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Geochemistry of Radiocarbon in Organic Materials 
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Geochemistry of Radiocarbon in Organic Materials 
•	 Natural abundance of stable and radio isotopes of carbon 

–	 12C - 99% 
–	 13C - 1% 
–	 14C - 1 part per trillion (10-12) in modern carbon 

•	 14C is a cosmogenic nuclide - continually formed in the upper atmosphere (lower 
stratosphere/upper troposphere) by interaction of neutrons (produced by cosmic rays) 
and nitrogen atoms. 

14N + neutron � 14C + proton 

•	 After formation, 14C atoms rapidly combine with oxygen to form CO2 which mixes 
throughout atmosphere, dissolves in the oceans, and enters the biosphere via 
photosynthetic carbon fixation. 

Geochemistry of Radiocarbon in Organic Materials 

•	 There is a dynamic equilibrium between 14C formation 
and decay leading to an approximately constant level in 
the atmosphere. 

•	 Current best estimate for half-life, T½, of 14C = 5730 yr 
•	 Conventional (Libby) half-life adopted for reporting 14C 

ages = 5568 yr (3% smaller than true half-life). 
•	 The half-life is related to the meanlife,τ, by: 

T½ = (ln2)τ (or T½ = 0.693τ) 

•	 Corresponding meanlife, τ, for Libby half-life is 8033yr. 
•	 The radiocarbon age, t, can be determined from: 

t = -τ ln(A/A0)  (or  t = -8033 ln(A/A0)) 

•	 where A is the number of atoms left after time t and A0 
is the initial number of atoms. 

Key attribute: 5730 yr half life of 14C is suitable for studying 
processes and dating carbonaceous materials over 102 

– 103 yr time-scales. 

Image removed due to copyright restrictions.
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Methods of 14C measurement 

1. Conventional method - Determination of 14C activity of a weighed sample by counting 
the number of electrons (beta particles) emitted from nucleus per unit time by the
decay of 14C. 

•	 Beta-counting can be performed by samples combusted to CO2 (gas proportional 
beta counting) or on samples converted to benzene and measured photometrically
after addition of a scintillator (liquid scintillation counting). 

•	 Sample size requirements: > 1 g C and long counting times (days). 

2. 	Direct measurement of the proportion of 14C atoms (relative to 13C or 12C) by 
accelerator mass spectrometry (AMS). 

•	 Measurements are typically made on graphite (CO2 also possible).  Graphite is 
formed by combustion of sample to CO2 and then reduction of CO2 to graphite. 

•	 Measurement times as short as 20 min. 
•	 Key attribute of AMS - Isobar rejection: 

– Negative ions (Cs sputter source) remove (14N+) 
– Electron stripping (accelerator) to remove hydrides (13CH-) 

•	 Sensitivity of AMS = 6 × 10-16 (≡ 60,000 yr; ≡ 10 half-lives). 
•	 Sample size requirements: 

– “Standard” targets < 1 milligram C* (as little as 300 µg C) for full precision (+/- 4 ‰) 
– As low as 25  µg C possible at reduced precision (+/- 15-20 ‰). 

•	 Standards: 
– Oxalic acid (HOxI, HoxII) 

• *Small sample size has opened up many new applications for 14C. 

Accelerator Mass Spectrometer 

Courtesy of Lawrence Livermore National Laboritories. 
 Used with permission.
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14C systematics 
•	 The absolute international standard of 14C 

activity (Aabs) is defined as 95% of the 14C 
activity of the original oxalic acid standard 
(HOxI), in the year 1950.  This is equivalent to 
the activity of 19th century wood, and represents 
the 14C concentration of the atmosphere prior to 
anthropogenic influence (fossil fuel combustion, 
atomic weapons testing). 

•	 The measured activity of HOxI (Aox) is corrected 
13Cfrom fractionation effects using a defined δ13Cox  2(19 +δ ) 

value of –19 ‰ to yield the fractionation- AON = 0.95Aox 
 
1− 

1000 


normalized activity (AON): 

•	 This is corrected to account for radioactive decay 
between 1950 and the year of measurement: Aabs = AONe

λ( y−1950) 

14C systematics 

•	 The measured 14C activity of a sample (As) is 
normalized (Asn) to a constant δ13C value of –25  2(25 +δ 13Csample )  
‰ to remove the influence of isotopic Asn = As 1− 


fractionation on the reported concentration:  1000  

•	 To a first approximation, the above equation 
treats the 14C fractionation as twice the 13C 
fractionation (to account for the greater mass 
difference). This is based on physical-chemical  2  
derivations that suggest the 14C fractionation is  

1+ − 25 
  

approximately equal to the square of the 13C   1000   
fractionation. The mean age correction is about Asn = As  2  
16 years for every 1 ‰ difference from -25 ‰. 

 δ 13Csample   
This may be simplified to: 



 
1+ 

1000 
 


 
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14C systematics 
•	 The above equations were first developed for 14C measurements from decay 

counting techniques. 
•	 AMS yields absolute ratios of 14C/12C in a sample, rather than the rate of decay.

The above equations are still applicable, as activity and R14/12 are proportional via 
the decay constant, λ.  AMS data are reported as fraction modern (fm) values,
rather than activities: 

Asn R snfm = = 14AON R 12ON 

•	 When a radiocarbon age (year date) is not desired, data are reported as ∆14C 

values in one of two forms.


