
204CHAPTER 4 THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION 

4.3 Estimation 

4.3.1 Model and Data Consistency 

In many scientific fields, the central issue is to develop understanding from the combination 

of a skillful model with measurements. The model is intended to encompass all one’s theo-

retical knowledge about how the system behaves, and the data are the complete observational 

knowledge of the same system. Maxwell’s Equations are one example of a model appropriate 

to electromagnetic phenomena. If done properly, and in the absence of contradictions between 

theory and experiment, inferences from the model/data combination should be no worse, and 

may well be very much better, than those made from either alone. It is the latter possibility that 

motivates the development of state estimation procedures. “Best-estimates” made by combining 

models with observations are often used to forecast a system (e.g., to land an airplane), but this 

is by no means the major application. 

Such model/data problems are ones of statistical inference with a host of specific subtypes. 

Some powerful techniques are available, but like any powerful tools (a chain saw, for example), 

they can be dangerous to the user! In general, one is confronted one with a two-stage problem. 

Stage 1 involves developing a suitable model that is likely to be consistent with the data. “Con-

sistent” means that within the estimated data errors, the model is likely to be able to describe 

the features of interest. Obtaining the data errors is itself a serious modeling problem. Stage 2 

produces the actual estimate with its error estimates. 

One can go very badly wrong at stage 1, before any computation takes place. If elastic 

wave propagation is modelled using the equations of fluid dynamics, estimation methods will 

commonly produce some kind of “answer”, but one which would be nonsensical. Model failure 

can of course, be much more subtle, in which some omitted, supposed secondary element (e.g., a 

time-dependence), proves to be critical to a description of the data. Good technique alerts users 

to the presence of such failures, along with clues as to what should be changed in the model. 

But these issues do not however, apply only to the model. The assertion that a particular data 

set carries a signal of a particular kind, can prove to be false in a large number of ways. A 

temperature signal thought to represent the seasonal cycle might prove, on careful examination, 

to be dominated by higher or lower frequency structures, and thus its use with an excellent 

model of annual variation might prove disastrous. Whether this situation is to be regarded as a 

data or as a model issue is evidently somewhat arbitrary. 
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Thus stage 1 of any estimation problem has to involve understanding of whether the data 

and the model are physically and statistically consistent. If they are not, one should stop and 

reconsider. Often where they are believed to be generally consistent up to certain quantitative 

adjustments, one can combine the two stages. A model may have adjustable parameters (turbu-

lent mixing coe!cients; boundary condition errors; etc.) which could bring the model and the 

data into consistency, and then the estimation procedure becomes, in part, an attempt to find 

those parameters in addition to the state. Alternatively, the data error covariance, R (w), may  be  

regarded as incompletely known, and one might seek as part of the state estimation procedure 

to improve one’s estimate of it. (Problems like this one are taken up in the next Chapter under 

the subject of “adaptive filtering.”) 

Assuming for now that the model and data are likely to prove consistent, one can address 

what might be thought of as a form of interpolation: Given a set of observations in space 

and time as described by Equation (4.27), use the dynamics as described by the model (4.12) 

or (4.13) to estimate various state-vector elements at various times of interest. Yet another, less 

familiar, problem recognizes that some of the forcing terms B(w � 1)q(w � 1) are partially or 

wholly unknown (e.g., no one believes that the windstress boundary conditions over the ocean 

are perfectly known), and one might seek to estimate them from whatever ocean observations 

are available and from the known model dynamics. Many real problems contain both of these 

issues. 

The forcing terms–representing boundary conditions as well as interior sources/sinks and 

forces–almost always need to be divided into two elements: the known and the unknown parts. 

The latter will often be perturbations about the known values. Thus, rewrite (4.13) in the 

modified form 

x(w) =  A(w � 1) x(w � 1) + B(w � 1) q(w � 1) + �(w � 1) u(w � 1)> (4.33) {62001} 

where now B(w) q(w) represent the known forcing terms and �(w) u(w) the unknown ones, which 

we will generally refer to as the “controls,” or “control terms.” �(w) is known and plays the 

same role for u(w) as does B(w) for q(w). Usually  B(w)> �(w) will be treated as time independent, 

but this simplification is not necessary. Almost always, we can make some estimate of the size 

of the control terms, as for example, 

hu(w)i = 0> hu(w) u(w)W i = Q(w) = (4.34) {62002} 

The controls have a second, somewhat di�erent, role: They can also represent the model 

error. All models are inaccurate to a degree–approximations are always made to the equations 

describing any particular physical situation. One can expect that the person who constructed 
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the model has some idea of the size and structure of the physics or chemistry, or biology, ..., 

that have been omitted or distorted in the model construction. In this context, Q (w) represents 

the covariance of the model error, and the control terms represent the missing physics. The 

assumption hu(w)i = 0 must be critically examined in this case, and in the event of failure, 

some modification of the model must be made or the variance artificially modified to attempt to 

accommodate what is a model bias error. But the most serious problem is that models are rarely 

produced with any quantitative description of their accuracy beyond one or two examples of 

comparison with known solutions. One is left to determine Q(w) by guesswork. Getting beyond 

such guesses is again a problem of adaptive estimation. 

Collecting the standard equations of model and data: 

x (w)=  A (w� 1) x (w� 1) +Bq (w� 1) +�u (w� 1) > 1 � w � wi (4.35) 

E (w) x (w)+n (w)=  y (w) > 1 � w � wi > �w = 1  

n (w)=  0> 
D 
n (w) n (w)W 

E 
= R (w) > 

 
n (w) n 

¡
w 0 
¢® 
= 0> w 6= w 0 

hui = 0> hu (w) u (w)i = Q (w) 

(4.36) 

(4.37) 

(4.38) D E 
x̃ (0) = x0> (x̃ (0) �x (0)) (x̃ (0) �x (0))W = P (0) (4.39) 

where wi defines the endpoint of the interval of interest. The last equation, (4.39), treats the 

initial conditions of the model as a special case–the uncertain initialization problem, where 

x(0) is the true initial condition and x̃(0) = x0 is the value actually used but with uncertainty 

P(0). Alternatively, one could write, 

D E 
E(0)x (0) + n (0) = x0> E (0) = I> n (0) n (0)W = P (0) > (4.40) 

and include the initial conditions as a special case of the observations–recognizing explicitly 

that one often obtains initial conditions from observations. 

