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4.2 Basic Ideas and Notation 

4.2.1 Models 

In the context of this chapter, by “models” is meant statements about the connections between 

the system variables in some place at some time, and those in all other places and times. 

Maxwell’s equations are a model of the behavior of time-dependent electromagnetic disturbances. 

These equations can be used to connect the magnetic and electric fields everywhere in space 

and time. Other physical systems are described by the Schrodinger, elastic, or fluid-dynamical 

equations. Static situations are special limiting cases, e.g., for an electrostatic field in a container 

with known boundary conditions. 

A useful concept is that of the system “state.” By that is meant the internal information at a 

single moment in time required to forecast the system one small time step into the future. So for 

example, the time evolution of a system described by the tracer di�usion equation (6.1), inside 

a closed container can be calculated with arbitrary accuracy at time w + �w> if one knows F (r>w) 

and the boundary conditions FE (w) > as �w $ 0=(external information). F (r> w) is the state 

variable (the “internal” information), with the boundary conditions being regarded as separate 

externally provided variables (but the distinction is, as we will see, to some degree an arbitrary 

one). In practice, such quantities as initial and boundary conditions, container shape, etc. are 

typically obtained from measurements, are thus always imperfectly known, and the problems 

are conceptually identical to those already considered. 

Consider any model, whether time dependent or steady, but rendered in discrete form. The 

“state vector” x (w) (w discrete) is defined as those elements of the model employed to describe 

fully the physical state of the system at any time and all places as required by the model in 

use. For the discrete Laplace/Poisson equation in Chapter  1,  x = vec (Flm ) is the state vector. 

In a fluid model, the state vector might consist of three components of velocity, pressure and 
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temperature at each of millions of grid points, and it would be a function of time, x(w), as well.  

(One might want to regard the complete description, 
h iW 

{xbig} xE = x (1�w)W > x (2�w)W > ==>  x (W�w)W > (4.7) 

as the state vector, but by convention, it refers to the subvectors, x (w = q�w) > each of which is 

su!cient to compute any future one, given the boundary conditions.) 

Consider a partial di�erential equation, 

C Cs 
(u 2{61002} ks) +  � = 0  > (4.8)

Cw C� 

subject to boundary conditions. For the moment, w is a continuous variable. Suppose it is solved 

by an expansion, 
Q@2 X 

{61003} s(�> �> w) =  dm (w) cos(km · r) +  em (w) sin(km · r)= (4.9) 
m=1 £ ¤W

[km = (n�> n�), r = (�> �)], then a(w) =  d1(w) e1 (w) · · · dm (w)> em (w) > = = = The km are chosen to be 

periodic in the domian. The dl> el are a partial-discretization, reducing the time-dependence to 

of a finite set of coe!cients. Substitute into Eq. (4.8), 

Xn ³ ´ o 
� |km |

2 ḋm cos(km · r) +  ėm sin (km · r) + �n1m [�dm sin (km ·r) +  em cos (km ·r)] = 0= 

The dot indicates a time-derivative, and n1m is the � component of km= Multiply this last equation 

through first by cos(km · r) and then by  sin(km · r) and integrate over the domain: 

� |km |
2 ḋm + �n1m em = 0  

|km |
2 ėm + �n1m dm = 0  

6565 ;
AA?


<
AA@ 

AA>


or 
2997

997


dm 0 �n1m @ |km | dm::8
=

::8


g

gw
 AA=
 �n1m @ |km |

2 0�em em 

Each pair of dm > em satisfies a system of ordinary di�erential equations in time, and each can be 

further discretized so that, 
6565 ;

AA?


< 
AA@ 

AA>


2997

997


dm (q�w) 1 �w�n1m @ |km | dm ((q � 1) �w)::8
=

::8
=
AA=
 �w�n1m @ |km |

2 � 1em (q�w) em ((q � 1) �w) 

The state vector is then the collection, 

x (q�w) =  [d1 (q�w) > e1 (q�w) > d2 (q�w) > e2 (q�w) ====]
W > 
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at time w = q�w= Any adequate discretization can provide the state vector; it is not unique, and 

careful choice can greatly simplify calculations. 

