
Chapter 3 

Extensions of Methods 

In this Chapter we extend and apply some of the methods developed in Chapter 2. The problems 

discussed there raise a number of issues concerning models and data that are di!cult to address 

with the mathematical machinery already available. Among them are the introduction of left and 

right eigenveectors, model nonlinearity, the potential use of inequality constraints, and sampling 

adequacy. 

3.1 The General Eigenvector/Eigenvalue Problem 
{pagenonorthog 

To understand some recent work on so-called pseudospectra and some surprising recent results on 

fluid instability, it helps to review the more general eigenvector/eigenvalue problem for arbitrary, 

square, matrices. Consider, 

Egl = �lgl> 1 � l � Q (3.1) {A1} 

If there are no repeated eigenvalues gl, then it is possible to show that there are always Q 

independent gl which are a spanning set, but which are not usually orthogonal. Because in most 

problems dealt with in this book we can often make small perturbations to the elements of E 

without creating any physical damage, it su!ces here to assume that such perturbations can 

always assure that there are Q distinct �l= (Failure of the hypothesis leads to the Jordan form 

which requires a somewhat tedious discussion.) A matrix E is “normal” if it has an orthonormal 

spanning set. Otherwise it is “non-normal.” (Any matrix of form AAW etc., is necessarily 

normal.) 

Denote G = {jl} > � = gldj (�l) = It follows immediately that E can be diagonalized: 

G31EG = � (3.2) 

but for a non-normal matrix, G=1 6= GW . 
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Matrix EW has a di�erent set of spanning eigenvectors, but the same eigenvalues: 

EW fl = fl (3.3) {A3} 

which can be written 

{A4} f W 
l E =�lf W 

l = (3.4) 

The gl are hence known as the “right eigenvectors,” and the fl as the “left eigenvectors.” Mul-

tiplying (3.1) on the left by f W 
m > and (3.4) on the right by gl and subtracting shows, 

{A5} 0 = (�l � �m ) f 
W 
m gl (3.5) 

or 

{A6} f W 
m gl = 0> l  6= m= (3.6) 

That is to say, the left and right eigenvectors are orthgonal for di�erent eigenvalues, but f W 
m gm 6= 0= 

(In general the eigenvectors and eigenvalues are complex even for purely real E= The reader is 

warned that some software automatically conjugates a transposed vector or matrix, and the 

derivation of (3.6) shows that it applies only to the non-conjugated variables.) 

Consider now a “model,” 

{A7} Ax = b= (3.7) 

The norm of b is supposed bounded, kbk � e> and the norm of x will be, 

° ° 
kxk =°A31b° (3.8) 

What is the relationship of kxk to kbk? 

Let gl be the right eigenvectors of A= Write 

Q X 
b = �lgl (3.9) 

l=1 

Q X 
x = �lgl (3.10) 

l=1 

If the gl were orthogonal, |�l| � kbk = But as they are not orthonormal, the �l will need to 

be found through a system of simultaneous equations (ecall the discussion in Chapter 2 of the 

expansion of an arbitrary vector in non-orthogonal vectors) (2.3) and no simple bound on the 

�l is then possible; some may be very large. Substituting into (3.7), 

Q Q X X 
�l�lgl = �lgl= (3.11) 

l=1 l=1 
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Figure 3.1: Two dimensional example of the expansion of a vector f in two non-orthogonal 

vectors. Although e1and e2 are a spanning set, the expansion coe!cients become 

very large of f is nearly orthogonal to both. (There is “nearly a nullspace” as ! $ 0=) {ocip3.1new.ep 

A term—by-term solution is evidently no longer possible because of the lack of orthogonality. 

But multiplying on the left by f W > and invoking (3.6) produces, m 

�m �m f 
W gm = � f 

W gm (3.12)m m m 

or, 

�m = �m @�m > �m 6= 0= (3.13) 

Even if the �m are all of the same order, the possibility that some of the � are very large m 

implies that eigenstructures in the solution may be much larger than e= This possibility becomes 

very interesting when we turn to time-dependent systems. At the moment, note that partial 

di�erential equations that are self-adjoint produce discretizations which have coe!cient matrices 

A> such that AW = A= Thus self-adjoint systems have normal matrices, and the eigencomponents 

of the solution are all immediately bounded by kbk @�l. Non-self-adjoint systems produce non-

normal coe!cient matrices and so can therefore unexpectedly generate very large eigenvector 

contributions. 

3.2 Sampling 

Chapter 2, on P. 130, we discussed the problem of making a uniformly gridded map from 

irregularly spaced observations. But not any set of observartions proves adequate to the purpose. 

The most fundamental problem generally arises under the topic of “sampling” and “sampling 

error.” This subject is a large and interesting one in its own right,60 and we can only outline 

the basic ideas. 
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The simplest and most fundamental idea derives from consideration of a one-dimensional 

continuous function, i(t)> where t is an arbitrary independent variable, usually either time or 

space, and i(t) is supposed to be sampled uniformly at intervals, �t> an infinite number of times 

to produce the infinite set of sample values {i(q�t)}, �4 � q � 4. The sampling theorem, 
or sometimes the “Shannon-Whittaker Sampling Theorem”61 is a statement of the conditions 

under which i(t) should be reconstructable from the sample values. Let the Fourier transform 

of i(t) be defined as Z 
{36023} î(u) =  

" 

i(t)h2l�utgt > (3.14) 
3" 

and assumed to exist. The sampling theorem asserts that a necessary and su!cient and assumed 

to exist condition to perfectly reconstruct i(t) from its samples is that, 

{36024} |î(u)| = 0  > |u| � 1@(2�t) = (3.15) 

From the theorem emerges the Shannon-Whittaker formula for the reconstruction, 

X 
i(t) =  

" 

i(q�t)
sin[(2�@2�t)(t � q�t)]

{36025} = (3.16)
(2�@2�t)(t � q�t)

q=3" 

Mathematically, the Shannon-Whittaker theorem is surprising–because it provides a condition 

under which a function at an uncountable infinity of points–the continuous line–can be per-

fectly reconstructed from information known only at a countable infinity, q�t> of them. For 

present purposes, an intuitive interpretation is all we seek and this is perhaps best done by 

considering a special case in which the conditions of the theorem are violated. 

Figure 3.2 displays an ordinary sinusoid whose Fourier transform can be represented as 

ˆ{36026} i(u) =  1 
2 (�(u � u0) � �(u + u0)) > (3.17) 

which is sampled as depicted, and in violation of the sampling theorem. It is quite clear that 

there is at least one more perfect sinusoid, the one depicted with the dashed line, which is 

completely consistent with all the sample points and which cannot be distinguished from it 

using the measurements alone. A little thought shows that the apparent frequency of this new 

sinusoid is, 
q

{36027} ud = u0 ± (3.18) 
�t 

such that 
1 

{36028} |ud| � = (3.19)
2�t 

The samples cannot distinguish the true high frequency sinusoid from this low frequency one, 

and the high frequency can be said to masquerade or “alias” as the lower frequency one.62 The 
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Figure 3.2: E�ects of undersampling a periodic function: solid curve is | (w) = sin  (2�w@8) sam-

pled at time intervals of �w = 0=1= The dashed curve is the same function, but 

sampled at intervals �w = 7= With this undersampling, the curve of frequency 

v = 1@8 time units > is aliased into one that appears to have a periodicity of pe-

riod vd = 1@8 � 1@7 = 1@56 ? 1@14= That is, the aliased curve appears to have a 

sampsine.eps} period of 56 time units. 