This general form permits one to grapple with reality. In the spirit of ordinary least squares 

and its intimate cousin, minimum-error variance estimation, consider the general problem of 
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finding state vectors and controls, u (w) > that minimize an objective function, 

M = [x(0) � x0]
W 
P(0)31 [x(0) � x0] 

wi X 
+ [E(w) x(w) � y(w)]W 

R(w)31 [E(w) x(w) � y(w)] 
{J1} (4.41)

w=1 

wi 31 X 
+ u(w)W Q(w)31 u(w) > 
w=0 

subject to the model, (4.35, 4.38, 4.39) As written here, this choice of an objective function 

is somewhat arbitrary but perhaps reasonable as the direct analogue to those used in Chapter 

2. It seeks a state vector x(w) > 0 w � wi , and a set of controls, u(w) > 0 w� � � wi � 1, 

that satisfy the model and that agree with the observations to an extent determined by the 

weight matrices R(w) and Q(w), respectively. From the previous discussions of least squares and 

minimum-error variance estimation, the minimum-square requirement Eq. (4.41) will produce 

a solution identical to that derived from minimum variance estimation by the specific choice of 

the weight matrices as the corresponding prior uncertainties, R(w), Q(w), P(0). In  a  Gaussian  

system, it also proves to be the maximum likelihood estimate. The introduction of the controls, 

u(w), into the objective function represents an acknowledgment that arbitrarily large controls 

(forces) would not usually be an acceptable solution; they should be consistent with Q (w) = 

Notation Note. As in Chapter 2, any values of x (w), u (w) minimizing M will be written x̃ (w), 

ũ (w) and these symbols could be substituted into Eq. (4.41) if that is regarded as clearer. 

Much of the rest of this chapter will be directed at solving the problem of finding the minimum 

of M subject to the solution satisfying the model. Notice that M involves the state vector, the 

controls, and the observations over the entire time period under consideration, 0 w� � wi . 

This type of objective function is the one usually of most interest to scientists attempting to 

understand their system–in which data are stored and employed over a finite time. In some 

other applications, most notably forecasting, and which is taken up immediately below, one has 

only the past measurements available; this situation proves to be a special case of the more 

general one. 

Although we will not keep repeating the warning each time an objective function such as Eq. 

(4.41) is encountered, the reader is reminded of a general message from Chapter 2: The as-

sumption that the model and observations are consistent and that the minimum of the objective 

function produces a meaningful and useful estimate must always be tested after the fact. That 

is, at the minimum of M , ˜ x(w) must produce residu-u(w) must prove consistent with Q(w), and  ̃

als consistent with R(w). Failure of these and other posterior tests should lead to rejection of 
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the model. As always, one can thus reject a model (which includes Q(w)> R(w)) on the basis 

of a failed consistency with observations. But a model is never “correct” or “valid”, merely 

“consistent.” (See Note 8, Chapter 1.) 

4.3.2 The Kalman Filter 

We begin with a special case. Suppose that by some means, at time w = 0> �w = 1> we have an 

unbiased estimate, x̃(0), of the state vector with uncertainty P(0). At  time  w = 1, observations  

from Eq. (4.36) are available. How would the information available best be used to estimate 

x(1)? 

The model permits a forecast of what x(1) should be, were x̃(0) known perfectly, 

{62009} x(1> �) =  A˜˜ x(0) + Bq(0)> (4.42) 

where the unknown control terms have been replaced by the best estimate we can make of 

them–their mean, which is zero, and A has been assumed to be time independent. A minus 

sign has been introduced into the argument of x̃(1> �) to show that no data at w = 1  have yet 

been used to make the estimate at w = 1, in a notation we will generally use. How good is this 

forecast? 

Suppose the erroneous components of x̃(0) are, 

{62010} �(0) = x̃(0) � x(0) > (4.43) 

then the erroneous components of the forecast are, 
¡ ¢ 

�(1) � x(1> x(1) = A˜˜ �) � x(0) + Bq(0) � Ax(0) + Bq(0) + �u(0) 
(4.44) 

= A�(0) � �u(0) > 

that is, composed of two distinct elements: the propagated erroneous portion of x̃(0)> and the 

unknown control term. Their second moments are ¡
h�(1) �(1)W i = h A�(0) � �u(0)

¢¡
A�(0) � �u(0) 

¢W 
i 

W = Ah�(0)P (0) �(0)W iAW + �hu(0) u(0)W i� 
{error1} (4.45)

W = AP (0) AW + �Q(0)� 

� P(1> �) 

by the definitions of P(0), Q(0) and the assumption that the unknown controls are not correlated 

with  the error in the  state estimate at  w = 0. We now have an estimate of x(1) with uncertainty 

P(1> �) and a set of observations, 

{62013} E(1) x(1) + n(1) = y(1) = (4.46) 
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To combine the two sets of information, we use the recursive least-squares solution Eqs. (2.432-

2.434). By assumption, the uncertainty in y(1) is uncorrelated with that in x̃(1> �). Making  

the appropriate substitutions into those equations, 

£ ¤
˜ x(1> �) +  K(1) y(1) � E(1) ̃x(1) = ˜ x(1> �) > 

(4.47) {average1} £ ¤
K(1) = P(1> �) E(1)W E(1) P(1> �) E(1)W + R(1) 31 

with new uncertainty, 

P(1) = P(1> �) � K(1) E(1) P(1> = (4.48) {62015} �) 

(Compare to the discussion on P. 143.) Eq. (4.47) is best interpreted as being the average of the 

model estimate with that obtained from the data alone, slightly disguised by rearrangement. 

