
2.2 Matrix and Vector Algebra 

This subject is very large and well-developed and it is not my intention to repeat material better 

found elsewhere9 . Only a brief survey of essential results is provided. 
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A matrix  is  an  P ×Q array of elements of the form 

A = {Dlm }> 1 l P> 1 � m � Q =� � 

Normally a matrix is denoted by a bold-faced capital letter. A vector is a special case of an 

P × 1 matrix, written as a bold-face lower case letter, for example, q. Corresponding capital or 

lower case letters for Greek symbols are also indicated in bold-face. Unless otherwise stipulated, 

vectors are understood to be columnar. The transpose of a matrix interchanges its rows and 

columns. Transposition applied to vectors is sometimes used to save space in printing, for 

example, q = [t1> t2>===> tQ ]
W is  the same as  

6
5


q =


99999999997


t1 

t2 

. . . 

::::::::::8


= 

tQ 

Matrices and Vectors 

a = 
qPQA conventional measure of length of a vector is 

s
aW d2 = kak = The inner, or dot, l l POproduct between two O × 1 vectors a, b is written aW b a · b = dlel and is a scalar. l=1� 

Such an inner product is the “projection” of a onto b (or vice-versa). It is readily shown that 

|aW b| � kak kbk; the magnitude of this projection can be measured as, 

|a W b| = kak kbk | cos !| > 

where the magnitude of cos ! ranges between zero, when the vectors are orthogonal, and one, 

when they are parallel. 

Suppose we have a collection of  Q vectors, el, each of dimension Q . If  it  is  possible  to  

represent perfectly an arbitrary Q—dimensional vector f as the linear sum, 

Q X 
{31001} f = �lel > (2.1) 

l=1 

then el are said to be a “basis.” A necessary and su!cient condition for them to have that 

property is that they should be “independent,” that is, no one of them should be perfectly 

representable by the others: 

Q X 
{31002} em � �lel 6= 0> 1 � m � Q =  (2.2) 

l=1> l6=m 
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A subset of the em are said to span a subspace (all vectors perfectly representable by the subset). 

For example, [1> 1> 0]W > [1> 1> 0]W span the subspace of all vectors [y1> y2> 0]
W = A “spanning set” �

completely describes the subspace too, but might have additional, redundant vectors. Thus the 

vectors [1> 1> 0]W > [1> 1> 0]W > [1> 1@2> 0] span the subspace but are not a basis for it. �
The expansion coe!cients �l in (2.1) are obtained by taking the dot product of (2.1) with 

each of the vectors in turn: 

Q X 
W W el = en f > 1 � n � Q >  (2.3) {31003} �len


l=1


a system of Q equations in Q unknowns. The �l are most readily found if the el are a mutually 

orthonormal set, that is, if 

W el em = �lm > 

but this requirement is not a necessary one. With a basis, the information contained in the set 
Wof projections, el f = f W el, is adequate then to determine the �l and thus all the information 

required to reconstruct f is contained in the dot products.. 

The concept of “nearly-dependent” vectors is helpful and can be understood heuristically. 

Consider figure 3.1, in which the space is two-dimensional. Then the two vectors e1> e2, as  

depicted there, are independent and can be used to expand an arbitrary two-dimensional vector 

f in the plane. The simultaneous equations become, 

W W W �1e1 e1+�2e1 e2 = e1 f (2.4) 

W W W �1e2 e1+�2e2 e2 = e2 f = 

The vectors become nearly parallel as the angle ! in Fig. 3.1 goes to zero; as long as they are not 

identically parallel, they can still be used mathematically to represent f perfectly. An important 

feature is that even if the lengths of e1>e2> f are all order-one, the expansion coe!cients d1>2 can 

have extremely large magnitudes when the angle ! becomes small and f is nearly orthogonal to 

both (measured by angle �)= 

That is to say, we find readily from (2.4), 

¡
1 f 
¢ ¡
e

¢ ¡
2 f 
¢ ¡
e

¢ 
W W W We 2 e2 e

�1 = ¡
1 e1

¢ ¡
e

�¢ ¡ 1 e2 
> (2.5) 

