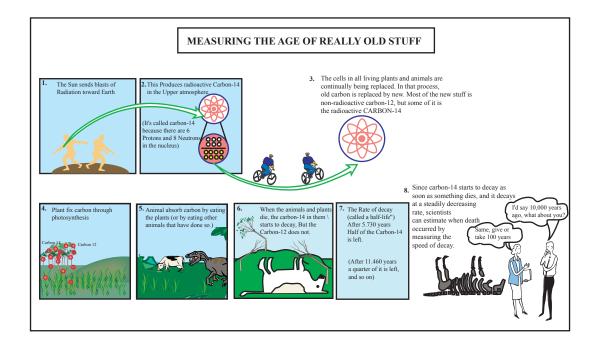
Geochemistry of Radiocarbon in Organic Materials

Suggested Reading:


Eglinton T.I., Benitez-Nelson B.C., Pearson A., McNichol A.P., Bauer J.E. and Druffel E.R.M. (1997) Variability in radiocarbon ages of individual organic compounds from marine sediments. *Science* **277**, 796-799.

Pearson A., Eglinton T.I. and McNichol A.P. (2000) An organic tracer for surface ocean radiocarbon. *Paleoceanog.* **15**, 541-550.

Wang X.-C., Druffel E.R.M., Griffin S., Lee C. and Kashgarian M. (1998) Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean. *Geochim. Cosmochim. Acta* **62**, 1365-1378.

Raymond P.A. and Bauer J.E. (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. *Nature* **409**, 497-500.

Blair N.E. *et al.* (2003) The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. *Geochim. Cosmochim. Acta* **67**, 63-73.

Geochemistry of Radiocarbon in Organic Materials

- Natural abundance of stable and radio isotopes of carbon
 - 12C 99%
 - 13C 1%
 - 14C 1 part per trillion (10⁻¹²) in modern carbon
- ¹⁴C is a cosmogenic nuclide continually formed in the upper atmosphere (lower stratosphere/upper troposphere) by interaction of neutrons (produced by cosmic rays) and nitrogen atoms.

14
N + neutron → 14 C + proton

 After formation, ¹⁴C atoms rapidly combine with oxygen to form CO₂ which mixes throughout atmosphere, dissolves in the oceans, and enters the biosphere via photosynthetic carbon fixation.

Geochemistry of Radiocarbon in Organic Materials

- There is a dynamic equilibrium between ¹⁴C formation and decay leading to an <u>approximately</u> constant level in the atmosphere.
- Current best estimate for half-life, T½, of ¹⁴C = 5730 yr
- Conventional (Libby) half-life adopted for reporting ¹⁴C ages = 5568 yr (3% smaller than true half-life).
 The half-life is related to the recognition has a life but a smaller than true half-life.
- The half-life is related to the meanlife, τ , by:

$$T\frac{1}{2} = (\ln 2)\tau$$
 (or $T\frac{1}{2} = 0.693\tau$)

- Corresponding meanlife, τ , for Libby half-life is 8033yr.
- The radiocarbon age, t, can be determined from:

$$t = -\tau \ln(A/A_0)$$
 (or $t = -8033 \ln(A/A_0)$)

where A is the number of atoms left after time t and A₀ is the initial number of atoms.

Key attribute: 5730 yr half life of ¹⁴C is suitable for studying processes and dating carbonaceous materials over 10² – 10³ yr time-scales.

Methods of ¹⁴C measurement

- Conventional method Determination of ¹⁴C activity of a weighed sample by counting the number of electrons (beta particles) emitted from nucleus per unit time by the decay of ¹⁴C.
- Beta-counting can be performed by samples combusted to CO₂ (gas proportional beta counting) or on samples converted to benzene and measured photometrically after addition of a scintillator (<u>liquid scintillation counting</u>).
- Sample size requirements: > 1 g C and long counting times (days).
- 2. Direct measurement of the proportion of $^{14}{\rm C}$ atoms (relative to $^{13}{\rm C}$ or $^{12}{\rm C})$ by accelerator mass spectrometry (AMS).
- Measurements are typically made on graphite (CO₂ also possible). Graphite is formed by combustion of sample to CO₂ and then reduction of CO₂ to graphite.
- · Measurement times as short as 20 min.
- Key attribute of AMS Isobar rejection:
 - Negative ions (Cs sputter source) remove (14N+)
 - Electron stripping (accelerator) to remove hydrides (¹³CH-)
- Sensitivity of AMS = 6×10^{-16} (= 60,000 yr; = 10 half-lives).
- Sample size requirements:
 - "Standard" targets < 1 milligram C* (as little as 300 μg C) for full precision (+/- 4 ‰)
 - As low as 25 μg C possible at reduced precision (+/- 15-20 ‰).
- · Standards:
 - Oxalic acid (HOxl, Hoxll)
- *Small sample size has opened up many new applications for ¹⁴C.