Thus there are four steps: 

1. Make a forecast using the model (4.35) with the unknown control terms �u set to zero. 

2. Calculate the uncertainty of this forecast, Eq. (6.39), which is made up of two separate


terms.


3. Do a weighted average (4.47) of the forecast with the observations, the weighting being


chosen to reflect the relative uncertainties.


4. Compute the uncertainty of the final weighted average, Eq. (4.48). 

Such a computation is called a “Kalman filter.”113 , and it is conventionally given a more 

formal derivation. K is called the “Kalman gain.” At the stage where the forecast (4.42) has 

already been made, the problem was reduced to finding the minimum of the objective function, 

£ ¤ £ ¤W
M = x(1> �) � x(1) P(1> �)31 x(1> x(1)˜ ˜ ˜ �) � ˜

(4.49) {J3} £ ¤ £ ¤W 
x(1) R(1)31 y(1) � E(1) ̃+ y(1) � E(1) ̃ x(1) > 

which is a variation of the objective function used to define the recursive least-squares algorithm 

(Eq. 2.423). In this final stage, the explicit model has disappeared, being present only implicitly 

through the uncertainty P(1> �). After the averaging step, all of the information about the 

observations has been used too, and is included in x̃ (w) > P (w) and the data can be discarded. 

For clarity, tildes have been placed over all appearances of x (w) = 

A complete recursion can now be defined through the Equations (4.42)—(4.48), replacing all 

the w = 0  variables with w = 1  variables, the w = 1  variables becoming w = 2  variables, etc. In 

terms of arbitrary w, the  recursion is,  

, 
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x (w> �)=  A (w � 1) ̃˜ x (w � 1) +B (w � 1) q (w � 1) > (4.50) 

WP (w> �)=  A (w � 1) P (w � 1) A (w � 1)W +�Q (w � 1) � > (4.51) 

˜ x (w> �)+K (w) [y (w) � E (w) ̃x (w)=  ̃ x (w> �)] > (4.52) h i
K (w)=  P (w> �) E (w)W 

E (w) P (w> �) E (w)W +R (w) 
31 
> (4.53) 

P (w)=  P (w> �) �K (w) E (w) P (w> �) > 1 w (4.54)� � wi = 

These equations are those for the complete Kalman filter. Note that some authors prefer 

x (w + 1> �) in terms of ˜to write equations for ˜ x (w) > etc. Eq. (2.37) permits one to rewrite Eq. 

(4.54) as, h i 
{kalman6} P (w)31 = P (w> �)31 +E (w)W 

R (w)31 
E (w) > (4.55) 

and an alternate form for the gain is114 

K (w) =  P (w) E (w)W 
R (w)31 > (4.56) 

Other rearrangements are possible too. These re-written forms are often important for com-

putational e!ciency and accuracy. Note that in the special case where the observations are 

employed one-at-a-time, E (w) is a simple row vector, E (w) P (w> �) E (w)W +R (w) is a scalar, and 

no matrix inversion is required in Eqs. (4.50-4.54). The computation would then be dominated 

by matrix multiplications. Such a strategy demands that the noise be uncorrelated from one 

observation to another, or removed by “pre-whitening” which, however, itself often involves a 

matrix inversion. Various re-arrangements are worth examining in large problems.115 

Notice that the model is being satisfied exactly; in the terminology introduced in Chapter 2, 

it is a hard constraint. But again, as was true with the static models, the hard constraint 

description is somewhat misleading, as the presence of the terms in u (w) means that model 

errors are permitted. Notice too, that u (0) has not been estimated. 

H{dpsoh 

Consider again the mass-spring oscillator described earlier, with time history in Figure 4.2. 

It was supposed that the initial conditions were erroneously provided as x̃ (0) = [10> 10]W > P (0) = 

diag ([100> 100]), but that the forcing was completely unknown. Observations of {1(w) were pro-

vided at every time step with a noise variance U = 50. The Kalman filter was computed by (4.50-

4.54) and used to estimate the position at each time step. The result for part of the time history 

is in Figure 4.2a, showing the true value and the estimated value of component {1 (w). The  time  

history of the uncertainty of {1(w)> 
p
S11 (w)> is also depicted and rapidly reaches an symptote. 
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Overall, the filter manages to track the position of the oscillator everywhere within two standard 

deviations. 

If observations are not available at some time step, w> the best estimate reduces to that from 

the model forecast alone, K (w) =  0> P (w) =  P (w> �) and one simply proceeds. Typically in such 

situations, the error variances will grow from the accumulation of the unknown u (w), at  least,  

until such times as an observation does become available. If u (w) is purely random, the system 

will undergo a form of random walk 116 

H{dpsoh. 

Consider again the problem of fitting a straight line to data, as discussed in Chapter 2, but 

now in the context of a Kalman filter, using the canonical form derived from (4.50-4.54). “Data” 

were generated from the state transition matrix of Eq. (4.16) and an unforced model, as depicted 

in Figure 4.4. The observation equation is 

|(w) =  {1(w) +  q(w) > 

that is, E(w) =  {1 0}, U(w) = 50, but observations were available only every 25th time step. 

There were no unknown control disturbances–that is T(w) = 0, but the initial state estimate 

˜was set erroneously as x(0) = [30> 10]W fs with an uncertainty P(0) = diag([900> 900)] =The 

result of the computation for the fit is shown in Figure 4.4 for 100 time steps. Note that in the 

Kalman filter estimate, the estimate diverges rapidly from the true value (although well within the 

estimated error) and is brought discontinuously toward the true value when the first observations 

become available. 

If the state vector is redefined to consist of the two model parameters d, e, then  x = [d e]W 

and A = I. Now the observation matrix is E = [1  w]—that is, time-dependent. The state 

vector has changed from a time-varying one to a constant. The same grossly incorrect estimates 

x̃(0) = [10 10]W were used, with the same P(0) (the correct values are d = 1, e = 2) and  with  

the time histories of the estimates depicted in Figure 4.2. At the end of 100 time steps, we have 

d̃ = 1=85 ± 2=0, ẽ = 2=0 ± 0=03, both of which are consistent with the correct values. For reasons 

the reader might wish to think about, the uncertainty of the intercept is much greater than for 

the slope. 