W W W 
¢2 

e 2 e2 e1 e2 ¡
2 f 
¢ ¡
e

¢ ¡� 

1 f 
¢ ¡
e

¢ 
W W W We 1 e1 e

�2 = ¡
1 e1

¢ ¡
e

�¢ ¡ 2 e1 
= (2.6) 

W W W 
¢2 

e 2 e2 � e1 e2 
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Figure 2.1: Schematic of expansion of an arbitrary vector f in two vectors e1> e2 which may 

nearly coincide in direction. {ocip3.1new.ep 

Suppose for simplicity, that f has unit length, and that the el have also been normalized to unit 

length as shown in Figure 3.1. We have then, 

�1 = 
cos (� � !) � cos ! cos � 

1 � cos2 ! 
= 
sin � 
sin ! 

(2.7) 

�2 = cos  � � sin � cot ! (2.8) 

and whose magnitudes can become arbitrarily large as ! $ 0= One can imagine a situation in 

which �1e1 and �2e2 were separately measured and found to be very large. One could then 

erroneously infer that the sum vector, f , was equally large. This property of the expansion in 

non-orthogonal vectors potentially producing large coe!cients becomes important later (Chap-

ter 4) as a way of gaining insight into the behavior of so-called non-normal operators. The 

generalization to higher dimensions is left to the reader’s intuition. One anticipates that as ! 

becomes very small, numerical problems can arise in using these “almost parallel” vectors. 

egramschmidt} Gram-Schmidt Process 

One often  has a set  of  s-independent, but non-orthonormal vectors, hl> and it is convenient to  

find a new set gl, which are orthonormal. The “Gram-Schmidt process” operates by induction. 

Suppose the first n of the hl have been orthonormalized to a new set, gl= To generate vector 

n + 1, let  
n X 

{31030} gn+1 = hn+1 � �m gm = (2.9) 
m 

Because gn+1 must be orthogonal to the preceding gl, l = 1> ===>  n, take the dot products of (2.9) 

with each of these vectors, producing a set of simultaneous equations for determining the un-

known �m . The resulting gn+1 is easily given unit norm by division by its length. 
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Given the first n of Q necessary vectors, an additional Q � n independent vectors, hl are 

needed. There are several possibilities. The necessary extra vectors might be generated by filling 

their elements with random numbers. Or a very simple trial set like hn+1 = [1> 0> 0> ===> 0]W , 

hn+2 = [0> 1> 0> ===0]> = = =might be adequate. If one is unlucky, the set chosen might prove not 

to be independent of the existing gl. But a simple numerical perturbation usually su!ces to 

render them so. In practice, the algorithm is changed to what is usually called the “modified 

Gram-Schmidt process” for purposes of numerical stability. 10 

2.2.1 Matrix Multiplication and Identities 

It has been found convenient and fruitful to usually define multiplication of two matrices A>B, 

written as C = AB, such that 
S X 

Flm = DlsEsm = (2.10) {31004} 
s=1 

For the definition (2.10) to make sense, A must be a P × S matrix and B must be S × 

Q (including the special case of S × 1, a column vector). That is, the two matrices must 

be “conformable.” If two matrices are multiplied, or a matrix and a vector are multiplied, 

conformability is implied–otherwise one can be assured that an error has been made. Note 

that AB 6= BA even where both products exist, except under special circumstance. Define 

A2 = AA> etc. Other definitions of matrix multiplication exist, and we will later define the 

Hadamard product when it is needed.. 

The mathematical operation in (2.10) may appear arbitrary, but a physical interpretation is 

available: Matrix multiplication is the dot product of all of the rows of A with  all of the  columns  

of B. Thus multiplication of a vector by a matrix represents the projections of the rows of the 

matrix onto the vector. 

Define a matrix, E, each of whose columns is the corresponding vector el, and a vector, 

� = {�l}, in the same order. Then the expansion (2.1) can be written compactly as, 

f = E� = (2.11) {31005} 

The transpose of a matrix A is written AW and is defined as {DW }lm = Dml, an interchange 

of the 

AW = 

rows and columns of A. Thus  
¡
AW 
¢W 

= A= A  “symmetric matrix”  is  one for  which  

A. The product AW A represents the array of all the dot products of the columns of 

A with themselves, and similarly, AAW represents the set of all dot products of all the rows 

of A with themselves. It follows that (AB)W = BW AW . Because  we  have  (AAW )W = AAW , 

(AW A)W = AW A, both of these matrices are symmetric. 
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The “trace” of a square P × P matrix A is defined as trace(A) =  
PP Dll. A “diagonal l 

matrix” is square and zero except for the terms along the main diagonal, although we will later 

generalize this definition. The operator diag(q) forms a square diagonal matrix with q along 

the main diagonal. 