In the most general terms, we can write any discrete model as a set of functional relations, 

L [x(0)> = = = >x(w� �w)> x(w)> x(w+�w)> = = =x(wi ) = = = >  B(w)q(w) >B(w)q(w+�w)> = = = > w] = 0  (4.10) {61004} 

where B(w)q(w) represents a general, canonical, form for boundary and initial conditions/-

sources/sinks. A time-dependent model is a set of rules for computing the state vector at 

time w = q�w> from knowledge of its values at time w� �w and the externally imposed forces and 

boundary conditions. We almost always choose the time units so that �w = 1, and  w becomes 

an integer (the context will normally make clear whether w is continuous or discrete). The static 

system equation, 

Ax = b> (4.11) {61005} 

is a special case. In practice, the collection of relationships (4.10) always can be rewritten as a 

time-stepping rule–for example, 

x(w) = L
¡
x(w� 1)> B(w� 1)q(w� 1)> w� 1 

¢ 
> �w = 1> (4.12) {61006} 

or, if the  model is linear,  

x(w) = A(w� 1)x(w� 1) +B(w� 1)q(w� 1) = (4.13) {61007} 

If the model is time invariant, A(w) =  A, and  B (w) =  B= It is generally true that any linear 

discretized model can be put into this canonical form, although it may take some work. By the 

same historical conventions described in Chapter 1, solution of systems like (4.12), subject to 

appropriate initial and boundary conditions, constitutes the forward, or direct, problem. 

H{dpsoh. 

The straight-line model, discussed in Chapter 1 satisfies the rule, 

g2� 
gw2 = 0 > (4.14) {61009} 

which can be discretized as 

�(w+�w)� 2�(w) + �(w� �w) = 0 > (4.15) {61010} 

Define 

{1(w) = �(w) > {2(w) = �(w� �w) > 
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and w $ q�w= One has 

x(w) = Ax(w � �w)> 

where ;
AA?
 1�

< 
AA@ 

AA> 

2 
> (4.16)A = {sl1}AA=
1 0 


which is of the standard form (4.13), with  B = 0. Let  x (0) = [1> 0]W . Then Ax (0) = x (1) = 

[2> 1]W > x (2) = [3> 2]W and the slope and intercept are both 1. 

emassspring} H{dpsoh. 

The elementary mass-spring oscillator satisfies the di�erential equation 

g2�(w) g�(w) 
p + u 
gw2 gw 

+ n�(w) = t(w) 

where u is a damping constant. A one-sided time discretization produces 

p
¡
�(w +�w)� 2�(w) + �(w � �w) 

¢ 
+ u�w

¡
�(w)� �(w � �w) 

¢ 
+ n(�w)2 �(w) 

= t(w) (�w)2 

or 

�(w) =

µ
2� 
u�w 
p 
� 
n(�w)2 

p 

¶ 

�(w � �w) 

+

µ 
u�w 
p 
� 1

¶ 

�(w � 2�w) + (�w)2 t(w � �w) 
p 

> 

which is 
65<

AA@ 

;
AA?


6
5 

2 1n u�wu �w p (�w)
2�(w) �(w �w)997


997 
::8 

::8

p� � p � � 

= A
A AA> 

5 

= �(w �w) 1 0 �(w 2�w)� �
6
 (4.17) 

w �w)
(�w)2 t( �

p 
+ 
997


::8
> 

0 

and is the canonical form with A independent of time where, 

£ ¤ £ ¤W 
x(w) =  �(w) �(w � �w) > B(w)q(w) =  (�w)2 t(w)@p 0 W 

= 

H{dpsoh 

A di�erence equation important in time-series analysis104 is, 

{61018} �(w) + d1�(w � 1) + d2�(w � 2) + · · ·+ dQ �(w � Q ) = �(w) (4.18) 
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where �(w) is a zero-mean, white-noise process (Equation (4.18) is an example of an autoregres-

sive process (AR)). To put this into the canonical form, write105 , 

{1(w) =  �(w� Q)>


{2(w) =  �(w� Q + 1)>


. . . 

{Q (w) =  �(w� 1)> 

{Q (w+ 1)  =  �d1 {Q (w) � d2 {Q 31(w) · · ·  � dQ {1(w) +  �(w) = 

It follows that {1(w+ 1)  =  {2(w), etc.,  or  

65<
AAAAAAAAAA

;
AAAAAAAAAA

0 1 0 · · ·  0 0
 ::::::::::8 

99999999997 

0 

0 

1 

?
 @
A
AAAAAAAAA

0 0 1 · · ·  0 0 
x(w) =  x(w� 1) + �(w� 1) = (4.19) {61020}A
AAAAAAAAA

·  ·  · · · · · ·  · 

>= · · ·  d2 d1�dQ �dQ 31 �dQ 32 � �

A is known as a “companion” matrix. Equation (4.19) connects this Chapter with the field of 

time-series analysis. Here, B(w) = [0  0  · 1]W , q(w) =  �(w). 