H{dpsoh 

For the mass spring oscillator in Fig. 4.2, it was supposed that the same noisy observations 

were available, but only at every 25th time step. In general, the presence of the model error, 

or control uncertainty, accumulates over the 25 time steps as the model is run forward without 

observations. The expected error of such a system is shown for 150 time steps in Figure 4.6e. 

Notice (1) the growing envelope as uncertainty accumulates faster than the observations can 
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Figure 4.4: A straight line computed from the statespace model with A from Eq. (4.16) with no 

forcing. (a) Solid line shows the true values. Noisy observations were provided every 

25th point, and the initial condition was set erroneously to x̃ (0) = [30> 10]W with 

P (0) = diag([900> 900])= The estimation error grows rapidly away from the incorrect 

initial conditions until the first observations are obtained. Estimate is shown as the 

dashed line. (b) Result of applying the RTS smoother to the data and model in (a). 

Gray band is the one standard deviation error bar. {kfrts3.eps} 

Figure 4.5: (a) {1 (w) (solid) and ˜ d from the straight-line model and the Kalman filter {1 (w) =  ̃

estimate when the state vector was defined to be the intercept and slope, and E (w) =  

[1> w]= (b) Smoothed estimate, {̃1 (w> +) > and its uncertainty corresponding to (a). {kfrts4.eps} 
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reduce it; (2) the periodic nature of the error within the growing envelope; and (3) that the 

envelope appears to be asymptoting to a fixed upper bound for large w. The true and estimated 

time histories for a portion of the time history are shown in Figure 4.6d. As expected, with fewer 

available observations, , the misfit of the estimated and true values is larger than with data at 

every time step. At every 25th point, the error norm drops as observations become available, but 

with the estimated value of {1 (w) undergoing a jump when the observation is available. 

If the observation is that of the velocity {1(w) � {2(w) =  �(w) � �(w� 1), then  H = {1 � 1}. A  

portion of the time history of the Kalman filtered estimate with a velocity observation available 

only at every 25th point may be seen in Figure 4.7. Velocity observations are evidently useful 

for estimating position, owing to the connection between velocity and position provided by the 

model and is a simple example of how observations of almost anything can be used to improve a 

state estimate. 

A number of more general reformulations of the equations into algebraically equivalent forms 

are particularly important. In one form, one works not with the covariances, P(w>�)> = = = >  but 
with their inverses, the so-called information matrices, P(w>�)31, etc. (See Eq. (4.55).) This 
“information filter” form may be more e!cient if, for example, the information matrices are 

banded and sparse while the covariance matrices are not. Or, if the initial conditions are 

infinitely uncertain, P (0)31 can be set to the zero matrix. In another formulation, one uses 

the square roots (Cholesky decomposition) of the covariance matrices rather than the matrices 

themselves. This “square root filter” can be of great importance, as there is a tendency for the 

computation of the updated values of P in Eq. (4.54) to become nonpositive-definite owing to 

round-o� errors, and the square root formulation guarantees a positive definite result. 117 

The Kalman filter does not produce the minimum of the objective function Eq. (4.41) 

because the data from times later than w are not being used to make estimates of the earlier 

values of the state vector or of u(w). At each step, the Kalman filter is instead minimizing an 

objective function of the form Eq. (4.49). To obtain the needed minimum, we have to consider 

what is called the “smoothing problem,” to which we will turn in a moment. Note too, that the 

time history of x (w) does not satisfy a known equation at the time observations are introduced. 

When no observation is available, the time evolution obeys the known model equation with zero 

control term; the averaging step of the filter, however, leads to a change between w and w 1� 

that compensates for the accumulated error. The evolution equation is no longer satisfied in 

this interval. 

The Kalman filter is, nonetheless, extremely important in practice for many problems. In 

particular, if one must literally make a forecast (e.g., such filters are used to help land airplanes 
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Figure 4.6: For the same model as in Fig. 4.2, except that noisy observations were available only 

every 25th point (U = 50)= (a) Shows the correct trajectory of {1(w) for 100 time 

steps, the dotted line shows the filter estimate and the shaded band is the standard 

error of the estimate. (b) Displays the correct value of {1(w) compared (dotted) to the 

RTS smoother value with its standard error. (c) Is the estimated control (dotted) 

with its standard error, and the true value applied to mass spring oscillator. (d) 

Shows the behavior of S11 (w) for the Kalman filter with very large values (oscillating 

with twice the frequency of the oscillator) and which become markedly reduced as 

soon as the first observations become available at the 25th point. {kfrts2.eps} 
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Figure 4.7: (a) {1 (w) and Kalman filter estimate (dotted) when the noisy observations (U = 50) 

are of the velocity (E = [1> �1]) every 25th point for the mass-spring oscillator. (b) 

RTS smoother estimate (dotted) and its uncertainty corresponding to (a). (c) shows 

the estimated control (dotted) and the correct value (solid). As seen previously, 

the high frequency variability in x (w) is not detected by the moving mass, but only 

an integrated version. (d) S11 (w) corresponding to the standard error in (a), and 

S11(w> +) corresponding to that in (b). {kfrts5.eps} 
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or, in a primitive way, to forecast the weather), then the future data are simply unavailable, and 

the state estimate made at time w, using data up to and including time w, is the best one can 

do.118 

For estimation, the Kalman filter is only a first step–owing to its failure to use data from 

the formal future. It also raises questions about computational feasibility. As with all recursive 

estimators, the uncertainties P(w> � )> P(w) must  be  available so as to form the  weighted  averages.  

If the state vector contains Q elements, then the model, (4.50), requires multiplying an Q -

dimensional vector by an Q × Q matrix at each time step. The covariance update (4.51) 

requires updating each of Q columns of P(w) in the same way, and then doing it again (i.e., in ¡ ¢W
practice, one forms A(w)P (w), transposes  it,  and  forms  A (w) A(w)P (w) , equivalent to running 

the model 2Q times at each time step). In many applications, particularly in geophysical fluids, 

this covariance update step dominates the calculation, renders it impractical, and leads to some 

of the approximate methods taken up presently. 

