
 

 

 

1.1 Di�erential Equations 

Di�erential equations are often used to describe natural processes. Consider the elementary 

problem of finding the temperature in a bar where one end, at u = uD> is held at constant 

temperature WD> and at the other end, u = uE > it is held at temperature WE= The only mechanism 

for heat transfer within the bar is by molecular di�usion, so that the governing equation is, 

g2W 
{temper1} � = 0  (1.1) 

gu2 

subject to the boundary conditions, 

{temper2} W (uD) = WD> W  (uE ) = WE = (1.2) 

Eq. (1.1) is so simple we can write its solution in a number of di�erent ways. One form is, 

W (u) = d + eu> (1.3) 

where d> e unknown parameters, until some additional information is provided. Here the addi-

tional information is contained in the boundary conditions (1.2), and with two parameters to 

be found, there is just su!cient information, and µ ¶
uE WD + uDWE WE � WD

W (u) =  + u> (1.4) 
uE � uD uE � uD 

a straight line. Such problems, or analogues for much more complicated systems, are sometimes 

called “forward” or “direct” and they are “well-posed”: exactly enough information is available 

to produce a unique solution (easily proved here, not so easily in other cases). If there are 

small perturbations in Wl> or ul, then the solution changes only slightly–it is also stable and 

di�erentiable. This sort of problem and its solution is what is generally taught starting in 

elementary science courses. 

On the other hand, the problems one encounters in actually doing science di�er significantly– 

both in the questions being asked, and in the information available. A very large number of 

possibilities presents itself: 

1. One or both of the boundary values WD, WE is known from measurements; they are thus 

W (f)given as WD = W (f) ±�WD , WE = ±�WE > where the �WD>E are an  estimate of the  D E 

possible inaccuracies in the theoretical values W (f)= (Exactly what that might mean is taken l 

up later.) 
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2. One or both of the positions, uD>E is also the result of measurement and are of the form 
(f)
uD>E ± �uD>E = 

3. WE is missing altogether, but is known to be positive, WE A 0= 

4. One of the boundary values e.g., WE > is unknown, but an interior value Wlqw = W (f) ± �Wlqwlqw 

is provided instead. Perhaps many interior values are known, but none of them perfectly. 

Other possibilities exist. But even this short list raises a number of interesting, practical 

problems. One of the themes of this book is that almost nothing in reality is known perfectly. 

It is possible that �WD> �WE are very small; but as long as thye are not actually zero, there is 

no longer any possibility of finding a single unique solution. 

Many variations on this model and theme arise in practice. Suppose the problem is made 

slightly more interesting by introducing a “source” VW (u) > so that the temperature field is 

thought to satisfy the equation, 
g2W (u) 

= VW (u) > (1.5) {temper3} 
gu2 

along with its boundary conditions, producing another conventional forward problem. One can 

convert (1.5) into a di�erent problem by supposing that one knows W (u) > and seeks VW (u) = 

Such a problem is even easier to solve than the conventional one: di�erentiate W twice. Because 

convention dictates that the “forward problem” involves the determination of W (u) from a known 

VW (u) and boundary data, this latter problem might be labelled as an “inverse” one–simply 

because it contrasts with the conventional formulation. 

In practice, a whole series of new problems can be raised: suppose VW (u) is imperfectly 

known. How should one proceed? If one knows VW (u) and W (u) at a series of positions 

ul 6= uD> uE , could one nonetheless deduce the boundary conditions? Could one deduce VW (u) 

if it were not known at these interior values? 

W (u) has been supposed to satisfy the di�erential equation (1.1). For many purposes, it is 

helpful to reduce the problem to one that is intrinsically discrete. One way to do this would be 

to expand the solution in a system of polynomials, 

W (u) = �0u 0 + �1u 1 + === + �quq> (1.6) 

and 
1VW (u) = �0u 

0 + �1u + === + �qu
q (1.7) 

where the �l would conventionally be known, and the problem has been reduced from the need 

to find a function W (u) defined for all values of u> to one in which only the finite number of 

parameters �l> 0 � l � q must be found. 



