3.1 The General Eigenvector/Eigenvalue Problem

To understand some recent work on so-called pseudospectra and some surprising recent results on
fluid instability, it helps to review the more general eigenvector/eigenvalue problem for arbitrary,
square, matrices. Consider,

Eg, = Aigi, 1<i<N (3.1)

If there are no repeated eigenvalues g;, then it is possible to show that there are always N
independent g; which are a spanning set, but which are not usually orthogonal. Because in most
problems dealt with in this book we can often make small perturbations to the elements of E
without creating any physical damage, it suffices here to assume that such perturbations can
always assure that there are N distinct \;. (Failure of the hypothesis leads to the Jordan form
which requires a somewhat tedious discussion.) A matrix E is “normal” if it has an orthonormal
spanning set. Otherwise it is “non-normal.” (Any matrix of form AAT ete., is necessarily
normal.)

Denote G ={g;}, A = diag ()\;) . It follows immediately that E can be diagonalized:
G 'lEG=A (3.2)

but for a non-normal matrix, G=! ¥ GT,
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Matrix E” has a different set of spanning eigenvectors, but the same eigenvalues:
ETf, = f; (3.3)
which can be written
fIE =)\ f]. (3.4)

The g; are hence known as the “right eigenvectors,” and the f; as the “left eigenvectors.” Mul-

tiplying (3.1) on the left by ij , and (3.4) on the right by g; and subtracting shows,
0= (- ) e, (35)

or
flgi=0,i#j. (3.6)

That is to say, the left and right eigenvectors are orthgonal for different eigenvalues, but f]ng # 0.
(In general the eigenvectors and eigenvalues are complex even for purely real E. The reader is
warned that some software automatically conjugates a transposed vector or matrix, and the
derivation of (3.6) shows that it applies only to the non-conjugated variables.)

Consider now a “model,”

Ax =b. (3.7)
The norm of b is supposed bounded, ||b|| < b, and the norm of x will be,
IxIl=[|A~"b] (3.8)

What is the relationship of ||x|| to ||b||?
Let g; be the right eigenvectors of A. Write

N

b = Zﬁigi (3.9)
1&1

X = Zaigi (3.10)
i=1

If the g; were orthogonal, |3;| < ||b||. But as they are not orthonormal, the /3, will need to
be found through a system of simultaneous equations (ecall the discussion in Chapter 2 of the
expansion of an arbitrary vector in non-orthogonal vectors) (2.3) and no simple bound on the

B; is then possible; some may be very large. Substituting into (3.7),

N N
Zai/\igi = Zﬁigi- (3.11)
=1 =1
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Figure 3.1: Two dimensional example of the expansion of a vector f in two non-orthogonal
vectors. Although ejand es are a spanning set, the expansion coefficients become

very large of f is nearly orthogonal to both. (There is “nearly a nullspace” as ¢ — 0.)

A term—by-term solution is evidently no longer possible because of the lack of orthogonality.

But multiplying on the left by ij , and invoking (3.6) produces,
Oéj)\jijgj = ﬁ]ijg] (312)

or,
o =Bi/Aj, Aj #0. (3.13)

Even if the A; are all of the same order, the possibility that some of the j3; are very large
implies that eigenstructures in the solution may be much larger than b. This possibility becomes
very interesting when we turn to time-dependent systems. At the moment, note that partial
differential equations that are self-adjoint produce discretizations which have coefficient matrices
A, such that AT = A. Thus self-adjoint systems have normal matrices, and the eigencomponents
of the solution are all immediately bounded by |[b|| /A;. Non-self-adjoint systems produce non-
normal coefficient matrices and so can therefore unexpectedly generate very large eigenvector

contributions.
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