
Laboratory II: Mechanical Properties of Rocks 

(Due: October 21, 2005) 
Using the Paterson gas-medium apparatu s , you will measure axial load, axial 

displacement, and determine the Young’s modulus, yield strength of an intact rock core specimen. 

1. Experiment Description 

Initial Sample 

A sample of Carrara Marble has been prepared for a triaxial compression test. The sample is a 
right-cylinder, 10 mm in diameter and 20 mm long. Porosity is estimated to be ~ 0.1%. 

Measurement 

Using the load cell in the Paterson gas-medium apparatus, apply a constant displacement rate on 
the sample and see how the load changes.  We will record axial load (kN), LVDT (Linear 
Variable Displacement Transducer) position (mm), confining pressure (MPa) and temperature (ºC) 
at a certain time intervals. The axial load increases with increasing strain rates and we will apply 
three different strain rates to the sample. The summary data file will be posted on the web page 
later and will include the sample dimensions and the deformation conditions. 

Calculation 

Axial stress 

During the deformation experiment, we measure axial load rather than axial stress (also called 
compressional stress, differential stress or true stress).  It is therefore necessary to convert 
internal loads to stress. Axial stress is equal to the axial load F divided by the cross-section area 
of the sample (A), 

Fσ = (1)
A 

The data file measured load in kN. Stress should be converted to MPa. The variation of the 
cross-section during deformation must be taken into account (especially for large strains). We 
assume the volume of sample is constant throughout the deformation, AL = constant (where L is 
the length of the sample). 

Axial strain 

Displacement for triaxial displacement test will be measured using a LVDT located outside the 
pressure vessel. The LVDT measure not only the displacement of the sample due to an applied 
load but also the displacement of the deformation column. 

L∆ measured ∆ = Lsample ∆ + Lcolumn (2) 



• • 

In order to calculate the axial strain of the sample, you must subtract out the deformation of the 
column. The contribution of the column to the measured displacement can be calculated by 
knowing the applied compressive load F and the stiffness of the deformation column Ccolumn. 

/L∆ column = C F column	 (3) 

The stiffness of the deformation column has already been calculated for you and is 61.5 kN mm-1. 
As the length of the sample varies with time from an initial value L0 to a final value L(t), we 
obtain the instantaneous value of the total strain (natural strain or compressional strain) at time t 
by integration. 

t L ) dL 
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Where the sign + and – respectively correspond to extension and compression. To be simple, we 
use the positive value in the compressional test. The approximation is correct at small strains 
only. 

Power law equation 
• 

The strain-rate ε is determined as the slope of the creep curve ε(t). The power-law equation 

describes quite well the dislocation creep behavior of a considerable number of materials in the 
stress range that corresponds to laboratory experimental conditions. 

•	 • 
n Q ⎞ε = ε 0 σ exp⎜⎛− ⎟ (5)

⎝ RT ⎠ 

• 

Where ε 0 is a pre-exponential factor perhaps containing chemical fugacity, σ is the differential 

stress, n ∂ = lnε / ∂ lnσ is the stress exponent, Q ∂ − = lnε / ∂ (1/ T ) is the activation energy R 

for creep, and RT is the standard Boltzmann term. 
• 

Note that the log ε - logσ plot is seldom linear over a wide range of applied stresses, and the 

power-law equation does not hold at all stresses. 

2. Exercises 

There are two text files named carrara marble_rheology.txt and solnhofen limestone.txt, using the 
solnhofen limestone.txt, do the exercise 1-3; then use the carrara marble_rheology.txt to do the 
exercise 4. (one ref. on Carrara Marble: S.J. Covey-Crump, Evolution of mechanical state in 
Carrara marble during deformation at 400 to 700ºC, JGR, 103(B12),p29,781-29,794 (1998)) 

1.	 An experiment begins when the compressive stress begins to increase. Note this value of 
stress, and correct the stress and displacements measured at this point in the spreadsheet to 
zero. Calculate the compressional stress σtrue using equation 1. As discussed above, the 



measured displacement is the sum of the displacement of the sample and the displacement of 
the deformed column (equation 2). Compute the displacement of the sample using equation 
(2) and (3) and plot the compressional stress versus the displacement of the sample on the 
same plot as compressional stress versus measured displacement. Compare the two plots. 

2.	 Convert the calculated displacement of the sample to strain using equation (2) through (4), 
and plot compressional stress versus axial strain for the sample. The plot of compressional 
stress versus axial strain yields the best description of the deformation behavior of the 
specimen.  Determine point where the deformation becomes nonlinear, this is the yield 
strength of the rock, and also the peak stress o 

3.	 Calculate the Young’s modulus E from the slope of the straight line portion of the 
compressional stress vs. axial strain curve (equation 6). What is the yield strength and 
peak-stress of this sample. 

∆σE = (6)
∆ε axial 

• 

4. 	 Calculate the compressional stresses at the three different strain rates and fit the log ε - logσ 

plot with a straight line. Calculate the stress exponent n in equation (5). 

3. Discussion 

1.	 Compare the values of Young’s modulus, yield strength of Carrara Marble with other calcite 
rocks (Table 1).  Explain. 

2.	 For the plot of axial stress versus axial strain of different materials, one would expect different 
mechanical behavior (figure 1). Which kind of behavior do you observe in this experiment? 
And which factors will affect its behavior (e.g. strain rate, temperature and grain size) and 
how?  

• 

3.	 How do you expect the relationship between the log ε  and logσ will change at different 

stresses? 

4.	 Effective pressure, confining pressure minus pore pressure, can play a large role in the 
strength of rocks. What effect do you think increasing the confining pressure would have on 
Young’s modulus, yield stress? 

5.	 For the plot of axial stress vs. axial strain for solnhofen limestone, do you observe a nonlinear 
stress-strain relationship at low stress level? Explain. 



**** Note: to be simple, we use the same initial sample length of 20 mm at all temperatures. 
Table I. Mechanical properties of calcite rocks at room temperature and 30 MPa effective pressure 

Rock E (GPa) 
Young’s modulus 

σY(MPa) 
Yield strength 

Grain size 
(mm) 

Solnhofen limestone 29.8 245 0.006 
Saillion marble ~90 180 0.030 

Wombeyan marble ~70 76 0.846 
Carrara Marble ~76 60 0.230 
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• 

Figure1. stress-strain curves ( ε = cons tan t ) for material with various properties: (a) 

work-hardening, (b) no work-hardening, steady-state creep, (c) work-softening, accelerating creep 
rate. 


