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Review of last class
• Estimation methods

– Restrict to basically linear estimation problems (also 
non-linear problems that are nearly linear)

– Restrict to parametric, over determined estimation 
– Concepts in estimation:

• Mathematical models
• Statistical models
• Least squares and Maximum likelihood estimation
• Covariance matrix of estimated parameters
• Statistical properties of post-fit residuals
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Today’s class
• Finish up some aspects of estimation

– Propagation of variances for derived quantities
– Sequential estimation
– Error ellipses

• Discuss correlations: Basic technique used to make 
GPS measurements.
– Correlation of random signals with lag and noise 

added (varying amounts of noise)
– Effects of length of series correlated
– Effects of clipping (ex. 1-bit clipping)
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Covariance of derived quantities
• Propagation of covariances can be used to determine 

the covariance of derived quantities.  Example 
latitude, longitude and radius. θ is co-latitude, λ is 
longitude, R is radius. ΔN, ΔE and ΔU are north, east 
and radial changes (all in distance units).
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Covariance of derived quantities
• Using the matrix on the previous page to find a linear 

relationship (matrix A) between changes in XYZ 
coordinates and changes in the North (δφR), East 
(δλRcosφ) and height (Up), we can find the covariance 
matrix of NE and U from the XYZ covariance matrix 
using propagation of variances

• This is commonly done in GPS, and one thing which 
stands out is that height is more determined than the 
horizontal position (any thoughts why?).

• This fact is common to all applications of GPS no 
matter the accuracy.
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Estimation in parts/Sequential 
estimation

• A very powerful method for handling large data sets, 
takes advantage of the structure of the data 
covariance matrix if parts of it are uncorrelated (or 
assumed to be uncorrelated).
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Sequential estimation

• Since the blocks of the data covariance matrix can be 
separately inverted, the blocks of the estimation 
(ATV-1A) can be formed separately can combined 
later.

• Also since the parameters to be estimated can be 
often divided into those that effect all data (such as 
station coordinates) and those that effect data a one 
time or over a limited period of time (clocks and 
atmospheric delays) it is possible to separate these 
estimations (shown next page).
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Sequential estimation
• Sequential estimation with division of global and local 

parameters.  V is covariance matrix of new data (uncorrelated 
with priori parameter estimates), Vxg is covariance matrix of prior 
parameter estimates with estimates xg and xl are local parameter 
estimates, xg

+ are new global parameter estimates.
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Sequential estimation
• As each block of data is processed, the local 

parameters, xl, can be dropped and the covariance 
matrix of the global parameters xg passed to the next 
estimation stage.  

• Total size of adjustment is at maximum the number of 
global parameters plus local parameters needed for 
the data being processed at the moment, rather than 
all of the local parameters.
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Eigenvectors and Eigenvalues
• The eigenvectors and values of a square matrix 

satisfy the equation Ax=λx
• If A is symmetric and positive definite (covariance 

matrix) then all the eigenvectors are orthogonal and 
all the eigenvalues are positive.

• Any covariance matrix can be broken down into 
independent components made up of the 
eigenvectors and variances given by eigenvalues.  
One method of generating samples  of any random 
process (ie., generate white noise samples with 
variances given by eigenvalues, and transform using 
a matrix made up of columns of eigenvectors.
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Error ellipses
• One special case is error ellipses.  Normally 

coordinates (say North and East) are correlated and 
we find a linear combinations of North and East that 
are uncorrelated.  Given their covariance matrix we 
have:
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Error ellipses
• These equations are often written explicitly as:

• The size of the ellipse such that there is P (0-1) probability of 
being inside is (area under 2-D Gaussian). ρ scales the 
eigenvalues
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Error ellipses
• There is only 40% chance of being inside the 1-sigma 

error ellipse (compared to 68% of 1-sigma in one 
dimension)

• Commonly you will see 95% confidence ellipse which 
is 2.45-sigma (only 2-sigma in 1-D).

• Commonly used for GPS position and velocity results
• The specifications for GPS standard positioning 

accuracy are given in this form and its extension to a 
3-D error ellipsoid (cigar shaped)



11/08/2006 12.215 Modern Naviation L14 14

Example of error ellipse
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Correlations 
• Stationary: Property that statistical properties do no 

depend on time 
• Autocorrelation and Power Spectral Density (PSD)

Autocorrelation  ϕ(t1, t2) = x1x2
x1x2

∫∫ f (x1,t1;x2,t2)dx1dx2

For stationary process only depends of τ = t1 − t2

ϕxx (τ ) = limT → ∞
1

2T
x(t)x(t + τ)dt∫

PSD      Φxx (ω) = ϕxx (τ)
−∞

∞

∫ e− iωτ dτ
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Cross Correlation
• Cross correlation is similar except that it is being two 

different time series rather than the same time series.
• If two time series have the same imbedded signal with 

difference noise on the two series then cross-
correlation can be used to measure the time offset 
between the two series (example in next few slides) 

Cross - correlation  ϕ xy (t1,t2) = xy
xy
∫∫ f (x, t1;y, t2)dxdy

ϕxy (τ) = limT → ∞
1

2T
x(t)y(t + τ)dt∫  for stationary process
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Example
• We will now show some time series of random time 

series and examine the correlations and cross 
correlations.

• We will present normalized cross and auto correlation 
function in that they have been divided by the 
standard deviations of the time series.

• (In reality, these are uniform probability density 
function values between -0.5√12 and 0.5√12).

• Why multiply by √12?  Series have also been offset so 
that they can be seen.
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Time series (infinite signal to noise)
• Here the two time series are the same, one is simply 

displaced in time.
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Auto and cross correlations
• Auto and cross correlations by summing over samples 

(discrete version of integral). Notice autocorrelation 
function is symmetric.
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Signal plus noise
• We now add noise (independent) to the x and y time 

series.  In this case equal noise and signal
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Auto and cross correlations
• Same lag in signal but now equal noise and signal in 

time series.
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Low SNR case
• Here the SNR to 0.1 (that is ten times more noise than 

signal).  Now we can not see clear peak in cross-
correlation)
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Low SNR, longer time series
• Example of improving detection by increasing the 

length of the time series correlated (in this case to 
3600 samples instead of 500)
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Cross Correlations comparison
• Comparison of the two cross correlations with different 

sample lengths
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Effects of clipping
• Clipping when a signal is sampled digitally. 1-bit 

sampling detects only if the signal is positive or 
negative.  SNR=1 example shown below (zoomed)
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Auto and cross correlations
• Below are the auto and cross correlation functions for 

the original and clipped signals.  Notice there is small 
loss of correlation but not much.

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-100 -50 0 50 100

ρxx
ρxy SNR   1.00
ρxx Clip
ρxy Clip SNR   1.00

ρ
xx

Lag



11/08/2006 12.215 Modern Naviation L14 27

Summary of class
• Finish up some aspects of estimation

– Propagation of variances for derived quantities
– Sequential estimation
– Error ellipses

• Discuss correlations: Basic technique used to make 
GPS measurements.
– Correlation of random signals with lag and noise 

added (varying amounts of noise)
– Effects of length of series correlated
– Effects of clipping (ex. 1-bit clipping)
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