Accelerator Mass Spectrometer

Courtesy of Lawrence Livermore National Laboritories. Used with permission.

¹⁴C systematics

- The absolute international standard of ¹⁴C activity (A_{abs}) is defined as 95% of the ¹⁴C activity of the original oxalic acid standard (HOxI), in the year 1950. This is equivalent to the activity of 19th century wood, and represents the ¹⁴C concentration of the atmosphere prior to anthropogenic influence (fossil fuel combustion, atomic weapons testing).
- The measured activity of HOxI (A_{ox}) is corrected from fractionation effects using a defined δ¹³C_{ox} value of –19 % to yield the fractionationnormalized activity (A_{ON}):
- This is corrected to account for radioactive decay between 1950 and the year of measurement:

$$A_{ON} = 0.95 A_{ox} \left(1 - \frac{2(19 + \delta^{13}C)}{1000} \right)$$

$$A_{abs} = A_{ON}e^{\lambda(y-1950)}$$

¹⁴C systematics

 The measured ¹⁴C activity of a sample (A_s) is normalized (A_{sn}) to a constant δ¹³C value of –25 ‰ to remove the influence of isotopic fractionation on the reported concentration:

$$A_{sn} = A_s \left(1 - \frac{2(25 + \delta^{13} C_{sample})}{1000} \right)$$

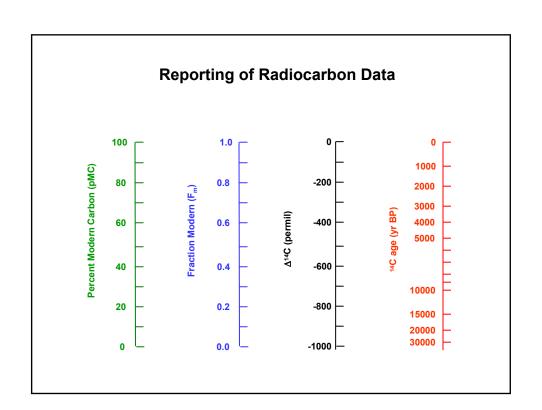
To a first approximation, the above equation treats the ¹⁴C fractionation as twice the ¹³C fractionation (to account for the greater mass difference). This is based on physical-chemical derivations that suggest the ¹⁴C fractionation is approximately equal to the square of the ¹³C fractionation. The mean age correction is about 16 years for every 1 % difference from -25 %. This may be simplified to:

$$A_{sn} = A_s \left[\frac{\left(1 + \frac{-25}{1000} \right)^2}{\left(1 + \frac{\delta^{13} C_{sample}}{1000} \right)^2} \right]$$

¹⁴C systematics

- The above equations were first developed for ¹⁴C measurements from decay counting techniques.
- AMS yields absolute ratios of ¹⁴C/¹²C in a sample, rather than the rate of decay. The above equations are still applicable, as activity and R^{14/12} are proportional via the decay constant, λ. AMS data are reported as fraction modern (f_m) values, rather than activities:

$$f_m = \frac{A_{sn}}{A_{ON}} = \frac{R^{\frac{14}{12}}_{sn}}{R^{\frac{14}{12}}_{ON}}$$


- When a radiocarbon age (year date) is not desired, data are reported as $\Delta^{14}{\rm C}$ values in one of two forms.
- For samples with no age correction, where y is the year of measurement:

$$\Delta^{14}C = \left(\frac{A_{sn}}{A_{ON}e^{\lambda(y-1950)}} - 1\right) * 1000 = \left(f_m e^{-\lambda(y-1950)} - 1\right) * 1000$$

• For samples of known geochronological age, where *y* is the year of measurement, and *x* is the year of sample formation:

$$\Delta^{14}C = \left(\frac{A_{sn}e^{\lambda(y-x)}}{A_{ON}e^{\lambda(y-1950)}} - 1\right) *1000 = \left(f_{m}e^{-\lambda(1950-x)} - 1\right) *1000$$

- The "radiocarbon age" of a sample is strictly defined as the age calculated using the Libby half-life (5568 y) for radiocarbon.
- In classical radiocarbon dating applications, the calculated radiocarbon ages are converted to calendar ages using calibration curves.