The special O × O diagonal matrix IO, with  Lll = 1, is the “identity.” Usually, when the 

dimension of IO is clear from the context, the subscript is omitted. IA = A, AI = I> for any A 

for which the products make sense. If there is a matrix B, such that BE = I, then  B is the “left-

inverse” of E. If  B is the left inverse of E and E is square, a standard result is that it must also be 

a right inverse: EB = I, B is then called “the inverse of E” and is usually written E31. Square  

matrices with inverses are “non-singular.” Analytical expressions exist for some inverses, and 

numerical linear algebra books explain how to find them, when they exist. If E is not square, one 

must distinguish left and right inverses, sometimes written E+ and referred to as “generalized 

inverses.” Some of them will be encountered later. A useful result is that (AB)31 = B31A31> ¡
A31 

¢W ¡ ¢
if the inverses exist. A useful notational shorthand is = AW 31 

A3W .� 

A definition of the “length,” or norm of a vector has already been introduced. But several 

choices are possible; for present purposes, the conventional o2 norm already defined, Ã 
Q 

!1@2 X 
{31006} kf k2 � (f W f )1@2 = i 2 > (2.12)l 

l=1 

is most useful; often the subscript will be omitted. Eq. (2=12) leads in turn to the measure of 

distance between two vectors, a, b as, 

= 
q
(a{31007} ka bk2 � b)W (a � b) > (2.13)� 

the familiar Cartesian distance. Distances can also be measured in such a way that deviations 

of certain elements of c = a � b count for more than others–that is, a metric, or set of weights 

can be introduced with a definition, r X 
{31008} kckZ = flZllfl > (2.14)

l 

depending upon the importance to be attached to magnitudes of di�erent elements, stretching 

and shrinking various coordinates. Finally, in the most general form, distance can be measured 

in a coordinate system both stretched and rotated relative to the original one 

{31009} kckZ = 
s
cW Wc (2.15) 

where W is an arbitrary matrix (but usually, for physical reasons, symmetric and positive 

definite11, implying that  cW Wc �0). 
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2.2.2 Linear Simultaneous Equations 

Consider a set of P -linear equations in Q -unknowns, 

{31010} Ex = y= (2.16) 

Because of the appearance of simultaneous equations in situations in which the |l are observed, 

and where x are parameters we wish to determine, it is often convenient to refer to (2.16) as a 

set of measurements of x which produced the observations or data, y. If  P A Q , the system 

is said to be “formally overdetermined.” If P ? Q , it is “underdetermined,” and if P = Q , it  

is “formally just-determined.” The use of the word “formally” has a purpose we will come to. 

Knowledge of the matrix inverse to E would make it easy to solve a set of O equations in O 

unknowns, by left-multiplying (2.16) by E31: 

E31Ex = Ix = x = E31 y 

The reader is cautioned that although matrix inverses are a very powerful theoretical tool, one 

is usually ill-advised to solve large sets of simultaneous equations by employing E31; better 

numerical methods are available for the purpose12 . 

There are several ways to view the meaning of any set of linear simultaneous equations. If 

the columns of E continue to be denoted el, then (2.16) is, 

{1e1 + {2e2 + · · ·+ {Q eQ = y = (2.17) {31011} 

The ability to so describe an arbitrary y, or to solve the equations, would thus depend upon 

whether the P × 1, vector y can be specified by  a  sum of  Q -column vectors, el. That  is,  

it would depend upon their being a spanning set. In this view, the elements of x are simply 

the corresponding expansion coe!cients. Depending upon the ratio of P to Q , that  is,  the  

number of equations compared to the number of unknown elements, one faces the possibility 

that there are fewer expansion vectors el than elements of y (P A  Q), or that there are 

more expansion vectors available than elements of y (P ? Q). Thus the overdetermined case 

corresponds to having fewer expansion vectors, and the underdetermined case corresponds to 

having more expansion vectors, than the dimension of y. It is possible that in the overdetermined 

case, the too-few expansion vectors are not actually independent, so that there are even fewer 

vectors available than is first apparent. Similarly, in the underdetermined case, there is the 

possibility that although it appears we have more expansion vectors than required, fewer may 

be independent than the number of elements of y> and the consequences of that case need to be 

understood as well. 
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An alternative interpretation of simultaneous linear equations denotes the rows of E as rl , 
W 