The Kalman filter was derived heuristically as a simple generalization of the ideas used 

in Chapter 2. Unsurprisingly, the static inverse results are readily recovered from the filter 

in various limits. As one example, consider the nearly noise-free case in which both process 

and observation noise are very small, i.e. kQk> kRk $ 0. Then  if  P(w> � ) is nearly diagonal, 

P(w> � ) � � 2I, and  ¡ ¢31 
EEW >K(w) �$ EW 

assuming existence of the inverse and, 

x(w) � A˜˜ x(w � 1) + Bq(w � 1) £ ¤
+ EW (EEW )31{y(w) � E Ax̃(w � 1) + Bq(w � 1) } 

{limit1} (4.57) 
= EW (EEW )31 y(w) h i ¡ ¢
+ I EW EEW 31 

E [A˜� x(w � 1) + Bq(w � 1)] = 

¡ ¢
EW EEW 31 

y(w) is just the expression in Eq. (2.96) for the direct estimate of x(w) from a set of 

underdetermined full-rank, noise-free observations. It is the static estimate we would use at time ¡ ¢
w if no dynamics were available. The columns of I EW EEW 31 

E are the nullspace of E (recall � 

the definition of H in Eq. (2.98)) and (4.57) thus employs only those elements of the forecast 

lying in the nullspace of the observations–a sensible result given that the observations here 

produce perfect estimates of components of x(w + 1)  in the range of E. Thus, in this particular 

limit, the Kalman filter computes from the noise-free observations those elements of x(w+1)  that 

it can, and for those which cannot it cannot, it forecasts them from the dynamics. The reader 

ought to examine other limiting cases—retaining process and/or observational noise—including 

the behavior of the error covariance propagation. 
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H{dpsoh. 

It is interesting to apply some of these expressions to the simple problem of finding the mean 

of a set of observations, considered before on P. 137. The model is of an unchanging scalar 

mean, 

{(w) =  {(w � 1) 

observed in the presence of noise, 

|(w) =  {(w) +  q(w) 

where hq(w)2i = U, so  H = 1, D = 1> T  = 0. In contrast to the situation on P. 137, the 

machinery we have developed here requires that the noise be uncorrelated: hq(w)q(w0)i = 0, 

w 6= w0, although as already mentioned, methods exist to overcome this restriction. Suppose that 

the initial estimate of the mean is 0–that is, {̃(0) = 0, with  uncertainty  S (0). Eq. (4.51) is 

S (w> �) =  S (w � 1), and the Kalman filter uncertainty, in the form (4.55), is 

1 1 1 
S (w) S (w � 1) U 

= + > 

a di�erence equation, with known initial condition, whose solution by inspection is, 

1 w 1 
= + = 

S (w) U S (0) 

H = 1> 
;
?S 

< 
@ 

(4.52) with and successively stepping forward produces,119 

(0) 

Using 

w
U X 

{̃(w) =  |(m) > (4.58) {P1} >
U + wS (0)
=
 U 
m=1 

whose limit as w $4  is 
w X1 

˜ |(m) >{(w) �$ 
w 
m=1 

the simple average, with uncertainty S (w) $ 0, as  w $4. If there is no useful estimate available 

of S (0) > rewrite Eq. (4=58) as,

;
?


<
@ 

>


w
U 1 X 

{̃(w) =  |(m) > (4.59)
U@S (0) + w =
U 

m=1 

and take the agnostic limit, 1@S (0) $ 0> or 
;
?


<
@ 

>


w
1 X 

{̃(w) =  |(m) > (4.60)=
w 
m=1 

which is wholly conventional. (Compare these results to those on P. 138. The problem and result 

here are necessarily identical to that on P. 137, except that now we explicitly identified { (w) as 

a statevector rather than as a constant. Kalman filters with static models are just recursive 

least-squares solutions.) 
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4.3.3 The Smoothing Problem 

The Kalman filter permits one to make an optimal forecast from a linear model, subject to the 

accuracy of the various assumptions being made. Between observation times, the state estimate 

evolves smoothly according to the model dynamics. But when observations become available, 

the averaging can draw the combined state estimate abruptly towards the observations, and in 

the interval between the last unobserved state and the new one, model evolution is not followed. 

To obtain a state trajectory that is both consistent with model evolution and the data at all 

times, we need to eliminate the state estimate jumps at the observation times, and solve the 

problem as originally stated. Minimization of M in Eq. (4.41) subject to the model is still the 

goal. Begin the discussion by again considering a one-step process120 . Consider the problem Eqs. 

(4.35-4.39), but where there are only two times involved, w = 0> 1. There is an initial estimate 

x(0)> ˜˜ u(0) � 0 with uncertainties P(0)> Q(0) for the initial state and control vectors respectively, 

a set of measurements at time-step 1, and the model. The objective function is, 

M = [˜ ˜ x(0> +) � x(0)]x(0> +) � x(0)]W 
P(0)31 [˜ ˜


{J4} + [˜ ˜ u(0> +) � u(0)] (4.61)
u(0> +) � u(0)]W 
Q(0)31 [˜ ˜

x(1)]W 
R(1)31 [y(1) � E(1) ̃+ [y(1) � E(1) ̃ x(1)] > 

subject to the model, 

˜ x(0> +) + B(0)q(0) + �˜{62028} x(1) = A(0) ̃ u(0> +) > (4.62) 

with the weight matrices again chosen as the inverses of the prior covariances. A minimizing 

solution to this objective function would produce a new estimate of x(0), denoted x̃(0> +), with  

error covariance P(0> +); the  + denotes use of future observations, y(1), in the estimate. On the 

other hand, we would still denote the estimate at w = 1  as x̃(1), coinciding with the Kalman filter 

estimate, because only data prior to and at the same time would have been used. The estimate 

˜ u(0)> ˜x(1) must be given by Eq. (4.47), but it remains to improve ˜ x(0), while simultaneously 

eliminating the problem of the estimated statevector jump at the filter averaging (observation) 

time. 

