can always permute the columns such that this zequlremcnl is
satisfied. We let

n=n, —c (17-120)
and partition A, U;:
U] xn
U, - {"U"} (nx1)
{c X na) (exc) (cxn) (17«121)

Ay — [Aic 1 } Alc 2}

The elements of U are the independent displacements. By definition, Ay ds
nonsingular. Then, solving (a) for U,, the constrained displacements, we have

U, = A1c, 1Hy — Afc.lAu.zu (17-122)

Finally, we cxpress U, as

U, = BU + H;, (17-123)
where
("dl;”) - N“Aifil_itl—t_%_ (cxn)
[n (nxn) 17 ]24
H; = _4_1:211_['12” ex 1) ( -1 )
o 0 (nx 1)

Note that B is of rank » and
{c>n)

AB= 0 (17-125)

The generation of B, H; from A, , H, can be completely automated using the
same procedure as employed in the force method to select the primary structure.
We consider next the joint force-equilibrium equations, (17-115),

K, U, +AlZ, = H, (n, egs.) (a)
Substituting for U leads to
(K. ,BU + AT.Z. = H, — K, H; = H, (b)

We eliminate Z; from (b) by premultiplying by B” and noting (17-125). The
resulting system of n equations for U is

(B"K,B)U = B'H,  (negs) (17-126)

Since B is of rank n, the coefficient matrix is positive definite. One can interpret
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BTK,,B as the reduced system stiffness matrix. We solve for U and then
evaluate Uy from (17-123). It remains to determine the restraint forces, Z..
We consider again Eq. (a). Assuming U, is known, we can write

ATZ, =H, — K;,U, =H, (neqs) (17-127)

The matrix, Hs, is the difference between the external applied force, P,, and the
joint force due to member force with the constraint forces deleted, i.c.,

HS:PI—PI,I—A{Z (©
where (sce (17-114))
Z =K -1,

_ d
— KA U, + AT, - 7)) @

We determine Z using the member force-displacement relations and assemble
P, ; + A]Z by the direct stiffness method. Now AT, has ¢ independent rows.
In determining B, we permuted the columns of A, such that the first ¢ columns
arc lincarly independent. We apply the same permutation to (17-127) and

partition after row ¢:
: AT,
AL~ [ - ]
Alc, 2

H; ,
s [-ﬁ;-j

Considering the first ¢ equations, we have
Ale1Z: = Hs (17-129)

Since A,,.  is nonsingular, we can solve (17-129) for Z.. We obtain the final
member forces by adding the clements of Z; in the appropriate locations of
Z defined by (17-114) and (d). ‘

In this approach, we have to invert a matrix of order ¢ and solvc a system
of ny — c equations. Although the final number of equations is less than in the
first approach, there is more preliminary computation (gencration of B) and
the procedure cannot be automated as easily.

(17-128)

Example 17-4
For this example (Fig. E17-4),

ng =15 c=4 n=1 (a)
The constraint conditions are
e Uz — Tz i,
- €2 Upy — Uy €., - ;
v, = = L (= =0 {(b)
€3 Uyy — U3z, €30
€4 Uy — gy €40
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Note that (b) corresponds to (17-107). The form corresponding to (17-116) is
Ugq ’ J
e o+ 1
+1 e 1. 42
-1 +1 _ e, ©
+1 tat €3, + Usz
Uya _
+1 €40 + Tay
Uy
1 1 1
Alc U1 }IZ

Columns 2, 4, 5, and either 1 or 3 comprise a linearly
either u,, or u,; as U. Itisconvenient to take U = uyy.

to

The rearranged form of U, is

Uy = {uya thay, tzalian
|
P U}

We determine U, by applying (17-122). Thisstep is
Finally, we assemble Uj defined by (e) and then