4 CHAPTER 1 INTRODUCTION 

An alternative discretization is obtained by using the coordinate u= Divide the interval uD = 

0 u � uE into Q � 1 intervals of length �u> so that uE = (Q � 1) �u= Then, taking a simple � 

two-sided di�erence: 

W (2�u) � 2W (�u) +  W (0) = (�u)2 

W (3�u) � 2W (2�u) +  W (1�u) = (�u)2 

= 

= 

W ((Q � 1) �u) � 2W ((Q � 2) �u) +  W ((Q � 3)�u) = (�u)2 

VW (0) 

VW (1�u) 

(1.8) 

VW ((Q � 2) �u) 

If one counts the number of equations in (1.8) it is readily found that there are Q � 2 of them, 

but with a total of Q unknown W (s�u) = The two missing pieces of information are provided 

by the two boundary conditions W (0�u) =  W0> W  ((Q � 1) �u) =  WQ 31. Thus the problem of 

solving the di�erential equation has been reduced to finding the solution of a set of ordinary 

linear simultaneous algebraic equations, which we will write, in the notation of Chapter 2 as, 

{equal1} Ax = b> (1.9) 

where A is a square matrix, x is the vector of unknowns W (s�w) > and b is the vector of values 

q (s�w) > and of boundary values. The list above, of variations, e.g., where a boundary condition 

is missing, or where interior values are provided instead of boundary conditions, become state-

ments then about having too few, or possibly too many, equations for the number of unknowns. 

Uncertainties in the Wl or in the t (s�u) become statements about having to solve simultane-

ous equations with uncertainties in some elements. That models, even nonlinear ones, can be 

reduced to sets of simultaneous equations is the unifying theme of this book. One might need 

truly vast numbers of grid points, s�u> or polynomial terms, and ingenuity in the formulation to 

obtain adequate accuracy, but as long as the number of parameters, Q ?  4> one has achieved 

a great, unifying simplification. 

Consider a bit more interesting ordinary di�erential equation, that for the simple mass-spring 

oscillator, 
g2� (w) g� (w)

{ms1} p + % + n0� (w) =  V� (w) > (1.10) 
gw2 gw 

where p is mass, n0 is a spring constant, and % is a dissipation parameter. Although the equation 

is slightly more complicated than is (1.5), and we have relabelled the independent variable as w 

(to suggest time), rather than as u> there really is no fundamental di�erence. This di�erential 

equation can also be solved in any number of ways. As a second order equation, it is well-

known that one must provide two extra conditions to have enough information to have a unique 
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solution. Typically, there are initial conditions, � (0) > g�  (0) @gw–a position and velocity, but 

there is nothing to prevent us from assigning two end conditions, � (0) > �  (w = wi ) > or even two 

velocity conditions g� (0) @gw> g� (wi ) @gw> etc. 

If we naively discretize (1=10) as we did the straight-line equation, we have, 

¶
%�w n(�w)2 %�w 

�(s�w + �w) � 

µ
2 � 

p 
� 

p 

¶ 

�(s�w) � 

µ 

p 
� 1 �(s�w � �w) (1.11) 

= (�w)2 V� (s�w) > 2 s 1 
p 

� � Q � 

which is another set of simultaneous equations as in (1.9) in the unknown � (s�w) ;  an equation 

count again would show that there are two fewer equations than unknowns–corresponding to 

the two boundary or two initial conditions. In Chapter 2, several methods will be developed 

for solving sets of simultaneous linear equations, even when there are apparently too few or too 

many of them. In the present case, if one were given � (0) > �  (1�w) > Eq. (1.11) could be stepped 

forward in time,  generating  � (3�w) > �  (4�w) > ...,� ((Q � 1) �w). The result would be identical to 

the solution of the simultaneous equations–but with far less computation. 

But if one were given � ((Q � 1) �w) instead of � (1�w) > such a simple time-stepping rule could 

no longer be used. One would have a similar di!culty if t (m�w) were missing for some m> but 

instead one had knowledge of � (s�w) > for some s= Looked at as a set of simultaneous equations, 

there is no conceptual problem: one simply solves it, all at once, by Gaussian elimination or 

equivalent. There lv a problem only if one sought to time-step the equation forward, but without 

the required second condition at the starting point–there would be inadequate information to 

go forward in time. Many of the methods explored in this book are ways to solve simultaneous 

equations while avoiding the need for all-at-once brute force solution. Nonetheless, one is urged 

to always recall that most of the interesting algorithms are just clever ways of solving large sets 

of such equations. 