The basic issue can be understood by observing that the initial estimates ˜ x(0) lead u(0) = 0> ˜

to a model forecast that disagrees with the final best estimate ˜ u(0)> or ˜x(1). If  either  of  ̃ x(0) 

were known perfectly, the forecast discrepancy could be ascribed to the other one, permitting 

ready computation of the new required value. In practice, both are somewhat uncertain, and 

the modification must be partitioned between them; one would not be surprised to find that the 

partitioning proves to be proportional to their initial uncertainties. 
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To find the stationary point (we will not trouble to prove it a minimum rather than a 

maximum), set the di�erential of M with respect to ˜ x(1), ˜x(0> +), ˜ u(0> +) to zero, 

gM £ ¤
= g˜ ˜ ˜x(0> +)W P(0)31 x(0> +) � x(0)

2 £ ¤
+ g˜ ˜ ˜u(0> +)W Q(0)31 u(0> +) � u(0) (4.63) 

£ ¤
x(1)W E(1)W R(1)31 y(1) � E(1)˜� g˜ x(1) = 0  = 

The coe!cients of the di�erentials cannot be set to zero separately because they are connected 

via the model, Eq. (4.62), which provides a relationship 

g˜ x(0> +) + �(0) g˜x(1) = A(0) g˜ u(0> +)= (4.64) {62030} 

Eliminating gx̃(1), 

gM 
x(0> +)W {P(0)31 [˜ ˜= g˜ x(0> +) � x(0)]

2 

A(0)W E(1)W R(1)31 [y(1) � E(1)˜� x(1)]} 
(4.65) 

u(0> +)W {Q(0)31 [˜ ˜+ g˜ u(0> +) � u(0)] 

+ � W (0)E(1)W R(1)31 [y(1) � E(1)x̃(1)]} = 

gM vanishes, producing a stationary value of M> only if the coe!cients of g˜ u(0> +)x(0> +)> g˜

separately vanish yielding, 

˜ x(0) + P(0)A(0)W E(1)W R(1)31 [y(1) � E(1)˜x(0> +) = ˜ x(1)] > (4.66) {62032} 

˜ u(0) + Q(0)�(0)W E(1)W R(1)31 [y(1) � E(1)˜u(0> +) = ˜ x(1)] > (4.67) {62033} 

and 

x(1) = ˜˜ x(1> �) 
(4.68) {kalman7} £ ¤

+ P(1> �)E(1)W E(1)P(1> �)E(1)W + R(1) 31 
[y(1) � E(1)x̃(1> �)] > 

using the previous definitions of x̃(1> �), P(1> �)= As anticipated, Eq. (4.68) is recognizable as 
the Kalman filter estimate. At this point we are essentially done: An estimate has been produced 

not only of x(1), but an improvement has been made in the prior estimate of x(0) using the 

future measurements, and we have estimated the control term. Notice the corrections to ũ(0), 

x̃(0) are proportional to Q(0)> P(0), respectively, as anticipated. We still need to examine the 

uncertainties of these latter quantities. 

First rewrite the estimates (4.66)—(4.67) as 

˜ ˜ x(1) � x(1> �)] > L(1) = P(0)A(0)W P(1> �)31> (4.69)x(0> +) = x(0) + L(1) [˜ ˜

˜ ˜ ˜ ˜u(0> +) = u(0) + M(1) [x(1) � x(1> �)] > M(1) = Q(0)�(0)W P(1> �)31> 
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which can be done by extended, but uninteresting, algebraic manipulation. The importance of 

these latter two expressions is that both ˜ u(0> +)are expressed in terms of their prior x(0> +)> ˜

estimates in a weighted average with the di�erence between the prediction of the state at w = 

x(1> �) and what was actually estimated there following the data use, ˜1> ˜ x(1). (But the data 

do not appear explicitly in (4.69).) It is also possible to show that, 

P(0> +) = P(0) + L(1) [P(1) � P(1> �)] L(1)W > 
{kalman7b} (4.70) 

Q(0> +) = Q(0) + M(1) [P(1) � P(1> �)] M(1)W = 

Based upon this one-step derivation, a complete recursion for any time interval can be 

inferred. Suppose the Kalman filter has been run all the way to a terminal time, wi . The  result  

x(wi ) and its variance P(wi ). With no future data available, ˜is ˜ x(wi ) cannot be further improved. 

At time wi �1, we  have  an  estimate  ̃x(wi �1) with uncertainty P(wi �1), which could be improved 

by knowledge of the future observations at wi . But this situation is precisely the one addressed 

by the objective function Eq. (4.61) with w = 1  $ wi , and  w = 0  $ wi � 1. Now having improved 

the estimate at wi � 1 and calling it x̃(wi � 1> +) with uncertainty P(wi � 1> +), this new estimate 

is used to improve the prior estimate x̃(wi � 2), and we step all the way back to w = 0. The  

complete recursion is, 

£ ¤
˜ x(w) +  L(w + 1)  x(w + 1> +) � x(w + 1> >x(w> +) = ˜ ˜ ˜ �)

(4.71) 
L(w + 1)  =  P(w)A(w)W P(w + 1> �)31 

£ ¤
˜ u(w) +  M(w + 1)  x(w + 1> +) � x(w + 1> >u(w> +) = ˜ ˜ ˜ �)

(4.72) 
M(w + 1)  =  Q(w)�(w)W P(w + 1> �)31 > £ ¤

P(w> +)= P(w)+L(w+1) P(w+1> +)�P(w+1> �) L(w+1)W > (4.73) £ ¤
Q(w> +)= Q(w)+M(w+1) P(w+1> +)�P(w+1> �) M(w+1)W > (4.74) 

˜ ˜with x(wi > +) � x(wi )> P(wi > +) � P(wi ) = 

This recipe, which uses the Kalman filter on a first forward sweep to the end of the available 

data, and which then successively improves the prior estimates by sweeping backwards, is called 

the “RTS algorithm” or smoother.121 The particular form has the advantage that the data are 
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not involved in the backward sweep, because all of the available information has been used in 

the filter calculation. It does have the potential disadvantage of requiring the storage at each 

time step of P(w). (P(w> � ) is readily recomputed, without y (w) > from (4.51) and need not be 

stored.) By direct analogy with the one-step objective function, the recursion (4.71)—(4.74) is 

seen to be the solution to the minimization of the objective function (4.61) subject to the model. 