Fourier transform of a sampled function is easily seen to be periodic with period 1@�t in the 

transform domain, that is, in the u space.63 Because of this periodicity, there is no point in 

computing its values for frequencies outside |u| � 1@2�t (we make the convention that this 

“baseband,” i.e., the fundamental interval for computation, is symmetric about u = 0, over  a  

distance 1@2�t; see fig. 3.3). Frequencies of absolute value larger than 1@2�t, the  so-called  

Nyquist frequency, cannot be distinguished from those in the baseband, and alias into it. Fig. 

3.3 shows a densely sampled, non-periodic function and its Fourier transform compared to that 

obtained from the undersampled version overlain. Undersampling is a very unforgiving practice. 

The consequences of aliasing range from the negligible to the disastrous. A simple example 

is that of the principal lunar tide, usually labelled P2, with a period of  12=42 hours, u = 1=932 

cycles/day. An observer measures the height of sea level at a fixed time, say 10 AM. each day so 

that �t = 1  day. Applying the formula (3.18), the apparent frequency of the tide will be =0676 

cycles/day for a period of about 14=8 days (q = 2). To the extent that the observer understands 

what is going on, she will not conclude that the principal lunar tide has a period of 14=8 days, 

but will realize that the true period can be computed through (3.18) from the apparent one. 

But without that understanding, some bizarre theory might be produced.64 

The reader should object that the Shannon-Whittaker theorem applies only to an infinite 

number of perfect samples and that one never has either perfect samples or an infinite number 
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Figure 3.3: (Left panel), a non-periodic function sampled at intervals �w = 0=1> and the same 

function sampled at intervals �w = 7 time units. (Right panel). Real part of the 

Fourier components of the two functions shown in the left panel. The subsampled 

function has a Fourier transform confined to |v| � 1@(2 · 7) while that of the original, 

more densely sampled function extends to |v| � 1@0=1 = 10> most of which is not 

displayed. Note that the subsampled function has a very di�erent Fourier transform 

from that of the original densely sampled one. Both transforms are periodic in 

frequency v, with period equal to the width of their corresponding basebands. (This 

periodicity is suppressed in the plot.) Note in particular how erroneous an estimate 

of the temporal derivative of the undersampled function would be in comparison to 

sampgenl.eps} the highly sampled one. 
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of them. In particular, it is true that if the duration of the data in the t domain is finite, then it 

is impossible for the Fourier transform to vanish over any finite interval, much less the infinite 

interval above the Nyquist frequency. 65 Nonetheless, the rule of thumb that results from (3.16) 

has been found to be quite a good one. The deviations from the assumptions of the theorem are 

usually dealt with by asserting that sampling should be done so that, 

�t ¿ 1@2u0 = (3.20) {36029} 

(The example in Fig. 3.3 demonstrates that Fourier transforms of finite duration sampled signals 

are nonetheless useful.) Many extensions and variations of the sampling theorem exist–taking 

account of the finite time duration , the use of “burst-sampling” and known function derivatives, 

etc.66 Most of these variations are sensitive to noise. There are also extensions to multiple 

dimensions,67 which are required for mapmaking purposes. Because failure to acknowledge the 

possibility that a signal is undersampled is so dire, one concludes that consideration of sampling 

is critical to any discussion of field data. 

3.2.1 One-Dimensional Interpolation 

Let there be two observations [|1> |2]W = [{1 +q1> {2 +q2]
W located at positions [u1> u2]W where ql 

are the observation noise. We require an estimate of {(ũ), where  u1 ? ũ ?  u2. The formula (3.16) 

is unusable–there are only two noisy observations, not an infinite number of perfect ones. We 

could try using linear interpolation: 

{̃(ũ) =  
|u2 � ũ| 
|u2 � u1| 

|(u1) +  
|u1 � ũ| 
|u2 � u1| 

|(u2) = (3.21) {36030} 

If there are Q data points, u1, 1 � l � Q , then another possibility is Aitken-Lagrange 

interpolation:68 

P X 
{̃(ũ) =  om (ũ)|m > (3.22) {36031a} 

m=1 

om (ũ) =  
(ũ � u1) · · · (ũ � uP ) 
(um � u1) · · · (um � uP ) 

= (3.23) {36031b} 

Eqs. (3.21)-(3.23) are only two of many possible interpolation formulas. When would one be 

better than the other? How good are the estimates? To answer these questions, let us take a 

di�erent tack, and employ the Gauss-Markov theorem, assuming we know something about the 

necessary covariances. 

Suppose either h{i = hqi = 0  or that a known value has been removed from both (this just 

keeps our notation a bit simpler). Then, 
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Figure 3.4: (Both panels) Solid curve is the “true” curve, { (u) > from which noisy samples 

(denoted ‘x’) have been obtained. { (u) was generated to have a true covari-¡ ¢ 
ance V = exp  u2@100 and the “data”, | (ul) =  { (ul) +  ql where hqli = 0>�
hqlqm i = (1@4) �lm , the values generated from a Gaussian probability density. In 

the lower panel, linear interpolation is used to generate the estimated values of { (u) 

(dashed line). The estimates are identical to the observations at u = ul= In the upper 

panel, objective mapping was used to make the estimates (dashed line). Note that 

{ (ul) 6˜ = | (ul), and that an error bar is available–as plotted. The true values are 

generally within one standard deviation of the estimated value (but about 35% of 

the estimated values would be expected to lie outside the error bars), and the esti-

mated value is within two standard deviations of the correct one everywhere. The 

errors in the estimates, {̃ (ul) � { (ul) are clearly spatially correlated, and can be 

inferred from Eq. 3.28 (not shown). The values of { (u) were generated to have the 

inferred covariance V> by forming the matrix, S= wrhsolw} (V (ul> um )) > and obtaining 

its symmetric factorization , S = U�UW = x (u) =  U��, where  the  elements  of  � 

are pseudo-random numbers. {interp1.eps} 
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u> um ) � h{(˜ u)({(um ) +  q(um ))i = R{{(˜R{| (˜ u)|(um )i = h{(˜ u> um )> (3.24) 

R|| (ul> um ) � h({(ul) +  q(ul))({(um ) +  q(um ))i (3.25) 

= R{{(ul> um ) +  Rqq(ul> um ) > (3.26) 

where it has been assumed that h{(u)q(t)i = 0. 