Radiocarbon age versus Δ14C

 $\Delta^{14}C$ is useful for isotopic mass balance calculations

Image removed due to copyright restrictions.

 Δ^{14} C originally defined by Broecker and Olson (1959). Am. J. Sci. Radiocarbon Suppl. 1, 111-132.

Factors influencing radiocarbon abundances:

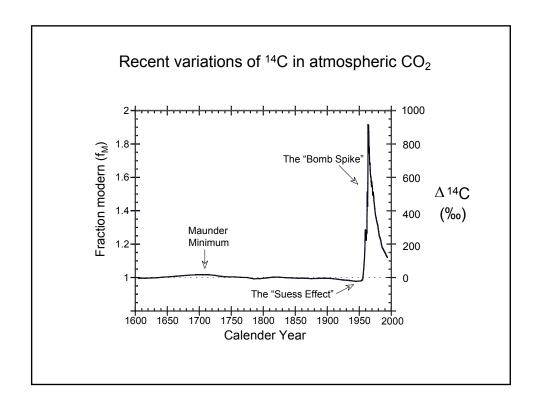
1. Atmospheric ¹⁴C variations

- Variations in solar (cosmic ray flux) activity (long-term, ~ 10³ yr variations in production rate).
- Variations in Earth's geomagnetic field strength (short-term, < 10² yr variation in production rate)
- Climate induced variations solubility of CO₂ in water a function of temperature.
- · Volcanic activity
- Anthropogenic activity.
 - Fossil fuel burning ("Suess effect").
 - Nuclear weapons testing ("Bomb spike").

2. Fractionation effects

- The fractionation effect for ¹⁴C is assumed to be double that for ¹³C (reflecting mass difference relative to ¹²C).
- Conventional radiocarbon ages are corrected to a single δ¹³C value (-25 ‰ = approximate value for wood).

3. Source or reservoir effects.


- There is rapid global mixing between the atmosphere and the terrestrial biosphere.
- However, mixing rates in deep ocean are slow. Mixing between surface mixed layer (high ¹⁴C) and deeper layers (lower ¹⁴C) gives rise to an offset between mixed layer and atmosphere. This offset ("reservoir effect") for the pre-bomb era is on average ca. 400 yr, but varies spatially and temporally. Thus organic matter synthesized in the oceans will have an *apparent* age which is 400 yr older than terrestrial biomass synthesized at the same time.

¹⁴C variations and radiocarbon calibration

Image removed due to copyright restrictions.

High precision 14C calibration cure for the past 7000 yr (from Irish Oak). Straight line is the 1:1 correspondence between 14C age and dendrochronological age. Short-term (10² yr) variations are due to geomagnetic field variations.

Long-term (10³ yr) variations are due to variations in cosmic ray flux.

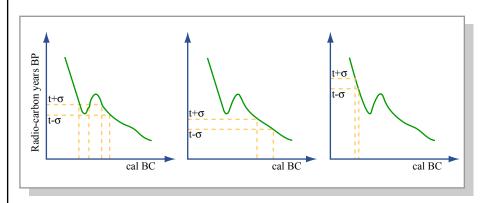
Wiggle-matching, dendrochronologies and varve chronologies

¹⁴C variations vs varve age for Cariaco basin sediments, compared to those from tree rings

Images removed due to copyright restrictions.

Hughen et al., 1998 Nature, v391

Potential limitations in assigning Calendar ages from ¹⁴C data



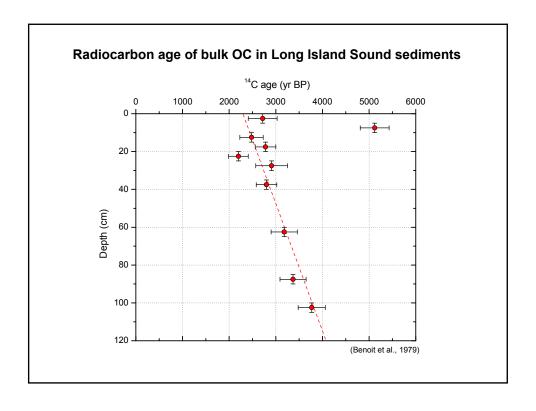
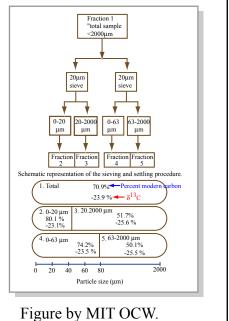
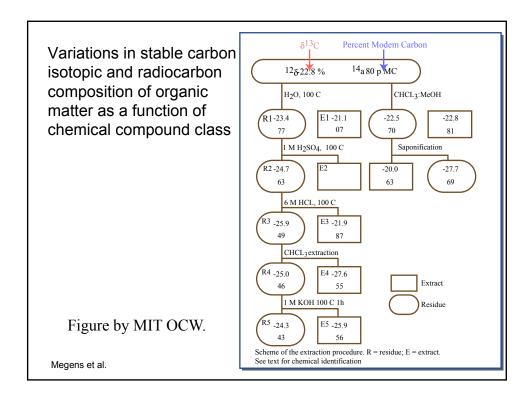