•	 For samples with no age correction , where y is the year of measurement: 

14 sn	 −λ ( y−1950)∆ C = 
 A 

λ ( y−1950) −1

*1000 = ( fme −1)*1000 

 AONe  

•	 For samples of known geochronological age, where y is the year of measurement, 
and x is the year of sample formation: 

 A eλ ( y−x) 14 sn −λ (1950−x)∆ C =  
λ ( y−1950) −1*1000 = ( fme −1)*1000 

 AONe  
•	 The “radiocarbon age” of a sample is strictly defined as the age calculated using the 

Libby half-life (5568 y) for radiocarbon. 
•	 - In classical radiocarbon dating applications, the calculated radiocarbon ages are 

converted to calendar ages using calibration curves. 

12
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Reporting of Radiocarbon Data 
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Radiocarbon age versus ∆14C 

∆14C is useful for isotopic mass 
balance calculations 

Image removed due to copyright restrictions.

∆14C originally defined by Broecker and Olson (1959). Am. J. Sci. Radiocarbon Suppl. 1, 111-132. 

Factors influencing radiocarbon abundances: 
1. Atmospheric 14C variations 
•	 Variations in solar (cosmic ray flux) activity (long-term, ~ 103 yr variations in 

production rate). 
•	 Variations in Earth’s geomagnetic field strength (short-term, < 102 yr variation in 

production rate) 
•	 Climate induced variations - solubility of CO2 in water a function of temperature. 
•	 Volcanic activity

• Anthropogenic activity.

• - Fossil fuel burning (“Suess effect”).

• - Nuclear weapons testing (“Bomb spike”).


2. Fractionation effects 
•	 The fractionation effect for 14C is assumed to be double that for 13C (reflecting mass 

difference relative to 12C). 
•	 Conventional radiocarbon ages are corrected to a single δ13C value (-25 ‰ = 

approximate value for wood). 

3. Source or reservoir effects. 
•	 There is rapid global mixing between the atmosphere and the terrestrial biosphere. 
•	 However, mixing rates in deep ocean are slow.  Mixing between surface mixed layer 

(high 14C) and deeper layers (lower 14C) gives rise to an offset between mixed layer 
and atmosphere.  This offset (“reservoir effect”) for the pre-bomb era is on average 
ca. 400 yr, but varies spatially and temporally.  Thus organic matter synthesized in 
the oceans will have an apparent age which is 400 yr older than terrestrial biomass 
synthesized at the same time. 



7

14C variations and radiocarbon calibration 

High precision 14C calibration cure for the past 7000 yr (from Irish Oak).  Straight line is the 
1:1 correspondence between 14C age and dendrochronological age.  Short-term (102 yr) 

variations are due to geomagnetic field variations.

Long-term (103 yr) variations are due to variations in cosmic ray flux.


Recent variations of 14C in atmospheric CO2 
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Wiggle-matching, dendrochronologies and varve chronologies 

14C variations vs varve age for Cariaco basin 

sediments, compared to those from tree rings


Images removed due to copyright restrictions.

Hughen et al., 1998 Nature, v391 

Potential limitations in assigning Calendar ages from 14C data 
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Geochemical Applications of Radiocarbon 

• Development of sediment chronologies 
• Tracer studies (e.g., bomb-spike) 
• Isotopic mass balance 

The Global Organic Carbon Cycle (ca. 1950) 
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Radiocarbon age of bulk OC in Long Island Sound sediments 

Variations in stable carbon 
isotopic and radiocarbon 
composition of organic 
matter as a function of 
particle size 

Megens et al. (2002) Org. Geochem. 33 945-952. 
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Variations in stable carbon 
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Isotopic (13C, 14C) evidence for a lipid-like source for acid 

insoluble macromolecular organic matter in sinking POM


Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.

Hwang & Druffel 2003, Science 299,882 
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Molecular-level Radiocarbon Analysis 

The Problem: 
•	 Many samples contain heterogeneous mixtures of organic compounds of diverse origin (and age). 
•	 Age variability can be a source of interference, or information. 

The Approach: 
•	 Structurally diverse organic compounds are preserved in sediments and carry a wealth of

biogeochemical information. 
•	 Measure the stable- and radio- carbon isotopic composition of individual organic compounds in

order to constrain the origin of OC buried in sediments. 
•	 Isotopic mass balance using both 14C and 13C allows for three OC source inputs (phytoplankton,

vascular plant, relict organic matter) to be defined. 
•	 Select compounds for 14C and 13C analysis using biochemical criteria, rather than characterizing 

OC pools based on operational definitions. 
•	 Molecular 14C contents also provide apparent ages for assessment of the residence times and

cycling rates within (and between) carbon reservoirs. 

The Challenge: 
•	 To measure the natural abundance of 14C in individual organic compounds in complex mixtures. 
•	 Greater than 25 µg C required for reliable 14C measurement (by AMS). 
•	 Isolation of target analytes in very high purity. 
•	 Conventional capillary GC resolves < 500ng compound.  
•	 The Approach: 
•	 Automated Preparative Capillary Gas Chromatography (PCGC). 
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Correction for derivative carbon 

N.B. Derivatives are typically derived from petrochemicals (i.e., ∆14C = -1000 ‰) 
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Bulk vs molecular 14C - isotopically homogeneous samples 
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14C contents of lipid biomarkers in CBB sediments 

Data from Pearson et al. (2001) 

-400

Phytoplankton, Zooplankton, Bacteria Archaea

Fam
es

n-A
lco

ho
ls

C30
-15

-on
e-1

-ol

C30
-1,

 15
-di

ol

Ster
ols

Hyp
an

ols

n-A
lka

ne
s

C40
 is

op
ren

oid
s

-200

-100

100

200

-300

0

Surface DIC,
Pre-1950

Surface DIC,
1996

Land Plants, 
Fossil Carbon

Figure by MIT OCW.