From (2.394), the best linear interpolator is 

P X 
˜ u> r) =  R{{(˜x = By> B(˜ u> um ) {R{{ + Rqq}

31 (3.27) {36033a} ml 
m=1 

({R{{ + Rqq}
31 means the ml element of the inverse matrix) and the minimum possible error ml 

which results is 

P P XX 
u�> ũ� ) =  R{{(˜ u�> um ){R{{ + Rqq}

31R{{(ul> ũ� ) (3.28) {36033b} P(˜ u�> ũ� ) � R{{(˜ ml 
m l 

u> ũ) are both scalars), and ˜ x.(here R{{, P(˜ n = y � ˜

Results for both linear interpolation and objective mapping are shown in Fig. 3.4. Notice 

that like other interpolation methods, the optimal one is simply a linear combination of the 

data. If any other set of weights B is chosen, then the interpolation is not as good as it could 

be in the mean-square error sense; the error of any such scheme can be obtained by substituting 

it into (2.391) and evaluating the result (the true covariances still need to be known). 

Looking back now at the two familiar formulas (3=21> 3=22), it is clear what is happening: 

they represent a choice of B. Unless the covariance is such as to produce one of the two sets 

of weights as the optimum choice, neither Aitken-Lagrange nor linear (nor any other common 

choice, like a spline) is the best one could do. Alternatively, if either of (3.21), (3.22)—(3.23) was 

thought to be the best one, they are equivalent to specifying the solution and noise covariances. 

If interpolation is done for two points, ũ�, ũ� > the error of the two estimates will usually 

be correlated, and represented by P(ũ�> ũ� ). Knowledge of the correlations between the errors 

in di�erent interpolated points is often essential–for example, if one wishes to interpolate to 

uniformly spaced grid points so as to make estimates of derivatives of {. Such derivatives might 

be numerically meaningless if the mapping errors are small scale (relative to the grid spacing) 

and of large amplitude. But if the mapping errors are large scale compared to the grid, the 

derivatives may tend to remove the error and produce better estimates than for { itself. 

Both linear and Lagrangian weights will produce estimates which are exactly equal to the 

observed values if ũ� = us, that is, on the data points themselves. Such a result is characteristic 
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of “true interpolation.” If no noise is present, then the observed value is the correct one to use 

at a data point. In contrast, the Gauss-Markov estimate will di�er from the data values at the 

data points, because the estimator attempts to reduce the noise in the data by averaging over 

all observations, not just the one at the local point. The Gauss-Markov estimate is thus not a 

true interpolator; it is instead a “smoother.” One can recover true interpolation if kRqqk$ 0, 

although the matrix being inverted in (3.27), (3.28) can become singular. The weights B can 

be fairly complicated if there is any structure at all in either of R{{, Rqq. The estimator takes 

explicit account of the expected spatial structure of both x, n to weight the data in such a way 

as to most e�ectively “kill” the noise relative to the signal. One is guaranteed that no other 

linear filter can do better. 

If kRqqk À kR{{k, x̃ $ 0, manifesting the bias in the estimator; this bias was deliberately 

introduced so as to minimize the uncertainty (minimum variance about the true value). Thus, 

interpolated values tend toward zero, particularly far from the data points. For this reason, it 

is common to use expressions such as (2.411) to first remove the mean, prior to mapping the 

residual, adding the estimated mean back in afterward. The interpolated values of the residuals 

are nearly unbiased, because their true mean is nearly zero. Rigorous estimates of P for this 

approach require some care, as the mapped residuals contain variances owing to the uncertainty 

of the estimated mean,69 but the corrections are commonly ignored. 

As we have seen, the addition of small positive numbers to the diagonal of a matrix usually 

renders it non-singular. In the formally noise-free case, Rqq $ 0> and one has the prospect 

that R{{ by itself may be singular. To understand the meaning of this situation, consider the 

general case, involving both matrices. Then the symmetric form of the SVD of the sum of the 

two matrices is, 

{36034} R{{ + Rqq = U�UW = (3.29) 

If the sum covariance is positive definite, � will be square with N = P and the inverse will 

exist. If the sum is not positive definite, but is only semi-definite, one or more of the singular 

values will vanish. The meaning is that there are possible structures in the data which have 

been assigned to neither the noise field nor the solution field. This situation is realistic only if 

one is truly confident that y does not contain such structures. In that case, the solution, 

˜{36035} x = R{{(R{{ + Rqq)31 y = R{{(U�31UW )y> (3.30) 

will have components of the form 0@0, the denominator corresponding to the zero singular values 

and the numerator to the absent, impossible, structures of y. One can arrange that the ratio of 

these terms should be set to zero (e.g., by using the SVD). But such a delicate balance is not 

necessary. If one simply adds a small white noise covariance to R{{ + Rqq $ R{{ + Rqq + �2I, 
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or R{{ $ R{{ + �2I> one is assured, by the discussion of tapering, that the result is no longer 

singular–all structures in the field are being assigned either to the noise or the solution (or in 

part to both). 

Anyone using a Gauss-Markov estimator to make maps must do checks that the result is 

consistent with the prior estimates of R{{, Rqq. Such checks include determining whether 

the di�erence between the mapped values at the data points and the observed values have 

numerical values consistent with the assumed noise variance; a further check involves the sample 

autocovariance, of ñ and its test against Rqq (see books on regression for such tests). The 

mapped field should also have a variance and covariance consistent with the prior estimate R{{. 

If these tests are not passed, the entire result should be rejected. 

3.2.2 Higher Dimensional Mapping 

We can now immediately write down the optimal interpolation formulas for an arbitrary distri-

bution of data in two or more dimensions. Let the positions where data are measured be the set 

rm with measured value y(rm ), containing noise n. It is assumed that aliasing errors are unim-

portant. The mean value of the field is first estimated and subtracted from the measurements 

and we proceed as though the true mean were zero.70 Fundamentally, it is nothing more than 

an application of the Gauss-Markov theorem in two (most commonly) dimensions.71 

One proceeds exactly as in the case where the positions are scalars, minimizing the ex-

pected mean-square di�erence between the estimated and the true field x(r̃�). The  result  

is (3.27), (3.28), except that now everything is a function of the vector positions. If the field 

being mapped is also a vector (e.g., two components of velocity) with known covariances between 

the two components, then the elements of B become matrices. The observations could also be 

vectors at each point. 

An example of a two-dimensional map is shown in figure 3.5:. The “data points”, |(rl)> 
˜ 

are the x-s, while estimates of {(rl) on the uniform grid were wanted. The a priori noise was 
2set to hni = 0, Rqq = hqlqm i = �2 

q�lm , �q = 1, and the true field covariance was hxi = 0, 

R{{ = hx(rl)x(rm )i = S0 exp �|rl � rm |2@O2, S0 = 25, O2 = 100. Figure 3.5 also shows the 

estimated values and Figs. 3.5, 3.6 the error variance estimate of the mapped values. Notice 

that far from the data points, the estimated values are 0 :  the mapped field goes asymptotically 

to the estimated true mean, with the error variance rising to the full value of 25, which cannot 

be exceeded. That is to say, when we are mapping far from any data point, the only real 

information available is provided by the prior statistics–that the mean is 0, and the variance 

about that mean is 25. So the expected uncertainty of the mapped field, in the absence of data, 

cannot exceed the prior estimate of how far from the mean the true value is likely to be. The 
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Figure 3.5: (Upper) Observations, shown as solid dots, from which a uniformly gridded map is 

desired. Contours were constructred using a fixed covariance and the Gauss-Markov 

estimate ( 3.27). Noise was assumed white with a variance of 1. (Lower) Expected 

standard error of the mapped field in the top panel. Values tend, far from the 

observations points, to a variance of 25, which was the specified field variance, and 

hence the largest expected error is 
s
25= Note the minima centered on the data points. {ocip3_15ab.ti 

best estimate is then the mean itself. 