Figure by MIT OCW.


Geochemical Applications of Radiocarbon

- Development of sediment chronologies
- Tracer studies (e.g., bomb-spike)
- · Isotopic mass balance



Variations in stable carbon isotopic and radiocarbon composition of organic matter as a function of particle size

_{952.} Figi

Megens et al. (2002) Org. Geochem. 33 945-952.

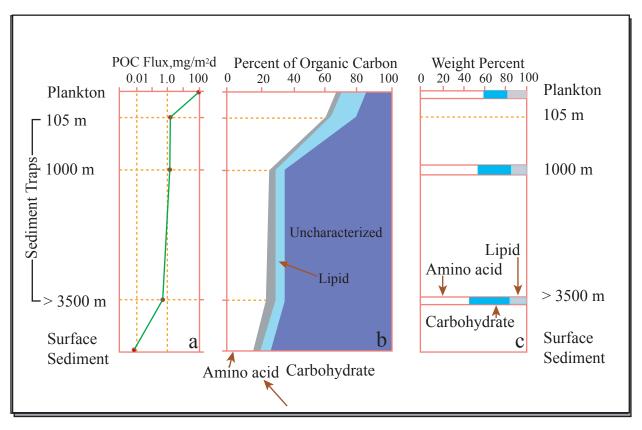
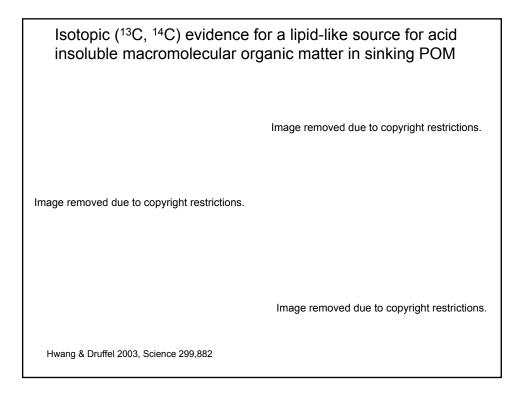
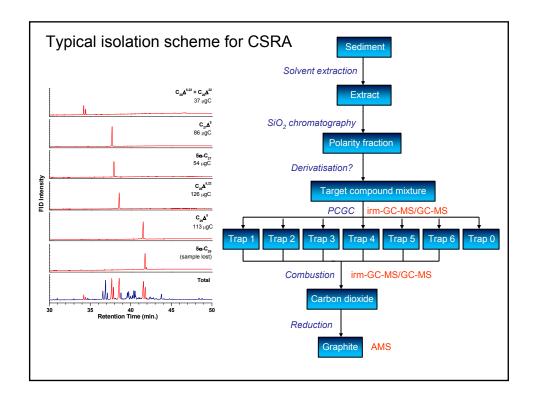



Figure by MIT OCW.

Molecular-level Radiocarbon Analysis

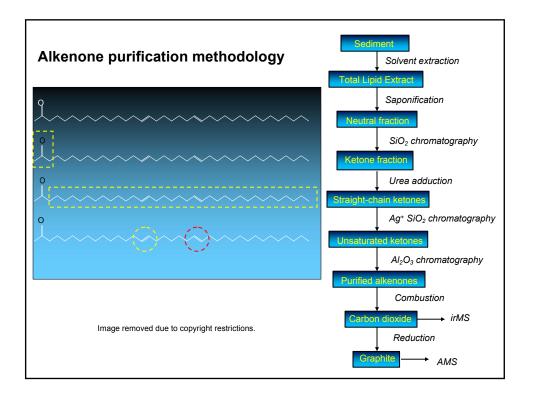
The Problem:

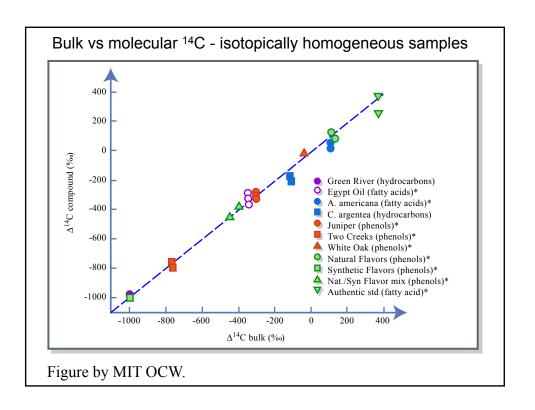

- Many samples contain heterogeneous mixtures of organic compounds of diverse origin (and age).
- · Age variability can be a source of interference, or information.

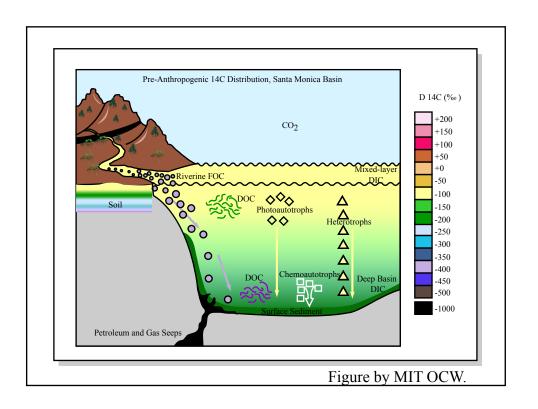
The Approach:

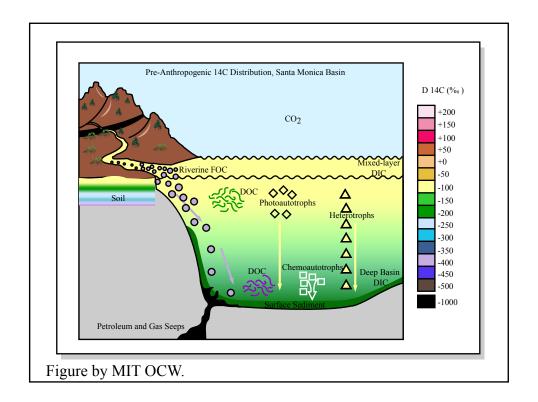
- Structurally diverse organic compounds are preserved in sediments and carry a wealth of biogeochemical information.
- Measure the stable- and radio- carbon isotopic composition of individual organic compounds in order to constrain the origin of OC buried in sediments.
- Isotopic mass balance using both ¹⁴C and ¹³C allows for three OC source inputs (phytoplankton, vascular plant, relict organic matter) to be defined.
- Select compounds for ¹⁴C and ¹³C analysis using <u>biochemical criteria</u>, rather than characterizing OC pools based on operational definitions.
- Molecular ¹⁴C contents also provide apparent ages for assessment of the residence times and cycling rates within (and between) carbon reservoirs.

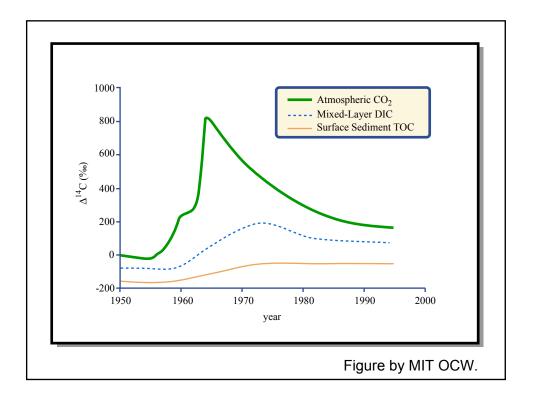
The Challenge:


- To measure the natural abundance of ¹⁴C in individual organic compounds in complex mixtures.
- Greater than 25 μg C required for reliable ¹⁴C measurement (by AMS).
- · Isolation of target analytes in very high purity.
- Conventional capillary GC resolves < 500ng compound.
- The Approach:
- Automated Preparative Capillary Gas Chromatography (PCGC).




Correction for derivative carbon


Figure removed due to copyright restrictions.


N.B. Derivatives are typically derived from petrochemicals (i.e., $\Delta^{14}C$ = -1000 %)

