3.1 The General Eigenvector/Eigenvalue Problem

To understand some recent work on so-called pseudospectra and some surprising recent results on fluid instability, it helps to review the more general eigenvector/eigenvalue problem for arbitrary, square, matrices. Consider,

$$
\begin{equation*}
\mathbf{E g}_{i}=\lambda_{i} \mathbf{g}_{i}, \quad 1 \leq i \leq N \tag{3.1}
\end{equation*}
$$

If there are no repeated eigenvalues \mathbf{g}_{i}, then it is possible to show that there are always N independent \mathbf{g}_{i} which are a spanning set, but which are not usually orthogonal. Because in most problems dealt with in this book we can often make small perturbations to the elements of \mathbf{E} without creating any physical damage, it suffices here to assume that such perturbations can always assure that there are N distinct λ_{i}. (Failure of the hypothesis leads to the Jordan form which requires a somewhat tedious discussion.) A matrix \mathbf{E} is "normal" if it has an orthonormal spanning set. Otherwise it is "non-normal." (Any matrix of form $\mathbf{A A}^{T}$ etc., is necessarily normal.)

Denote $\mathbf{G}=\left\{g_{i}\right\}, \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{i}\right)$. It follows immediately that \mathbf{E} can be diagonalized:

$$
\begin{equation*}
\mathbf{G}^{-1} \mathbf{E G}=\Lambda \tag{3.2}
\end{equation*}
$$

but for a non-normal matrix, $\mathbf{G}^{=1} \neq \mathbf{G}^{T}$.

Matrix \mathbf{E}^{T} has a different set of spanning eigenvectors, but the same eigenvalues:

$$
\begin{equation*}
\mathbf{E}^{T} \mathbf{f}_{i}=\mathbf{f}_{i} \tag{3.3}
\end{equation*}
$$

which can be written
\{A4\}
\{A5\}
\{A6\}
or
The \mathbf{g}_{i} are hence known as the "right eigenvectors," and the \mathbf{f}_{i} as the "left eigenvectors." Multiplying (3.1) on the left by \mathbf{f}_{j}^{T}, and (3.4) on the right by \mathbf{g}_{i} and subtracting shows,

$$
\begin{equation*}
0=\left(\lambda_{i}-\lambda_{j}\right) \mathbf{f}_{j}^{T} \mathbf{g}_{i} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{f}_{j}^{T} \mathbf{g}_{i}=0, i \neq j \tag{3.6}
\end{equation*}
$$

That is to say, the left and right eigenvectors are orthgonal for different eigenvalues, but $\mathbf{f}_{j}^{T} \mathbf{g}_{j} \neq 0$. (In general the eigenvectors and eigenvalues are complex even for purely real \mathbf{E}. The reader is warned that some software automatically conjugates a transposed vector or matrix, and the derivation of (3.6) shows that it applies only to the non-conjugated variables.)

Consider now a "model,"

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{3.7}
\end{equation*}
$$

The norm of \mathbf{b} is supposed bounded, $\|\mathbf{b}\| \leq b$, and the norm of \mathbf{x} will be,

$$
\begin{equation*}
\|\mathbf{x}\|=\left\|\mathbf{A}^{-1} \mathbf{b}\right\| \tag{3.8}
\end{equation*}
$$

What is the relationship of $\|\mathbf{x}\|$ to $\|\mathbf{b}\|$?
Let \mathbf{g}_{i} be the right eigenvectors of \mathbf{A}. Write

$$
\begin{align*}
\mathbf{b} & =\sum_{i=1}^{N} \beta_{i} \mathbf{g}_{i} \tag{3.9}\\
\mathbf{x} & =\sum_{i=1}^{N} \alpha_{i} \mathbf{g}_{i} \tag{3.10}
\end{align*}
$$

If the \mathbf{g}_{i} were orthogonal, $\left|\beta_{i}\right| \leq\|\mathbf{b}\|$. But as they are not orthonormal, the β_{i} will need to be found through a system of simultaneous equations (ecall the discussion in Chapter 2 of the expansion of an arbitrary vector in non-orthogonal vectors) (2.3) and no simple bound on the β_{i} is then possible; some may be very large. Substituting into (3.7),

$$
\begin{equation*}
\sum_{i=1}^{N} \boldsymbol{\alpha}_{i} \lambda_{i} \mathbf{g}_{i}=\sum_{i=1}^{N} \beta_{i} \mathbf{g}_{i} \tag{3.11}
\end{equation*}
$$

Figure 3.1: Two dimensional example of the expansion of a vector \mathbf{f} in two non-orthogonal vectors. Although \mathbf{e}_{1} and \mathbf{e}_{2} are a spanning set, the expansion coefficients become very large of \mathbf{f} is nearly orthogonal to both. (There is "nearly a nullspace" as $\phi \rightarrow 0$.)

A term-by-term solution is evidently no longer possible because of the lack of orthogonality. But multiplying on the left by \mathbf{f}_{j}^{T}, and invoking (3.6) produces,

$$
\begin{equation*}
\alpha_{j} \lambda_{j} \mathbf{f}_{j}^{T} \mathbf{g}_{j}=\beta_{j} \mathbf{f}_{j}^{T} \mathbf{g}_{j} \tag{3.12}
\end{equation*}
$$

or,

$$
\begin{equation*}
\alpha_{j}=\beta_{j} / \lambda_{j}, \quad \lambda_{j} \neq 0 \tag{3.13}
\end{equation*}
$$

Even if the λ_{j} are all of the same order, the possibility that some of the β_{j} are very large implies that eigenstructures in the solution may be much larger than b. This possibility becomes very interesting when we turn to time-dependent systems. At the moment, note that partial differential equations that are self-adjoint produce discretizations which have coefficient matrices \mathbf{A}, such that $\mathbf{A}^{T}=\mathbf{A}$. Thus self-adjoint systems have normal matrices, and the eigencomponents of the solution are all immediately bounded by $\|\mathbf{b}\| / \lambda_{i}$. Non-self-adjoint systems produce nonnormal coefficient matrices and so can therefore unexpectedly generate very large eigenvector contributions.