A complex error structure of the mapped field exists–even in the vicinity of the data points. 

Should a model be “driven” by this mapped field, one would need to make some provision in 

the model accounting for the spatial change in the expected errors of this forcing. 

In practice, most published objective mapping (often called “OI” for “objective interpola-

tion,” although we as we have seen, it is not true interpolation) has been based upon simple 

analytical statements of the covariances R{{, Rqq as used in the example: that is, they are 

commonly assumed to be spatially stationary and isotropic (depending upon |rl � rm | and not 

upon the two positions separately nor upon their orientation). The use of analytic forms removes 

the necessity for finding, storing, and computing with the potentially very large P × P data 
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Figure 3.6: One of the rows of P corresponding to the grid point in Fig. 3.5 at 39�N, 282�E. 

Displays the expected correlations that occur in the errors of the mapped field. These 

errors would be important e.g., in any use that di�erentiated the mapped field. For 

cip3_15c.tif} plotting purposes, the variance was normalized to 1. 
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covariance matrices in which hypothetically every data or grid point has a di�erent covariance 

with every other data or grid point. But the analytical convenience often distorts the solutions, 

as many fluid flows and other fields are neither spatially stationary nor isotropic.72 

3.2.3 Mapping Derivatives 

A common problem in setting up fluid models is the need to specify the fields of quantities 

such as temperature, density, etc., on a regular model grid. One also often must specify the 

derivatives of these fields for use in advection-di�usion equations, 

CF 
{36036} + v · F = N 2F> (3.31)

Cw 
u u 

where F is any scalar field of interest. Suppose one wished to estimate a spatial derivative as a 

one-sided di�erence, 

{36037} = (3.32) 
CF(ũ1) � 

F(ũ1) � F(ũ2) 
Cu ũ1 ũ2� 

Then one might think simply to subtract the two estimates made from eq. (3.27), producing 

CF(ũ1) 1 
{36038} u1> um ) � R{{(ũ2> um ))(R{{ + Rqq)31 y= (3.33)

Cu 
� 
�u 

(R{{(˜

Alternatively, suppose we tried to estimate CF@Cu directly from (2.390), using x = F(u1) � 

F(u2). R|| = R{{ + Rqq, which describes the data, does not change. R{| does change: 

{36039} R{| = h(F(˜ u2))(F(um ) +  q(um ))i = R{{(˜ u2> um ) > (3.34)u1) � F(˜ u1> um ) � R{{(˜

which when substituted into (2.394) produces (3.33). Thus, the optimal map of the finite di�er-

ence field is simply the di�erence of the mapped values. More generally, the optimally mapped 

value of any linear combination of the values is that linear combination of the maps.73 

3.3 Inequality Constraints; Nonnegative Least Squares 

In many estimation problems, it is useful to be able to impose inequality constraints upon the 

solutions. Problems involving tracer concentrations, for example, usually demand that they 

remain positive; empirical eddy di�usion coe!cients are sometimes regarded as acceptable only 

when non-negative; in some fluid flow problems we may wish to impose directions, but not 

magnitudes, upon velocity fields. 

Such needs lead to consideration of the forms, 

{eq:51002} Ex + n = y> (3.35) 

{eq:51003} Gx h > (3.36)� 
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where the use of a greater-than inequality to represent the general case is purely arbitrary; 

multiplication by minus 1 readily reversing it. G is of dimension P2 × Q . 

Several cases need to be distinguished. (A) Suppose E is full rank and fully determined; then 

the SVD solution to (3.35) by itself is x̃, ñ, and there is no solution nullspace. Substitution of the 

solution into (3.36) shows that the inequalities are either satisfied or that some are violated. In 

the first instance, we are finished, and the inequalities bring no new information. In the second 

case, the solution must be modified and necessarily, kñk will increase, given the noise-minimizing 

nature of the SVD solution. It is also possible that the inequalities are contradictory, in which 

case there is no solution. 

(B) Suppose that E is formally underdetermined–so that a solution nullspace exists. If the 

particular-SVD solution violates one or more of the inequalities and requires modification, we can 

distinguish two subcases. (1) Addition of one or more nullspace vectors permits the inequalities 

to be satisfied. Then the solution residual norm will be una�ected, but kx̃k will increase. (2) The 

nullspace vectors by themselves are unable to satisfy the inequality constraints, and one or more 

range vectors are required to do so. Then both kx̃k, kñk will increase. 

Case (A) is the conventional one.74 The so-called Kuhn-Tucker-Karush theorem is a require-

ment for a solution x̃ to exist. Its gist is as follows: Let P � Q and E be full rank; there are 

no vl in the solution nullspace. If there is a solution, there must exist a vector, q, of dimension  

P2> such that 

EW (Ex̃ � y) = GW q = (3.37) {eq:51004} 

Gx � h = r > (3.38) {eq:51005} 

where the P2 elements of q are divided into two groups. For group 1, of dimension  p1, 

ul = 0> tl � 0 > (3.39) {eq:51006} 

and for group 2, of dimension  p2 =P2 � p1, 

ul A 0> tl = 0 = (3.40) {eq:51007} 

To understand this theorem, recall that in the solution to the ordinary overdetermined least-

squares problem, the left-hand side of (3.37) vanishes identically (2.91 and 2.262), being the 

projection of the residuals onto the range vectors, ul> of EW . If this solution violates one or 

more of the inequality constraints, one must introduce into it structures that produce increased 

residuals. 

Because there are no nullspace vl, the  rows  of  G may each be expressed  exactly by an  

expansion in the range vectors. In the second group of indices, the corresponding inequality 
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constraints are already satisfied by the ordinary least-squares solution, and no modification of the 

structure proportional to vl is required. In the first group of indices, the inequality constraints 

are marginally satisfied, at equality, only by permitting violation of the demand (2.91) that the 

residuals should be orthogonal to the range vectors of E. If the ordinary least-squares solution 

violates the inequality, the minimum modification required to it pushes the solution to the 

edge of the acceptable bound, but at the price of increasing the residuals proportional to the 

corresponding ul. The algorithm consists of finding the two sets of indices and then the smallest 

coe!cients of the vl corresponding to the group 1 indices required to just satisfy any initially 

violated inequality constraints. A canonical special case, to which more general problems can 

be reduced, is based upon the solution to G = I, h = 0–called “nonnegative least squares”.75 

The requirement, x � 0, is essential in many problems involving tracer concentrations, which 

are neccessarily positive. 