Given that most time-dependent models can be written as in (4.12) or (4.13), the forward 

model solution involves marching forward from known initial conditions at w = 0, subject to 

specified boundary values. So, for example, the linear model (4.13), with given initial conditions 

x(0) = x0, involves the sequence, 

x(1) = A(0) x0 + B(0) q(0)> 

x(2) = A(1) x(1) + B(1) q(1)> 

= A(1) A(0) x0 + A(1) B(0) q(0) + B(1) q(1)> 

. . . 

x(wi ) =  A(wi � 1) x(wi � 1) + B(wi � 1) q(wi � 1) 

= A(wi � 1) A(wi � 2) = = =A(0) x0 + = = = =  

Most of the basic ideas can be understood in the notationally simplest case of time-independent 

A> B, and that is usually the situation we will address with little loss of generality, so that 

A (w) A (w� 1) = A2 , etc. Figure 4.1 p depicts the time history for the harmonic oscillator, 
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Figure 4.1: Time history of {1 (w) for the linear oscillator with �w = 1> n  = 0=1>p  = 1> u  = 0  

driven by a random sequence of zero mean and unit variance. Note buildup in 

amplitude from the accumulating uncorrelated forcing increments. {linoscts.eps} 

with the parameter choice �w = 1, n = 0=1, p = 1, u = 0, so that,  
6
5
;

AA? 

AA= 

1

<
AA@ 

AA>

> Bq(w) =  

9 1� 997 
1 

0 

::8

=

A = x(w)> 

1 0 

£ ¤
where hx(w)2i = 1. The initial conditions were x(0) = �(0) �(�1) W 

. 

It is important to recognize that this time-stepping procedure cannot be used if some of 

the elements of the initial conditions, x (0) > are replaced e.g., with elements of x (wi ) > or more 

generally with elements of  x (w) for arbitrary w= That is, the amount of information may be 

the same, and fully adequate, but not useful in straightforward time-stepping. Many of the 

algorithms developed here are directed at these less-conventional cases. 

A is necessarily square. It is also often true that A31 exists, and a generalized inverse can 

be used if necessary. If A31 can be computed, one can contemplate the possibility (important 

later) of running a model backward in time, for example as, 

x(w� 1) = A31 x(w)� A31B(w� 1)q(w� 1) = 

Such a computation may be inaccurate if carried on for long times, but the same may well be 

true of the forward model. 

Some attention must be paid to the structure of B(w)q(w). The partitioning into these 

elements is not unique and can be done to suit one’s convenience. The dimension of B is that of 
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Figure 4.2: (a) Forward run (solid line) of a forced mass-spring oscillator with u = 0> n  = 0=1 

with initial condition x (0) = [1> 0]W = Dotted line is a Kalman filter estimate, started 

with x̃ (0) = [10> 10] > P (0) = diag ([100> 100]) = “Observations” were provided of 

{1 (w) at every time step, but corrupted with white noise of variance U = 50= Shaded 

band is the one-standard deviation error bar for {̃1(w) computed from 
p
S11 (w) in 

the Kalman filter. Rapid convergence toward the true value occurs despite the high 

noise level. (b) Dotted line now shows {̃1(w> +) from the RTS smoothing algorithm. 

Solid line is again the “truth”. Although only the first 50 points are shown, the 

Kalman filter was run out to w = 300> where the smoother was started. Band is the 

one standard deviation of the smoothed estimate from 
p
S11 (w> +) and is smaller 

than 
p
S11 (w)= The smoothed estimate is closer to the true value almost everywhere. 

As with the filter, the smoothed estimate is consistent with the true values within 

two standard deviations. (c) Estimated x̃ (w) (dashed) and its standard error from 

the smoother. Solid line is the “true” value (which is itself white noise. That x̃ (w) 

lacks the detailed structure of the true x (w) is a consequence of the inability of the 

mass-spring oscillator to respond instantaneously to a white noise forcing. Rather 

it responds to an integrated value, smoothing out the underlying rapid variations. 