1 l� � P= Then Eq.(2.16) is a set of P -inner products, 

rl x = |l>
W 1 l P =� � (2.18) {31012} 

That is, the set of simultaneous equations is also equivalent to being provided with the value of 

P—dot products of the Q—dimensional unknown vector, x, with  P known vectors, rl. Whether  

that is su!cient information to determine x depends upon whether the rl are a spanning set. 

In this view, in the overdetermined case, one has more dot products available than unknown 

elements {l, and in the underdetermined case, there are fewer such values than unknowns. 

A special set of simultaneous equations for square matrices, A> is labelled the “eigen-

value/eigenvector problem,” 

{eigen1} Ae =�e= (2.19) 

In this set of linear simultaneous equations one seeks a special vector, e> such that for some 

as yet unknown scalar eigenvalue, �> there is a solution. An Q ×Q matrix will have up to Q 

solutions (�l> el) > but the nature of these elements and their relations require considerable e�ort 

to deduce. We will look at this problem more later; for the moment, it again su!ces to say that 

{pageeigen} numerical methods for solving Eq. (2.19) are well-known. 

2.2.3 Matrix Norms 

A number of useful definitions of a matrix size, or norm, exist. For present purposes the so-called 

“spectral norm” or “2—norm” defined as 

kAk2 = 
q
maximum eigenvalue of (AW A) (2.20) 

is usually adequate. Without di!culty, it may be seen that this definition is equivalent to 

kAk2 = max  
xW AW Ax 
x xW = max  

kAxk2 

kxk2 
(2.21) 

where the maximum is defined over all vectors x=13 Another useful measure is the “Frobenius 

norm,” r XP XQ 

l=1 m=1 lm
kAkI = D2 = 

q
trace(AW A) = (2.22) 

Neither norm requires A to be square. These norms permit one to derive various useful results. 

Consider one illustration. Suppose Q is square, and kQk ? 1, then  

{31029} �(I + Q)31 = I � Q + Q2 · · ·  > (2.23) 
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which may be verified by multiplying both sides by I + Q, doing term-by-term multiplication 

and measuring the remainders with either norm. 

Nothing has been said about actually finding the numerical values of either the matrix 

inverse or the eigenvectors and eigenvalues. Computational algorithms for obtaining them have 

been developed by experts, and are discussed in many good textbooks.14 Software systems like 

MATLAB, Maple, IDL and Mathematica implement them in easy-to-use form. For purposes of 

this book, we assume the reader has at least a rudimentary knowledge of these techniques and 

access to a good software implementation. 

2.2.4 Identities. Di�erentiation. 

There are some identities and matrix/vector definitions which prove useful. 

A square “positive definite” matrix A, is one for which the scalar “quadratic form,” 

M = x W Ax (2.24) {31013} 

is positive for all possible vectors x. (It  su!ces to consider only symmetric A because for 

a general matrix, xW Ax = xW [(A + AW )@2]x, which follows from the scalar property of the 

quadratic form.) If M � 0 for all x, A is “positive semi-definite,” or “non-negative definite.” 

Linear algebra books show that a necessary and su!cient requirement for positive definiteness 

is that A have only positive eigenvalues (Eq. 2.19) and a semi-definite one must have all non-

negative eigenvalues. 