Most important, assuming consistency of all assumptions, the resulting state vector trajectory 

x̃ (w> +) now satisfies the model and no longer displays the jump discontinuities at observation 

times of the Kalman filter estimate. 

As with the Kalman filter, it is possible to examine limiting cases of the RTS smoother. For 

example, suppose again that Q vanishes, and A31 exists. Then, 

L(w + 1)  �$ P(w)AW ¡AP(w)AW ¢31 
= A31> (4.75) {62041} 

and Equation (4.71) becomes 

x̃(w> +) �$ A31 £ x̃(w + 1> +) � Bq(w)
¤ 
> (4.76) {62042} 

a sensible backward estimate obtained by simply solving, 

x̃(w + 1)  =  Ax̃(w) +  Bq(w)> (4.77) {62043} 

for x̃(w). Other limits are also illuminating but are left to the reader. 

H{dpsoh. 

The smoother result for the straight-line model (4.15) is shown in Figures 4.4, 4.5 for both 

forms of state vector. The time-evolving estimate is now a nearly perfect straight line, whose 

uncertainty has a terminal value equal to that for the Kalman filter estimate, as it must, and 

reaches a minimum near the middle of the estimation period, before growing again toward w = 0, 

where the initial uncertainty was very large. In the case where the state vector consisted of the 

constant intercept and slope of the line, both smoothed estimates are seen, in contrast to the 

filter estimate, to conform very well to the known true behavior. It should be apparent that the 

best-fitting, straight-line solution of Chapter 2 is also the solution to the smoothing problem, but 

with the data and model handled all at once, a whole-domain method, rather than sequentially. 

Figures 4.2, 4.6, 4.7 shows the state estimate for the mass-spring oscillator made from a 

smoothing computation run backward from w = 300, and its variance. On average, the smoothed 

estimate is closer to the correct value than is the filtered estimate, as expected. The standard 

error is also smaller for the smoothed estimate. The figures display the variance, T11(w> +), 

of the estimate one can make of the scalar control variable x(w). x̃ (w) does not show the high 

frequency variability present in practice, because the mass-spring oscillator integrates the one 
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Figure 4.8: Tracer box model where Mlm represent fluxes between boxes and are chosen to be 

mass conserving. Boxes with shaded corners are boundary boxes with externally 

prescribed concentrations. Numbers in upper right corner are used to identify the 

{ocip_6a.tif} boxes. Stippled boxes are unconnected and completely passive here. 

time-step variability in such a way that only an integrated value a�ects the state vector. But the 

estimated value nonetheless always within two standard errors of the correct value. 

H{dpsoh. 

Consider a problem stimulated by the need to extract information from transient tracers, F, 

in a fluid, which are assumed to satisfy an equation„ 

CF 
{62044} + v · uF � �u 2F = ��F + t(r> w)> (4.78)

Cw 

where t represents sources/sinks and � is a decay rate if the tracer is radioactive. To have a 

simple model that will capture the structure of this problem, the fluid is divided into a set of 

boxes as depicted in Figure 4.8. The flow field, as depicted there, is represented by exchanges 

between boxes given by the Mlm � 0. That is, the Mlm are a simplified representation of the 

e�ects of advection and mixing on a dye F= (A relationship can be obtained between such simple 

parameterizations and more formal and elaborate finite-di�erence schemes. Here, it will only be 

remarked that Mlm are chosen to be mass conserving so that the sum over all Mlm entering and 
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Figure 4.9: Time histories of the forward computation in which boundary concentrations shown 

were prescribed, and values computed from the forward model for boxes 6,7,10,11. 

ocip6_6b.tif} These represent the “truth”. 

leaving a box vanishes.) The discrete analogue of (4.78) is taken to be, 

Fl(w + 1) = Fl(w)� ��wFl(w) 

�w X �w X (4.79) � 
Y

Fl(w)Mlm + Fm (w)Mml
Y 

mMQ (l) mMQ (l) 

where the notation m 5 Q (l) denotes an index sum over the neighboring boxes to box l, Y is a 

volume for the boxes, and �w is the time step. This model can easily be put into the canonical 

form, 

x(w) = Ax(w � 1) +Bq(w � 1) + �u(w � 1) > Q = 0 > (4.80) {62046} 

with the state vector being the vector of box concentrations Fl(w), Fl(w � 1). 

A forward computation was run with initial concentrations everywhere of 0, using  the  bound-

ary conditions depicted in Figure 4.9, resulting in interior box values as shown. Based upon 

these correct values, noisy “observations” of the interior boxes only were constructed at times 

w = 5> 9> 12. 

An initial estimate of tracer concentrations at w = 0  was taken (correctly) to be zero, but 

this estimate was given a large variance (diagonal P(0) with large norm). The boundary box 

concentrations were set erroneously to F = 2  for all w and held at that value. A Kalman 

filter computation was run as shown in Figure 4.10. Initially, the interior box concentration 

estimates rise erroneously (owing to the dye leaking in from the high nonzero concentrations in 

the boundary boxes). At w = 5, the first set of observations becomes available, and the combined 
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Figure 4.10: The left two panels show the correct values for boundary boxes (upper panel) and 

interior ones (lower panel). The right panels show the results of the Kalman filter for 

boundary (upper panel) and interior boxes (lower panel) when noisy observations 

were provided at w = 5> 9> 12= At the observation times, estimates are pulled abruptly 

toward the observations. By the time the last observations are used, estimated and 

correct values are quite close. Although not displayed here, there is an uncertainty 

ocip6_6c.tif} estimate at all times. 
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Figure 4.11: Smoothed estimates of boundary (upper panel) and interior (lower panel) values of 

tracers. The unphysical negative values for small w are indistinguishable from zero 

ocip6_6d.tif} within the error estimates. 
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estimate is driven much closer to the true values. By the time the last set of observations is 

used, the estimated and correct concentrations are quite close, although the time history of the 

interior is somewhat in error. The RTS algorithm was then applied to generate the smoothed 

histories shown in Figure 4.11 and to estimate the boundary concentrations (the controls). As 

expected, the smoothed estimates are closer to the true time history than are the filtered ones 

(the uncertainty estimates are not shown, but the results are consistent with the “truth” within 

statistical expectation). Unless further information is provided, no other estimation procedure 

could do better, given that the model is the correct one. 