(d) Solid line is S11 (w) > dashed is S11 (w> +) > and dotted curve  is  30T (w> +) with the 

scale factor used to make it visible. (Squares of values shown as bands in the other 

panels.) Note the rapid tendency towards a steady-state. Values are largest at w = 0  

as data are only available in the future, not the past. T is multiplied by a large 

{kfrts1.eps} factor to make it visible. 
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Figure 4.3: (a) Simple numerical grid for use of discrete form of model; × denote boundary grid 

points, and o are interior ones. Numbering is sequential down the columns, as shown. 

(b) Tomographic integral is assumed given between l1> l2, and the model values at 

{ocip6_2.tif} the grid points would be used to calculate its predicted value. 

the size of the state vector by the dimension of q, which typically would reflect the number of 

independent degrees of freedom in the forcing/boundary conditions. (“Forcing” is hereafter used 

to include boundary conditions, sources and sinks, and anything normally prescribed externally 

to the model.) Consider the model grid points displayed in Figure 4=3a= Suppose that the 

boundary grid points are numbered 1—5, 6, 10, 46—50, and all others are interior. If there are no 

interior forces, and all boundary values have a time history t(w), then we could  take,  

{61022} B = [1 1 1  1 1 1  0 0 0 · · ·  1 1]W > (4.20) 

where the ones occur at the boundary points, and the zeros at the interior ones. 

Suppose, instead, that boundary grid point 2 has values t1(w), all other boundary conditions 

are zero, interior point 7 has a forcing history t2(w) and all others are unforced; then 

Bq(w) = 


;
AA? 

AA= 

0 1 0 0 0 0 0 · 

0 0 0 0 0 0 1 · 

0


0


< 
AA@ 

AA>


6
5
W 

997 
t1(

t2(w) 

w)
::8
{61023} = (4.21) 

A time-dependent B would correspond to time-evolving positions at which forces were 

prescribed–a somewhat unusual situation. It would be useful, for example, if one were driving a 
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fluid model with a heat flux or stress in the presence of a prescribed moving ice cover. One could 

also impose initial conditions using a time-dependent B(w), which would vanish after w = 0. 

As with steady models, we need to be careful about understanding the propagation of errors 

in time and space. If we have some knowledge of the initial oceanic state, x̃(0), and are doing 

an experiment at a later time w, the prior information–the estimated initial conditions–carries 

information in addition to what we are currently measuring. We seek to combine the two sets 

of information. How does information propagate forward in time? Formally, the rule (4.12) 

tells us exactly what to do. But because there are always errors in ˜(0), we need to  be carefulx

about assuming that a model computation of x̃(w) is useful. Depending upon the details of 

the model, one can qualitatively distinguish the behavior of the errors through time. (1) The 

model has decaying components. If the amplitudes of these components are partially erroneous, 

then for large enough w, these elements will have diminished, perhaps to the point where they 

are negligible. (2) The model has neutral components. At time w, the erroneous elements have 

amplitudes the same as they were at w = 0. (3) The model has unstable components; at time w 

any erroneous parts may have grown to swamp everything else computed by the model. 

Realistic models, particularly fluid ones, can contain all three types of behavior simultane-

ously. It thus becomes necessary to determine which of the elements of the forecast x̃(w) can 

be used to help estimate the system state by combination with new data, and which elements 

should be suppressed as partially or completely erroneous. Simply assuming all components are 

equally accurate can be a disastrous recipe. 

Before proceeding, we reiterate the point that time need not be accorded a privileged position. 

Form the inclusive state vector, xE defined in Eq. (4.7). Then models of the form (4.13) can be 

written in the “whole-domain” form, 

AE xE = dE 

65<
AAAAAA

;
AAAAAA

E =


9999997


(0)
A I 0  · ·  0 0� Bq
 ::::::8


>

(4.22) {big1}?
 @


A > d= (1)0 A I 0 · 0 0  BqE A
AAAAA
AAAAAA>


�
. .=
 · · · · · A I� .


plus initial conditions, which is no di�erent, except for its possibly enormous size, from that of a 

static system and can be handled by any of the methods of earlier chapters if the computational 

capacity is su!cient. If time-stepping is impossible because the initial condition is replaced by 

x (w0) > w 60 = 0> the whole-domain form may be very attractive. Note the block-banded nature of 

AE and the sparse nature of AE = 
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4.2.2 How to Find the Matrix A (w) 

Most modern large-scale time-evolving models, even if completely linear, are written in com-

puter code, typically in languages such as Fortran90 or C/C++. The state transition matrix 

is not normally explicitly constructed; instead,the individual elements of {l (w) are time-stepped 

to produce {l (w + 1), usually using various vectorizations. A (w) is often neither required nor 

constructed, as all one cares about is the result of its operation on x (w), as generated from the 

model code. If one requires an explicit A (w) but has only the forward code, several methods 

can be used. For simplicity let Bq(w) =  0 (the more general approach is obvious). 