= {U,

1-5
2-1
32
43
5—4

upr}

®

independent set. Then, we can take
We permute the columns according

(@

©

simple for this example sitice Al =1L
permute the rows to obtain the initial

Fig. E17-4

2
—0

X2 @

®

X1 4;
Bars 1, 2, 3, 4 are rigid

1isting of U,. The final result i

Uqy +1
Uy 0
Uy p o= |+ fun} +
Uyg 0
Uzq 0

B

®

0

ey,0 t 2%
el,o

€3, + Uz

ey o 1 T4y

1
H,

P2

()
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The constraint forces are determined from (17-127), which for this example has the form

-1 F/l 115,1

+1 F IIS,Z
L o= Hes ®

+1 7 Hs 4

Fy

+1 H s

1 ) )

Al Z H,

We permute the rows of (g) according to (d) and consider only the first four equations.
The resulting equations correspond to (17-129). .

It is of interest to derive the equations for the constrained case by suitably
specializing the variational principle for displacements. We start with the
unconstrained form of II, developed in Sec. 17-9,

HP=V+P;"1U1_~F1TU1 ()
where
V=0 = 1)K =) (b)
V= AlUl + AZUZ
Now, the displacements are constrained by
q///‘c = AlcUl + AZCUZ = "t/c.o (C)
Then, V reduces to
V = %(4//‘11 - A’l’/ﬂu. o)Tku("V‘u - dt/‘u. o) (d)
dﬁﬂu = AluUI + AI_ZUI‘—IZ ' . :

We obtain the appropriate form of IT, by subsututmg for V using (d) and
introducing the constraint condition, “// — 7,
M, =V + Pl U ~PU, + ZI(#. ~ ¥,,)  (17-130)
The elements of Z, are Lagrange multipliers. One can easily show that the
stationary requirement for (17-130) considering U, and Z. as independent
variables leads to (17-109) and (17-110).
Since ¥, = v, ,, we can add the term

%(Vc - A//‘c, O)Tkl("y" "/‘c, o) (e) .
to (d). Taking
V=300 = V)K" — 1) (17-131)
in (17-130) leads to (17-115) and (17-116).
In the second approach, we substitute
U; = BU + H; : (f)
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in (a) and (17-131): ~ ~ '
Im,=v + (Pf, — P)(BU + Hy)
V=i — )R — V) (17-132)
nt/j = AlBU + A1H3 -+ A2UZ
The variation of IT, considering U as the independent variable is
i, = AUT[B'(P; , — P, + (BTATK'AB)U
+ BTATK(AH; + AU, — 77)] (8
= AUT[(B'K;B)U — BTH,]
Requiring IT,, to be stationary for arbitrary AU results in (17-126). Note that

we could have used the reduced form for V, ie, equation (d). Also, we still
have to determine the constraint forces.

i
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Analysis of
Geometrically
Nonlinear Systems

18—~1. INTRODUCTION

In this chapter, we extend the displacement formulation to include geometric
nonlinearity. The derivation is restricted to small rotation, i.c., where squares
of rotations are negligible with respect to unity. We also consider the material
to be lincarly elastic and the member to be prismatic.

The first phase involves developing appropriate member force-displacement
relations by integrating the governing equations derived in Sec. 13-9. We treat
first planar deformation, since the equations for this case are easily integrated
and it reveals the esscntial nonlinear effects. The three-dimensional probiem
is more formidable and one has to introduce numerous approximations in order
to generate an explicit solution. We will briefly sketch out the solution strategy
and then present a linearized solution applicable for doubly symmetric cross-
sections. .

The direct stiffness method is employed to assemble the system equations.
This phase is essentially the same as for the linear case. However, the governing
equations are now nonlinear.

Next, we described two iterative procedures for solving a set of nonlinear
algebraic equations, successive substitution and Newton-Raphson iteration.
These methods are applied to the system equations and the appropriate re-
currcnce relations are developed. Finally, we utilize the classical stability
criterion to investigate the stability of an equilibrium position.

18-2, MEMBEﬁ EQUATIONS—PLANAR DEFORMATION

Figure 18-1 shows the initial and deformed positions of the member. The
centroidal axis initially coincides with the X, direction and X, is an axis of
symmetry for the cross section. We work with displacements (uy, u,, w3),
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