The algorithm can be extended to the underdetermined/rank-deficient case in which the 

addition, to the original basic SVD solution, of appropriate amounts of the nullspace of vl is 

capable of satisfying any violated inequality constraints.76 One simply chooses the smallest 

mean-square solution coe!cients necessary to push the solution to the edge of the acceptable in-

equalities, producing the smallest norm. The residuals of the original problem do not increase– 

because only nullspace vectors are being used. G must have a special structure for this to be 

possible. 

The algorithm can be further generalized77 by considering the general case of rank-deficiency/-

underdeterminism where the nullspace vectors by themselves are inadequate to produce a solu-

tion satisfying the inequalities. In e�ect, any inequalities “left over” are satisfied by invoking 

the smallest perturbations necessary to the coe!cients of the range vectors vl. 

3.4 Linear Programming 

In a number of important geophysical fluid problems, the objective functions are linear rather 

than quadratic functions. Fluid property fluxes such as heat–for example, scalar properties, P 
Fl are carried by a fluid flow at rates Fl{l> which are linear functions of x. If one sought 

the extreme fluxes of F, it would require finding the extremal values of the corresponding 

linear function. Least squares does not produce useful answers in such problems because linear 

objective functions achieve their minima or maxima only at plus or minus infinity–unless the 

elements of x are bounded. The methods of linear programming are generally directed at finding 

extremal properties of linear objective functions subject to bounding constraints. In general 
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terms, such problems can be written as, 

minimize : M = c W x > 

E1x = y1> (3.41) {eq:52001} 

E2x � y2> (3.42) {eq:52002} 

E3x � y3 > (3.43) {eq:52003} 

a � x � b > (3.44) {eq:52004} 

that is, as a collection of equality and inequality constraints of both greater than or less than 

form, plus bounds on the individual elements of x. In distinction to the least squares and 

minimum variance equations we have hitherto been discussing, these are hard constraints; they 

cannot be violated at all in an acceptable solution. 

Linear programming problems are normally reduced to what is referred to as a canonical 

form, although di�erent authors use di�erent definitions of what it is. But all such problems are 

reducible to, 

minimize : M = c W x > (3.45) {eq:52005} 

Ex � y (3.46) {eq:52006} 

x � 0 = (3.47) {eq:52007} 

The use of a minimum rather than a maximum is readily reversed by introducing a minus sign, 

and the inequality is similarly readily reversed. The last relationship, requiring purely positive 

elements in x, is obtained without di!culty by simple translation. 

Linear programming problems are widespread in many fields including, especially, financial 

and industrial management where they are used to maximize profits, or minimize costs, in, say, 

a manufacturing process. Necessarily then, the amount of a product of each type is positive, and 

the inequalities reflect such things as the need to consume no more than the available amounts 

of raw materials. In some cases, M is then literally a "cost" function. General methodologies 

were first developed during World War II in what became known as “operations research” 

(“operational research” in the U.K.)78, although special cases were known much earlier. Since 

then, because of the economic stake in practical use of linear programming, immense e�ort has 

been devoted both to textbook discussion and e!cient, easy-to-use software.79 Given this highly 

accessible literature and software, we will not actually describe the methodologies of solution, 

but merely make a few general points. 
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The original solution algorithm invented by G. Dantzig is usually known as the “simplex 

method” (a simplex is a convex geometric shape). It is a highly e!cient search method conducted 

along the bounding constraints of the problem. In general, it is possible to show that the 

outcome of a linear programming problem falls into several distinct categories: (1) The system 

is “infeasible,” meaning that it is contradictory and there is no solution; (2) the system is 

unbounded, meaning that the minimum lies at negative infinity; (3) there is a unique minimizing 

solution; and (4) there is a unique finite minimum, but it is achieved by an infinite number of 

solutions x. 

The last situation is equivalent to observing that if there are two minimizing solutions, 

there must be an infinite number of them because then any linear combination of the two 

solutions is also a solution. Alternatively, if one makes up a matrix from the coe!cients of 

x in Equations (3.45)—(3.47), one can ask whether it has a nullspace. If one or more such 

vectors exists, it is also orthogonal to the objective function, and it can be assigned an arbitrary 

amplitude without changing M . One distinguishes between feasible solutions, meaning those 

that satisfy the inequality and equality constraints but which are not minimizing, and optimal 

solutions, which are both feasible and minimize the objective function. 

An interesting and useful feature of a linear programming problem is that equations (3.45)— 

(3.47) have a "dual": 

{eq:52008} maximize : M2 = y W 
µ > (3.48) 

{eq:52009} EW 
µ � c (3.49) 

{eq:52010} µ � 0 = (3.50) 

It is possible to show that the minimum of M must equal the maximum of M2. The  reader  

may want to compare the structure of the original (the “primal”) and dual equations with those 

relating the Lagrange multipliers to x discussed in Chapter 2. In the present case, the important 

relationship is, 
CM 

{eq:52011} = �l = (3.51)
C|l 

That is, in a linear program, the dual solution provides the sensitivity of the objective function to 

perturbations in the constraint parameters y. Duality theory pervades optimization problems, 

and the relationship to Lagrange multipliers is no accident.80 Some simplex algorithms, called 

the “dual simplex,” take advantage of the di�erent dimensions of the primal and dual problems 

to accelerate solution. In recent years much attention has focused upon a new, nonsimplex 

method of solution81 known as the “Karmackar” or “interior set” method. 

Linear programming is also valuable for solving estimation or approximation problems in 

which norms other than the 2-norms, which have been the focus of this book, are used. For 
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example, suppose that one sought the solution to the constraints Ex + n = y, P A  Q  , but P P 
2subject not to the conventional minimum of M = l ql , but that of M = |ql| (a 1-norm). l 

Such norms are less sensitive to outliers than are the 2-norms and are said to be “robust.” The 

maximum likelihood idea connects 2-norms to Gaussian statistics, and similarly, 1-norms are 

related to maximum likelihood in exponential statistics.82 Reduction of such problems to linear 
+programming is carried out by setting, ql = q + �q3l , q � 0, q3 � 0, and the objective function l l l 

is, X¡ ¢ 
min : M = q + + q3 (3.52) {eq:52012} l l 

l 

Other norms, the most important83 of which is the so-called infinity norm, which minimizes the 

maximum element of an objective function, are also reducible to linear programming. 