(1) Solve Eq. (4.13) Q -times, starting at time w = 0, subject to x(l)(0) = column l of I– 

that is, the model is stepped forward for Q -di�erent initial conditions corresponding to the 

Q -di�erent problems of unit initial condition at a single grid or boundary point, with zero 

initial conditions everywhere else. Let each column of G(w> 0) correspond to the appropriate 

value of x(w)–that is,


G(0> 0) = I


G(1> 0) = A(0)G(0> 0)


G(2> 0) = A(1)G(1> 0) = A(1)A(0)


. . . 

G(w> 0) = A(w � 1)A(w � 2) · · ·A(0) = 

We refer to G(w> 0) as a unit solution; it is closely related to the Green function discussed in 

Chapter 2. The solution for arbitrary initial conditions is then, 

{62021b}	 x(w) =  G(w> 0)x(0) > (4.23) 

= 0  is straightforward. A (w) can be readily reconstructed from {pageunitsol}	 and the modification for Bq 6

G (w> 0) > most simply if A is time-independent and if one time-step is numerically accurate 

enough to represent G= Otherwise, multiple time steps can be used until a su!ciently large 

change in G is produced. 

Several other methods exist to obtain A from an existing computer model, but consider now 

only the case of a steady model, with no time-dependence in the governing matrices (A> B)= We 

continue to simplify by setting B = 0= 

(2) Define Q �independent initial condition vectors x(l)> 1 � l � Q> and form a matrix, 0 n o 
X0 = x0

(l) 
= 

Time-step the model once, equivalent to, 

X1 = AX0> 
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and invert X0: 

{A11} A = X1X
31 
0 = (4.24) 

The inverse will exist by the assumption of independence (spanning set) in the initial condition 

vectors. One must again run the model Q �times in this approach. A special, useful, case would 

be when x(l) r = �lm (unit perturbation initial conditions), in which case the solution X1 = G. 

Again, the changes from X0 to X1 may be too small for adequate numerical accuracy, and 

one might use multiple time-steps, computing, 

Xq = AqX0> 

which would determine Aq, and  A itself can be found by one of the matrix root algorithms.106 

(3) Suppose the statistics of the solutions are known, e.g., 
D E D E 

R (0) = x (w) x (w)W > R (1) = x (w + 1)  x (w)W > 

perhaps because the model has been run many times from di�erent initial conditions–making 

it possible to estimate these from stored output. Then noting, 
D E D E 
x (w + 1)  x (w)W = A x (w) x (w)W > 

or 

R (1) = AR (0) > 

and, 

A = R (1) R (0)31 = (4.25) {A22} 

That is to say, knowledge of these covariances is equivalent to knowledge of the model itself (and 

vice-versa).107 Multiple time steps can again be used if necessary to infer Aq = R (q) R (0)31 = D E 
By writing x (w + 1)  x (w)W = R (1) > etc. stationarity is implied. More generally, one may D E 
have x (w + 1)  x (w)W = R (w> 1) = 

Note that determination of B can be done analogously–using a spanning set of q(l) as initial 

conditions, setting x (0) = 0= 

(4) Automatic di�erentiation (AD) tools exist108 which can take computer code (e.g., For-

tran, C, Matlab R° ) for the forward model, and produce by analysis of the code, equivalent 

computer code (e.g., Fortran) for construction of A= Some codes preferentially produce AW , but 

transposition then can be employed. An example is provided in the Chapter Appendix. {pagead1} 

If the model is fully time-dependent, then A (w) has to be deduced at each time-step, as 

above. For some purposes, one might seek temporal averages, so defining an Ā as, 

Āq= A (0) A (1) ==A (q � 2) A (q � 1) = 
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Reintroduction of B is easily accomodated. Generalization of Eq. (4.25) leads to 

Āq= R (q)R (0)31 = (4.26) {A33} 

4.2.3 Observations and Data 

Here, observations are introduced into the modeling discussion so that they stand on an equal 

footing with the set of model equations (4.12) or (4.13). Observations will be represented as a 

set of linear simultaneous equations at time w = q�w, 

{61025} E(w)x(w) + n(w) = y(w) > (4.27) 

a straightforward generalization of the previous static systems where w did not appear explicitly; 

here, E is sometimes called the “design” or “observation” matrix. The notation used in Chapter 

2 to discuss recursive estimation was chosen deliberately to be the same as used here. 

