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In practical use of adaptive methods, it is common to reduce the problem dimensionality 

by modelling the error covariance matrices, that is by assuming a particular, simplified struc-

ture described by only a number of parameters much less than the number of matrix elements 

(accounting for the matrix symmetry). We must leave this subject to the references. 

Appendix to Chapter. Doubling 

We wish to make the doubling algorithm plausible.178 Consider the matrix equation, 

Bn+1 = FBn F +C> (5.30) {doubling1} 

and we seek to time-step it. Starting with B1> one has, time stepping as far as n = 3> 

B2 = FB1F
W +C>


B3 = FB2FW +C = F2B1F2W +FQFW +C>


B4 = FB3F
W +C


= F2B2F2W +FCFW +C 

= F2B2F2W +B2> 

that is, B4 is  given in terms  of  B2= More generally, putting Mn+1 =M
2 

nn , Nn+1 =MnNnM
W +Nn , 

with M1= F> N1 = Q> then M2n = F
2n 
> Nn+1 = B2n and one is solving Eq. (5.30) so that the 

time step doubles at each iteration. An extension of this idea underlies the doubling algorithm 

used for the Riccati equation. 

Notes 
152 See for example, Kitagawa and Sato (2001) for references. 
153 See, e.g., Arulampalam et al. (2002). Their development relies on a straightforward Bayesian approach. 
154 See Evensen (1996) and the references there for a more complete discussion. 
155 See Press et al. (1992) for detailed help concerning generating values from known probability distributions. 
156 Kalnay (2003). 
157 See Gardiner (1985) for a complete discussion 
158 Evensen (1994, 1996) are good starting points for practical applications, insofar as problem dimension have 

permitted. See Kalnay (2003) for a broad discussion of the specific numerical weather forecasting problem. 
159 See the reviews by Lorenc (1986), Daley, (1991); or Ghil & Malanotte-Rizzoli, 1991). 
160 Usually called “3D-VAR”, by meteorologists, although like “4D-VAR” it is neither variational nor restricted 

to three dimensions. 
161 Anthes (1974) 
162 Gelb (1974, Chs. 7,8) has a general discussion of the computation reduction problem, primarily in the 

continuous time context, but the principles are identical. 
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163
Kalman’s (1960) filter derivation was specifically directed at extending the Wiener theory to the transient 

situation, and it evidently reduces back to the Wiener theory when a steady-state is appropriate.) 
164
Anderson and Moore (1979) should be consulted for a complete discussion.

165 Fukumori et al. (1993) discuss this problem in greater generality for a fluid flow.

166
Fukumori (1995), who interchanges the roles of D> D+ = 
167
A general discussion of various options for carrying out the transformations between fine and coarse states is 

provided by Fieguth et al. (2003). 
168
Used for example, by Cane et al. (1996). 
169
E.g., Brogan (1985). 
170
Thacker (1989) and Marotzke and Wunsch (1993). 
171
Tziperman et al. (1992b) grapple with ill-conditioning in their results; the ill-conditioning is interpretable as 

arising from a nullspace in the Hessian. 
172
This potential confusion is the essence of the conclusions drawn by Farrell (1989), and Farrell and Moore 

(1993) and leads to the discussion by Trefethen (1997, 1999) of pseudo-spectra. 
173
Bracewell (1978) 
174
Trefethen (1997) 
175
Hasselmann (1988); von Storch et al., (1988, 1993). 
176
The meteorological literature, e.g., Farrell and Moore (1993), renamed this singular vector as the “optimal” 

vector. 
177
Among textbooks that discuss this subject are those of Haykin (1986), Goodwin and Sin (1984), and 

Ljung (1987). 
178
Following Anderson and Moore (1979, p. 67). 