3.5 Empirical Orthogonal Functions 

Consider an arbitrary P × Q matrix M= Suppose the matrix were representable, accurately, as 

the product of two vectors, 

M abW >� 

where a was P × 1> and b was Q × 1= Approximation is intended in the sense that 

° ° °M abW ° ? %>  � 

for some acceptably small %= Then one could conclude that the PQ  elements of A contain only 

P + Q pieces of information contained in a> b= Such an inference has many uses, including the 

ability to recreate the matrix accurately from only P + Q numbers, to physical interpretations 

of the meaning of a> b= More generally, if one pair of vectors is inadequate, some small number 

might su!ce: 

M a1b
W + a2b2+=== + aN b

W = (3.53) {eckart1} � 1 N 

A general mathematical approach to finding such a representation is through the SVD in a form 

sometimes known as the “Eckart-Young-Mirsky theorem.”84 This theorem states that the most 

e!cient representation of a matrix in the form, 

N X 
M � ul�lvl

W (3.54) {eq:53003} 
l 

where the ul, vl are orthonormal is achieved by choosing the vectors to be the singular vectors, 

with �l providing the amplitude information. 
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The connection to the subject of regression analysis is readily made by noticing that the sets 

of singular vectors are the eigenvectors of the two matrices MMW , MW M (Eqs. 2.250, 2.251). 

If each row of M is regarded as a set of observations at a fixed coordinate, then MMW is just 

proportional to the sample second-moment matrix of all the observations, and its eigenvectors, 

ul, are the EOFs. Alternatively, if each column is regarded as the observation set for a fixed 

coordinate, then MW M is the corresponding sample second-moment matrix, and the vl are the 

EOFs. 

A large literature provides various statistical rules for use of EOFs. For example, the rank 

determination in the SVD becomes a test of the statistical significance of the contribution of 

singular vectors to the structure of M. 85 In the wider context, however, one is dealing with 

the problem of e!cient relationships amongst variables known or suspected to carry mutual 

correlations. Because of its widespread use, this subject is plagued by multiple discovery and thus 

multiple jargon. In di�erent contexts and details (e.g., how the matrix is weighted), the problem 

is known as that of “principal components”86 , “empirical orthogonal functions” (EOFs), the 

Karhunen-Loève expansion (in mathematics and electrical engineering)87 , “proper orthogonal 

decomposition”88, etc. Examples of the use of EOFs will be provided in Chapter 6. 

3.6 Kriging and Other Variants of Gauss-Markov Estimation 

A variant of the Gauss-Markov mapping estimators, often known as “kriging” (named for David 

Krige, a mining geologist), addresses the problem of a spatially varying mean field. and is a 

generalization of the ordinary Gauss-Markov estimator.89 

Consider the discussion on P. 134 of the fitting of a set of functions il(r) to an observed field 

|(rm ). That is, we put, 

{eq:54001} |(rm ) = F� + t(rm )> (3.55) 

where F(r) = {il(r)} is a set of basis functions, and one seeks the expansion coe!cients, �, and  

t such that the data, |, are  interpolated (meaning reproduced exactly) at the observation points, 

although there is nothing to prevent further breaking up t into signal and noise components. 

If there is only one basis function–for example a constant–one is doing kriging, which is 

the determination of the mean prior to objective mapping of t,  as discussed in Chapter  3.  If  

several basis functions are being used, one has “universal kriging.” The main issue concerns the 

production of an adequate statement of the expected error, given that the t are computed from 

a preliminary regression to determine the �=90 . The method is often used in situations where 

large-scale trends are expected in the data, and where one wishes to estimate and remove them 

before analyzing and mapping the t. 
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Because the covariances employed in objective mapping are simple to use and interpret only 

when the field is spatially stationary, much of the discussion of kriging uses instead what is 

called the “v ariogram,” defined as Y = h
¡
|(rl) � |(rm )

¢¡
|(rl) � |(rm ) 

¢ 
i, which is related to the 

covariance, and which is often encountered in turbulence theory as the “structure function.” 

Kriging is popular in geology and hydrology, and deserves wider use. 

3.7 Nonlinear Problems 

The least-squares solutions examined thus far treat the coe!cient matrix E as known. But in 

many of the cases encountered in practice, the elements of E are computed from data and are 

imperfectly specified. It is well known in the regression literature that treating E as known, 

even if n is increased beyond the errors contained in y, can lead to significant bias errors in 

the least-squares and related solutions, particularly if E is nearly singular 91 The problem is 

known as that of “errors in regressors or errors in variables” (EIV); it manifests itself in the 

classical simple least-squares problem, P. 43, where a straight line is being fit to data of the 

form |l = d + ewl> but where the measurement positions, wl> are partly uncertain rather than 

perfect. 

In general terms, when E has errors, the model statement becomes 

¡
Ẽ + � ̃E 

¢ 
x̃ = ỹ + �ỹ (3.56) {eq:55001} 

where one seeks estimates,x̃, � ̃E, �ỹ where the old n is now broken into two parts: � ̃Ex̃ and 

��ỹ. If such estimates can be made, the result can be used to rewrite (3.56) as, 

Ẽx̃ = ỹ> (3.57) {eq:55002} 

where the relation is to be exact. That is, one seeks to modify the elements of E such that the 

observational noise in it is reduced to zero. 

3.7.1 Total Least Squares 

For some problems of this form, the method of total least squares (TLS) is a powerful and 

interesting method. It is worth examining briefly to understand why it is not always immediately 

useful, and to motivate a di�erent approach.92 

The SVD plays a crucial role in TLS. Consider, for example, that in Equation 2.17, we wrote 

the vector y as a sum of the column vectors of E; to the extent that the column space does not 

fully describe y, a residual must be left by the solution x̃, and ordinary least squares can be 

regarded as producing a solution in which a new estimate, ỹ � Ex̃, of  y is made; y is changed, 
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but the elements of E are untouched. But suppose it were possible to introduce small changes 

in both the column vectors of E> as well as in y> such that the column vectors of the modified 

E+ �E produced a spanning vector space for y + �y, where  both  k�yk > k�xk were “small,” 

then the problem as stated would be solved. 

The simplest problem to analyze is the full-rank, formally overdetermined one. Let P � 

Q = N. Then, if we form the P × (Q + 1)  augmented matrix 

Ed = {E y} > 

the solution we seek is such that 6
5


997

x̃ ::8
E ˜{˜ y}{eq:55003} = 0 (3.58) 

1�

(exactly). If this solution is to exist, [˜> �1]W must lie in the nullspace of { ̃ yx E ˜}. A  solution  

is thus ensured by forming the SVD of {E y}, setting �Q +1 = 0, and forming { ̃ yE ˜} out 

of the remaining singular vectors and values. Then [x̃ � 1]W is the nullspace of the modified 

augmented matrix, and must therefore be proportional to the nullspace vector vQ +1. Also,  

E �˜ W{eq:55004} {� ̃ y} = �uQ +1�Q +1vQ +1 = (3.59) 

Various complications can be considered, for example, if the last element of vQ +1 = 0; this  

and other special cases are discussed in the reference. Cases of nonuniqueness are treated by 

selecting the solution of minimum norm. A simple generalization applies to the underdetermined 

case: If the rank of the augmented matrix is s, one reduces the rank by one to s 1.� 

The TLS solution just summarized applies only to the case in which the errors in the elements 

of E and y are uncorrelated and of equal variance and in which there are no required structures– 

for example, where certain elements of E must always vanish. More generally, changes in some 

elements of E require, for reasons of physics, specific corresponding changes in other elements of 

E and in y, and vice versa. The fundamental di!culty is that the model, Eq. (3.56), presents 

a nonlinear estimation problem with correlated variables, and its solution requires modification 

of the linear procedures we have been using. 