Other versions of smoother algorithms exist. Consider one other approach. Suppose the 

Kalman filter has been run forward to some time wf, producing an estimate x̃(wf) with uncertainty 

P(wf). Now suppose, perhaps on the basis of some further observations, that at a later time 

wi > an independent estimate x̃(wi ) has been made, with uncertainty P(wi ). The independence is 

crucial–we suppose this latter estimate is made without using any observations at time wf or 

earlier so that any errors in ˜ x(wi ) are uncorrelated. x(wf) and ˜


Let us run the model backward in time from wi to wi � 1:


{62047} xe(wi � 1) = A31˜˜ x(wi ) � A31Bq(wi � 1) (4.81) 

where the subscript e denotes a backward-in-time estimate. The reader may object that run-

ning a model backward in time will often be an unstable operation; this objection needs to be 

addressed, but ignore it for the moment. The uncertainty of x̃(wi � 1) is, 

W A3W >{62048} Pe(wi � 1) = A31P(wi )A
3W + A31 �Q(wi � 1)� (4.82) 

as in the forward model computation. This backward computation can be continued to time wf, 

at which point we will have an estimate, x̃e(wf), with uncertainty Pe(wf). 

The two independent estimates of x(wf) can be combined to make an improved estimate  

using the relations Chapter 2, Eq. (2.442), 

¡ ¢ ¡ ¢ 
˜ x(wf) +  P(wf) P(wf) +  Pe(wf) 

31
˜ ˜{62049} x(wf> +) = ˜ xe(wf) � x(wf) (4.83) 

and (Eq. 2.444), 

D E 
x(wf> +) � x(wf)] ˜P(wf) =  [˜ x [(wf> +) � x(wf)]

W 

{P2} (4.84) £ ¤31 
= P(wf)31 + Pe(wf)

31 = 

This estimate is the same as would be obtained from the RTS algorithm run back to time wf– 

because the same objective function, model, and data have been employed. The computation has 
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been organized di�erently in the two cases. This backwards running computation can be used 

at all points of the interval, as long as the data used in the forward and backward computations 

are kept disjoint so that the two estimates are uncorrelated. 

Running a model backward in time may indeed be unstable if it contains any dissipative 

terms. A forward model may be unstable too, if there are unstable elements, either real ones 

or numerical artifacts. But the expressions in (4.83-4.84) are stable, because the computation 

of Pe(w) and its use in the updating expression (4.83) automatically downweights unstable el-

ements whose errors will be very large, and which will not carry useful information from the 

later state concerning the earlier one. The same situation would occur if the forward model had 

unstable elements–these instabilities would amplify slight errors in the statement of their initial 

conditions, rendering them di!cult to estimate from observations at later times. Examination 

of the covariance propagation equation and the filter gain matrix shows that these elements 

are suppressed in the Kalman filter estimate, with correspondingly large uncertainties. The fil-

ter/smoother formalism properly accounts for unstable, and hence di!cult-to-calculate param-

eters, by estimating their uncertainty as very large, thus handling very general ill-conditioning. 

In practice, one needs to be careful, for numerical reasons, of the pitfalls in computing and using 

matrices that may have norms growing exponentially in time. But the conceptual problem is 

solved. As with the Kalman filter, it is possible to rewrite the RTS smoother expressions (4.71)— 

(4.74) in various ways for computational e!ciency, storage reduction, and improved accuracy. 122 

The dominant computational load in the smoother is again the calculation of the updated co-

variance matrices, whose size is square of the state-vector dimension, at every time step, leading 

to e�orts to construct simplified algorithms that retain most of the virtues of the filter/smoother 

combination but with reduced load. For example, it may have already occurred to the reader 

that in some of the examples displayed, the state vector uncertainties, P,  in both the  filter  

and the smoother appear to rapidly approach a steady state. This asymptotic behavior in turn 

means that the gain matrices, K> L> M will also achieve a steady state, implying that one no 

longer needs to undertake the updating steps—fixed gains can be used. Such steady-state opera-

tors are known as “Wiener filters” and “smoothers” and they represent a potentially very large 

computational savings. One needs to understand the circumstances under which such steady 

states can be expected to appear, and we will examine the problem on P. 246. {pagesteadysta 

4.3.4 Other Smoothers 

The RTS algorithm is an example of what is usually called a “fixed-interval” smoother because 

it assumed that the results are required for a particular stored interval 0 w wi = Other forms � � 

for other purposes are described in the literature, including “fixed-lag” smoothers in which one 
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Figure 4.12: Mass-spring oscillator model with friction (u = 0=01) run backwards in time from 

conditions specified at w = 1000= The system is unstable, and small uncertainties 

in the starting conditions would amplify. but the Kalman filter run backwards 

remains stable because its error estimate also grows–systematically downweighting 

the model forecast relative to any data that become available at earlier times. A 

model with unstable elements in the forward direction would behave analogously 

when integrated in time with growing estimated model forecast error. {ocip6_8.tif} 
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is interested in an estimate at a fixed time wi � w1 as wi advances, usually in realtime. A “fixed 

point” smoother addresses the problem of finding a best estimate x̃ (w1) with w1 fixed and wi 

continually increasing. When w1 = 0> as data accumulates, the problem of estimating the initial 

conditions is a special case of the fixed point smoother problem. 


