3.1 The General Eigenvector/Eigenvalue Problem

To understand some recent work on so-called pseudospectra and some surprising recent results on fluid instability, it helps to review the more general eigenvector/eigenvalue problem for arbitrary, *square*, matrices. Consider,

$$\mathbf{Eg}_i = \lambda_i \mathbf{g}_i, \quad 1 \le i \le N \tag{3.1} \tag{3.1}$$

If there are no repeated eigenvalues \mathbf{g}_i , then it is possible to show that there are always N independent \mathbf{g}_i which are a spanning set, but which are not usually orthogonal. Because in most problems dealt with in this book we can often make small perturbations to the elements of \mathbf{E} without creating any physical damage, it suffices here to assume that such perturbations can always assure that there are N distinct λ_i . (Failure of the hypothesis leads to the Jordan form which requires a somewhat tedious discussion.) A matrix \mathbf{E} is "normal" if it has an orthonormal spanning set. Otherwise it is "non-normal." (Any matrix of form \mathbf{AA}^T etc., is necessarily normal.)

Denote $\mathbf{G} = \{g_i\}, \mathbf{\Lambda} = diag(\lambda_i)$. It follows immediately that \mathbf{E} can be diagonalized:

$$\mathbf{G}^{-1}\mathbf{E}\mathbf{G} = \mathbf{\Lambda} \tag{3.2}$$

but for a non-normal matrix, $\mathbf{G}^{=1} \neq \mathbf{G}^T$.

{pagenonorthog

CHAPTER 3 EXTENSIONS OF METHODS

162

Matrix \mathbf{E}^T has a different set of spanning eigenvectors, but the same eigenvalues:

$$\mathbf{E}^T \mathbf{f}_i = \mathbf{f}_i \tag{3.3} \quad \text{(A3)}$$

which can be written

{A4}

$$\mathbf{f}_i^T \mathbf{E} = \lambda_i \mathbf{f}_i^T. \tag{3.4}$$

The \mathbf{g}_i are hence known as the "right eigenvectors," and the \mathbf{f}_i as the "left eigenvectors." Multiplying (3.1) on the left by \mathbf{f}_i^T , and (3.4) on the right by \mathbf{g}_i and subtracting shows,

$$0 = (\lambda_i - \lambda_j) \mathbf{f}_j^T \mathbf{g}_i \tag{3.5}$$

{A6}

or

{A5}

$$\mathbf{f}_j^T \mathbf{g}_i = 0, i \neq j. \tag{3.6}$$

That is to say, the left and right eigenvectors are orthogonal for different eigenvalues, but $\mathbf{f}_j^T \mathbf{g}_j \neq 0$. (In general the eigenvectors and eigenvalues are complex even for purely real **E**. The reader is warned that some software automatically conjugates a transposed vector or matrix, and the derivation of (3.6) shows that it applies only to the non-conjugated variables.)

Consider now a "model,"

{A7}

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{3.7}$$

The norm of **b** is supposed bounded, $\|\mathbf{b}\| \leq b$, and the norm of **x** will be,

$$\|\mathbf{x}\| = \|\mathbf{A}^{-1}\mathbf{b}\| \tag{3.8}$$

What is the relationship of $\|\mathbf{x}\|$ to $\|\mathbf{b}\|$?

Let \mathbf{g}_i be the right eigenvectors of \mathbf{A} . Write

$$\mathbf{b} = \sum_{i=1}^{N} \beta_i \mathbf{g}_i \tag{3.9}$$

$$\mathbf{x} = \sum_{i=1}^{N} \alpha_i \mathbf{g}_i \tag{3.10}$$

If the \mathbf{g}_i were orthogonal, $|\beta_i| \leq ||\mathbf{b}||$. But as they are not orthonormal, the β_i will need to be found through a system of simultaneous equations (ecall the discussion in Chapter 2 of the expansion of an arbitrary vector in non-orthogonal vectors) (2.3) and no simple bound on the β_i is then possible; some may be very large. Substituting into (3.7),

$$\sum_{i=1}^{N} \boldsymbol{\alpha}_i \lambda_i \mathbf{g}_i = \sum_{i=1}^{N} \beta_i \mathbf{g}_i.$$
(3.11)

Figure 3.1: Two dimensional example of the expansion of a vector \mathbf{f} in two non-orthogonal vectors. Although \mathbf{e}_1 and \mathbf{e}_2 are a spanning set, the expansion coefficients become very large of \mathbf{f} is nearly orthogonal to both. (There is "nearly a nullspace" as $\phi \to 0$.) {ocip3.1new.ep

A term-by-term solution is evidently no longer possible because of the lack of orthogonality. But multiplying on the left by \mathbf{f}_i^T , and invoking (3.6) produces,

$$\alpha_j \lambda_j \mathbf{f}_j^T \mathbf{g}_j = \beta_j \mathbf{f}_j^T \mathbf{g}_j \tag{3.12}$$

or,

$$\alpha_j = \beta_j / \lambda_j, \ \lambda_j \neq 0. \tag{3.13}$$

Even if the λ_j are all of the same order, the possibility that some of the β_j are very large implies that eigenstructures in the solution may be much larger than b. This possibility becomes very interesting when we turn to time-dependent systems. At the moment, note that partial differential equations that are self-adjoint produce discretizations which have coefficient matrices \mathbf{A} , such that $\mathbf{A}^T = \mathbf{A}$. Thus self-adjoint systems have normal matrices, and the eigencomponents of the solution are all immediately bounded by $\|\mathbf{b}\|/\lambda_i$. Non-self-adjoint systems produce nonnormal coefficient matrices and so can therefore unexpectedly generate very large eigenvector contributions.

163