3.7.2 Method of Total Inversion 

The simplest form of TLS does not readily permit the use of correlations and prior variances 

in the parameters appearing in the coe!cient matrix and does not provide any way of main-

taining the zero structure there. Methods exist that permit accounting for prior knowledge of 
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covariances.93 Suppose we have a set of nonlinear constraints in a vector of unknowns x, 

{eq:55005} g(x) +  u = q = (3.60) 

This set of equations is the generalization of the linear models hitherto used; u again represents 

any expected error in the specification of the model. An example of a scalar nonlinear model is 

8{2 
1 + {2 

2 + x = 4  = 

In general, there will be some expectations about the behavior of u. Without loss of generality, 

we take its expected value to be zero, and its covariance is Q = huuW i. There is nothing to 

prevent us from combining x, u into one single set of unknowns �, and indeed if the model has 

some unknown parameters, � might as well include those as well. So (3.60) can be written 

L (�) =  0 (3.61) {eq:55006} 

In addition, it is supposed that a reasonable initial estimate �̃(0) is available, with uncertainty 

P(0) � h
¡
� � ̃�(0)

¢¡
� � ̃�(0) 

¢W 
i (or the covariances of the u, x could be specified separately if 

their uncertainties are not correlated). An objective function is written 

M = L(�)W Q31L(�) +  
¡
� � ̃�(0) 

¢ 
P(0)31

¡
� � ̃�(0) 

¢ 
> (3.62) {eq:55007} 

whose minimum is sought. The presence of the weight matrices Q, P(0) permits control of the 

elements most likely to change, which should not change at all [e.g., by introducing real zeros 

into P(0)], as well as the stipulation of covariances. We can regard it as a generalization of the 

process of minimizing objective functions, which led us to least squares in previous chapters. It 

is sometimes known as the “method of total inversion.94 

Consider an example for the two simultaneous equations, 

2{1 + {2 + q1 = 1  (3.63) {eq:55009} 

0 + 3{2 + q2 = 2  (3.64) {eq:55010} 

where all the numerical values except the zero are now regarded as in error to some degree. One 

way to proceed is to write the coe!cients of E in the specific perturbation form (3.56). For 

example, we might write, H11 = 2  +  �H11, and define the unknowns � in terms of the �Hlm . Let  

us for illustration retain the full nonlinear form by setting 

�1 = H11> �2 = H12> �3 = H21> �4 = H22> �5 = {1> �6 = {2> 

x1 = q1> x2 = q2 = 



184 CHAPTER 3 EXTENSIONS OF METHODS 

The equations are then, 

�1�5 + �2�6 + x1 � 1 = 0  (3.65) {eq:55011} 

�3�5 + �4�6 + x2 � 2 = 0  = (3.66) {eq:55012} 

The |l are being treated as formally fixed, but the presence of x1, x2 represent their possible 

errors (the division into di�erent elements of knowns and unknowns is not unique). Let there 

be an initial estimate, 

�1 = 2  ± 1> �2 = 2  ± 2> �3 = 0  ± 0> 

�4 = 3=5 ± 1> �5 = {1 = 0  ± 2> �6 = 0  ± 2 > 

with no imposed correlations so that P(0) = diag ([1> 1> 0> 1> 4> 4]); the zero represents the re-

quirement that H21 remain unchanged. Let Q = diag ([2> 2]). Then a useful objective function 

is, 

{totinv1} 

M = 
¡
�1�5 + �2�6 � 1 

¢2
@2 

+ 
¡
�3�5 + �4�6 � 2 

¢2
@2 + (�1 � 2)2 + (�2 � 2)2@4 

+ 106 � 2 
3 + (�4 � 3=5)2 + � 2 

5@4 +  � 2 
6@4 = 

(3.67) 

The 106 in front of the term in � 2 
3 is a numerical approximation to the infinite value implied 

by a zero uncertainty in this term (an arbitrarily large value can cause numerical instability, 

characteristic of penalty and barrier methods).95 

Such objective functions define surfaces in spaces of the dimension of �. Most procedures 

require the investigator to make a first guess at the solution, �̃(0), and attempt to minimize M by 

going downhill from the guess. Various search algorithms have been developed and are variants 

of steepest descent, conjugate gradient, Newton and quasi-Newton methods. The di!culties are 

numerous: Some methods require computation or provision of the gradients of M with respect 

to �, and the computational cost may become very great. The surfaces on which one is seeking 

to go downhill may become extremely tortuous, or very slowly changing. One can fall into local 

holes that are not the true minima. Finding one’s way is something of an art. Nonetheless, 

existing techniques are very useful. The minimum of M corresponds to finding the solution of 

the nonlinear normal equations that would result from setting the partial derivatives to zero. 

Let the true minimum be at �W. Assuming that the search procedure has succeeded, the 

objective function is locally 

{eq:55014} M = constant + 
¡
� � �W 

¢W 
H
¡
� � �W 

¢ 
+ �M (3.68) 

where H is the Hessian and �M is a correction—assumed to be small. In the linear least-squares 

problem, Eq. (2.89), the Hessian is evidently EW E, the second derivative of the objective function 
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with respect to x. The supposition is then that near the true optimum, the objective function 

is locally quadratic with a small correction. To the extent that this supposition is true, we can 

analyze the result in terms of the behavior of H as though it represented a locally defined version 

of EW E. In particular, if H has a nullspace, or small eigenvalues, one can expect to see all the 

issues arising that we dealt with in Chapter 2, including ill-conditioning and solution variances 

that may become large in some elements. The machinery used in Chapter 2 (row and column 

scaling, nullspace suppression, etc.) thus becomes immediately relevant here and can be used 

to help conduct the search and to understand the solution. 

Example 18 It remains to find the minimum of M in (3=67). 96 Most investigators are best-

advised to tackle problems such by using one of the many general purpose numerical routines 

written by experts 97 Here, a quasi-Newton method was employed to produce, 

H11 = 2=0001> H12 = 1=987> H21 = 0=0> 

H22 = 3=5237> {1 = �0=0461> {2 = 0=556 

and the minimum of M = 0=0802. The inverse Hessian at the minimum is, 

<
AAAAAAAAAAAAAAAAAAAAAA

;
AAAAAAAAAAAAAAAAAAAAAA? 