We end up doing a certain amount of di�erentiation and other operations with respect to 

matrices and vectors. A number of formulas are very helpful, and save a lot of writing. They 

are all demonstrated by doing the derivatives term-by-term. Let q, r be Q × 1 column vectors, 

and A, B, C be matrices. The derivative of a matrix by a scalar is just the matrix of element 

by element deriviatives. Alternatively, if v is any scalar, its derivative by a vector, 

Cv 
Cq 

= 

� 
Cv 
Ct1 
=== 
Cv 
CtQ 

¸W 

(2.25) {31014a} 

is a column vector (the gradient; some authors define it to be a row vector). The derivative of
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one vector by another is defined as a matrix: 
;
A
AAAAAAAAAAAAAA

<
A
AAAAAAAAAAAAAA

Cu1 Cu2 CuP· Ct1 Ct1 Ct1 

Cu1 · ·  CuP 
Ct2 Ct2 

· · · · 

Cu1 · ·  CuP 
CtQ CtQ 

?
 @
A
AAAAAAAAAAAAAA

½ ¾ 
Cr Cul 

B= (2.26) {31015}= = A
AAAAAAAAAAAAAA

�
Cq Ctm 

>= 

If r, q are of the same dimension, the determinant of B = det (B) is the “Jacobian” of r. 15 

The second derivative of a scalar, 
;
A
AAAAAAAAA

<
A
AAAAAAAAA

C2v C2v C2v· ·
Ct2 Ct1t2 Ct1tQ1 

?
 @
A
AAAAAAAAA

½ ¾ 
C2v C Cv · · · · · 

(2.27){31014b} = = 
Cq2 Cql Cqm A
AAAAAAAAA

C2v C2v · · · CtQ Ct1 Ct2 
Q 

>= 

is the “Hessian” of v and is the derivative of the gradient of v= 
WAssuming conformability, the inner product, M = rW q = q r> is a scalar. The di�erential of 

M is, 
W W WgM = gr W q + r gq =gq r + q gr> (2.28) 

and hence the partial derivatives are, ¡ ¢ 
C(qW r) C rW q 

{31016} = = r > (2.29)
Cq Cq ¡ ¢ 

C qW q 
{31017} = 2q = (2.30)

Cq 

It follows immediately that for matrix/vector products, 

C C ¡ ¢
W{31017a} (Bq) =  BW > q B = B= (2.31)

Cq Cq 

The first of these is used repeatedly, and attention is called to the apparently trivial fact that 

di�erentiation of Bq with respect to q produces the transpose of B–the origin, as seen later, 

of so-called adjoint models. For a quadratic form, 

M = q W Aq 
{31018} CM ¡ ¢ (2.32) 

= A +AW q > 
Cq 
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and its Hessian is 2A if A = AW = 

Di�erentiation of a scalar function (e.g., M in Eq. 2.32) or a vector by a matrix, A> is readily 

defined.16 Di�erentiation of a matrix by another matrix function by another matrix results in a 

third, very large, matrix. One special case of the di�erential of a matrix function proves useful 

later on. It can be shown17 that 

gAq = (gA)Aq31 +A (gA)Aq32+=== +Aq31 (gA) > (2.33) {deltaA1} 

where A is square. Thus the derivative with respect to some scalar, n> is µ ¶
gAq (gA)

Aq31 +Aq32 (gA) = A + === +Aq31 gA 
= (2.34) {deltaA2} 

gn gn gn gn 

There are a few, unfortunately unintuitive, matrix inversion identities which are essential 

later. They are derived by considering the square, partitioned matrix, 

AA> 

;
AA? 

AA= BW C 

<
AA@
A B  

(2.35) {31022} 

where AW = A, CW = C, but B can be rectangular of conformable dimensions in (2.35).18 The 

most important of the identities, sometimes called the “matrix inversion lemma” is, in one form, 

{C � BW A31B}31 = {I � C31BW A31B}31C31 

= C31 � C31BW (BC31BW � A)31BC31 
(2.36) {31023} 

where it is assumed that the inverses exist.19 A variant  is,  

ABW (C +BABW )31 = (A31 +BW C31B)31BW C31 = (2.37) {31024} 

Eq. (2.37) is readily confirmed by left-multiplying both sides by (A31 +BW C31B), and  right-

multiplying by (C +BABW ) and showing that the two sides of the resulting equation are equal. 

Another identity, found by “completing the square,” is demonstrated by directly multiplying it 

out, and requires C = CW (A is unrestricted, but the matrices must be conformable as shown): 

ACAW � BAW � ABW = (A � BC31)C(A � BC31)W � BC31BW = (2.38) {31025} 