The requirement that the observations be linear combinations of the state-vector elements 

can be relaxed if necessary, but most common observations are of that form. An obvious ex-

ception would be the situation in which the state vector included fluid velocity components, 

x(w)> y(w), but an instrument measuring speed, 
p
(x(w)2 + y(w)2), would produce a nonlinear 

relation between |l(w) and the state vector. Such systems are usually handled by some form of 

linearization.109 

To be specific, the noise n(w) is supposed to have zero mean and known second-moment 

matrix, 

{61026} hn(w)i = 0> hn(w)n(w)W i = R(w) = (4.28) 

But 
0 0{61027} hn(w)n(w )W i = 0> w 6= w = (4.29) 

That is, the observational noise should not be correlated from one measurement time to another; 

there is a considerable literature on how to proceed when this crucial assumption fails (called 

the “colored-noise” problem110). Unless specifically stated otherwise, we will assume that (4.29) 

is valid. 

The matrix E(w) can accommodate almost any form of linear measurement. If, at some 

time, there are no measurements, then E(w) vanishes, along with R(w). If a single element {l(w) 

is measured, then E(w) is a row vector that is zero everywhere except in column i, where it is 

1. It is particularly important to recognize that many measurements are weighted averages of 

the state-vector elements. Some measurements–for example, tomographic ones111 as described 

in Chapter 1–are explicitly spatial averages (integrals) obtained by measuring some property 
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along a ray  travelling  between  two points;  see Fig.  4.3b.  Any such data representing spatially  

filtered versions of the state vector can be written, 
X 

{61028} |(w) =  �m {m (w) = (4.30) 

where the �m are the averaging weights. 

Point observations often occur at positions not coincident with model grid positions (al-

though many models, e.g., spectral ones, do not use grids). Then (4.27) is an interpolation 

rule, possibly either very simple or conceivably a full-objective mapping calculation, of the value 

of the state vector at the measurement point. Often the number of model grid points vastly 

exceeds the number of the data grid points; thus, it is convenient that the formulation (4.27) 

demands interpolation from the dense model grid to the sparse data positions; see Fig. 4.3b. 

(In the unusual situation where the data density is greater than the model grid density, one 

can restructure the problem so the interpolation goes the other way.) More complex filtered 

measurements exist. In particular, one may have measurements of a state vector only in specific 

wavenumber bands; but such “band-passed” observations are automatically in the form (4.27). 

As with the model, Eq. (4.22), the observations of the combined state vector can be con-

catenated into a single observational set, 

EE xE + nE = yE > (4.31) {61030} 

where 6565<
AAAAAAAAAA

;
AAAAAAAAAA

> nE =


99999999997


n (0)


n(1)


.
.
.


::::::::::8


> yE =


99999999997


x̃ (0) 

y(1)


.
.
.


I
 0 0 · 0
 ::::::::::8 

?
AAAAAAAAAA

0 E(1) 0 · 0
 @
A
AAAAAAAAA

EE = = 

0 0 E(2) · · 

>= · · · 0 E(wi ) n(wi ) y(wi ) 

Here the initial conditions have been combined with the observations. EE is block-banded and 

often very sparse. If the size is no problem, the concatenated model and observations could be 

dealt with using any of the methods of Chapter 2. The rest of this chapter can be thought of 

as an attempt to produce from the model/data combination the same type of estimates as were 

found useful in Chapter 2, but exploiting the special structure of matrices AE and EE so as to 

avoid having to store them all at once in the computer. 

As one example of how the combined model and observation equations can be used together, 

consider the situation in which only the initial conditions x(0) are unknown. The unit solution 

formulation of P. 200 leads to a particularly simple reduced form. One has immediately, 

y(w) =  E(w)G(w> 0)x(0) + n(w) > 1 w (4.32) {green1}� � wi > 
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which are readily solved in whole-domain form for x (0) = If only a subset of the x(0) are thought 

to be nonzero, the columns of G need to be computed only for those elements.112 