0.4990 0.0082 0.0000 0.0014 0.0061 0.0005� �

0.0082 1.9237 0.0000 0.0017 0.4611 0.0075� �

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000� ��

H31 = 
@
A
AAAAAAAAAAAAAAAAAAAAA

=
AAAAAAAAAAAAAAAAAAAAAA

0.0014 0.0017 0.0000 0.4923 0.0623 0.0739� � �

0.0061 0.4611 0.0000 0.0623 0.3582 0.0379� � �

0.0005 0.0075 0.0000 0.0739 0.0379 0.0490� � �

>= 
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The eigenvalues and eigenvectors of H are 

£ ¤
2=075 × 106 30=4899 4=5086 2=0033 1=9252 0=4859 > 

<
A
AAAAAAAAAAAAAAAAA

�l = 
;
A
AAAAAAAAAAAAAAAAA

0.0000 0.0032 0.0288 0.9993 0.0213 0.0041�

0.0000 0.0381 0.2504 0.0020 0.0683 0.9650� �

?
 @
A
AAAAAAAAAAAAAAAAA

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000�� �
V = =
A
AAAAAAAAAAAAAAAAA

0.0000 0.1382 0.2459 0.0271 0.9590 0.0095� �

0.0000 0.1416 0.9295 0.0237 0.2160 0.2621� � �

>= 0.0000 0.9795 0.1095 0.0035 0.1691 0.0017�

The large jump from the first eigenvalue to the others is a reflection of the conditioning problem 

introduced by having one element, �3, with almost zero uncertainty, characteristic of barrier 

methods. It is left to the reader to use this information about H to compute the uncertainty 

of the solution in the neighborhood of the optimal values—this would be the new uncertainty, 

P(1). A local resolution analysis follows from that of the SVD, employing knowledge of the V. 

The particular system is too small for a proper statistical test of the result against the prior 

covariances, but the possibility should be clear. If P(0) etc., are simply regarded as nonstatistical 

weights, we are free to experiment with di�erent values until a pleasing solution is found. 

3.7.3 Variant Nonlinear Methods, Including Combinatorial Ones 

As with the linear least-squares problems discussed in Chapter 2, many possibilities exist for 

objective functions that are nonlinear in either data constraint terms or the model, and there 

are many variations on methods for searching for objective function minima. 

As with any mathematical subject dealing with nonlinearities, there are no fully general, 

guaranteed methods that prevent di!culties. But a very interesting and useful set of methods 

has been developed comparatively recently, called “combinatorial optimization.” Combinatorial 

methods do not promise that the true minimum is found–merely that it is highly probable– 

because they search the space of solutions in clever ways which make it unlikely that one is 

very far from the true optimal solution. Two such methods, simulated annealing and genetic 

algorithms, have recently attracted considerable attention.98 Simulated annealing searches ran-

domly for solutions that reduce the objective function from a present best value. Its clever 

addition to purely random guessing is a willingness to accept the occasional uphill solution– 

one that actually raises the value of the objective function–as a way of avoiding being trapped 
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in purely local minima. The probability of accepting an uphill value and the size of the tried 

random perturbations depend upon a parameter, a temperature defined in analogy to the real 

temperature of a slowly cooling (annealing) solid. 

Genetic algorithms, as their name would suggest, are based upon searches generated in 

analogy to genetic drift in biological organisms.99 The recent literature is large and sophisticated, 

and this approach is not pursued here. 

Notes 
60
Bracewell (1978), Freeman (1965), Jerri (1977), or Butzer and Stens (1992) 
61
In the Russian literature, Kotel’nikov’s theorem. 
62
Aliasing is familiar as the stroboscope e�ect. Recall the appearance of the spokes of a wagon wheel in the 

movies. The spokes can appear to stand still, or move slowly forward or backward, depending upon the camera 

shutter speed relative to the true rate at which the spokes revolve. (The terminology is apparently due to John 

Tukey.) 
63
Hamming (1973) and Bracewell (1978) have particularly clear discussions. 
64
There is a story, perhaps apocryphal, that a group of investigators was measuring the mass flux of the Gulf 

Stream  at  a fixed time each day.  They were preparing  to  publish  the exciting discovery  that  there was  a strong  

14-day periodicity to the flow, before someone pointed out that they were aliasing the tidal currents of period 

12=42 hours. 
65
It follows from the so-called Paley-Wiener criterion, and is usually stated in the form that “timelimited signals 

cannot be bandlimited” 
66
Landau & Pollack (1962); Freeman (1965); Jerri (1977). 
67
Petersen & Middleton (1962). An application, with discussion of the noise sensitivity, may be found in 

Wunsch, 1989.) 
68
Davis & Polonsky, 1965

69
See Ripley (1981, §5.2)

70 Bretherton et al. (1976).

71
A fuller discussion may be found in Thièbaux and Pedder (1987) and Daley (1991).

72 See Fukumori et al. (1991)

73
Luenberger (1969). 
74
See Lawson and Hanson (1974) or Strang (1986); the standard full treatment is Fiacco and McCormick (1968). 
75
Lawson and Hanson (1974). 
76
Fu (1981). 
77
Tziperman and Hecht (1987). 
78
Dantzig (1963). 
79
For example, Luenberger (1984); Bradley, Hax, & Magnanti (1977); and many others. 
80
See Strang, 1986; Luenberger, 1969; Cacuci, 1981; Hall & Cacuci, 1984; Rockafellor, 1993. 
81
One of a few mathematical algorithms ever to be written up on the front page of The New York Times (19 

November 1984, story by J. Gleick)—a reflection of the huge economic importance of linear programs in industry. 
82
Arthnari & Dodge (1981). 
83
Wagner (1969); Arthnari & Dodge (1981)

84 Van Hu�el & Vandewalle (1991)
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85 The use of EOFs, with various normalizations, scalings, and in various row/column physical spaces, is 

widespread–for example, Wallace and Dickinson (1972), Wallace (1972), Davis (1978b), and many others. 
86 Jolli�e (1986); Preisendorfer (1988); Jackson (1991) 
87
Davenport & Root (1958); Wahba (1990) 
88
Berkooz, Holmes, & Lumley (1993), 
89
Armstrong (1989), David (1988), Ripley (1981) 
90
Ripley (1981). 
91
For example, Seber (1977). 
92
Golub and van Loan (1980, 1989) and Van Hu�el and Vandewalle (1991). 
93
Tarantola and Valette (1982) and Tarantola (1987). 
94 Tarantola and Valette (1982) labeled the use of similar objective functions and the determination of the 

minimum as the method of total inversion, although they considered only the case of perfect model constraints. 
95
Luenberger (1984 
96
Tarantola and Valette (1982) suggested using a linearized search method, iterating from the initial estimate, 

which must be reasonably close to the correct answer. The method can be quite e�ective (e.g., Wunsch & Minster, 

1982; Mercier, 1986). In a wider context, however, their method is readily recognizable as a special case of the 

many known methods for minimizing a general objective function. 
97
Numerical Algorithms Group (1988); Grace (1990; Press et al. (1992).. 
98
For simulated annealing, the literature starts with Pincus (1970) and Kirkpatrick, Gelatt, and Vecchi (1983), 

and general discussions can be found in van Laarhoven and Aarts (1987), Ripley (1981), and Press et al. (1992). 

A simple oceanographic application to experiment design was discussed by Barth and Wunsch (1989). 
99
Goldberg (1989), Holland (1992), and Denning (1992). 
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