
27 2.3 Simple Statistics. Regression 

2.3.1 Probability Densities, Moments. 

Some statistical ideas are required, but the discussion is confined to stating some basic notions 

and to developing a notation.20 We require the idea of a probability density for a random 

Continued on next page...
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variable {. This subject is a very deep one, but our approach will be heuristic.21 Suppose 

that an arbitrarily large number of experiments can be conducted for the determination of the 

values of {, denoted [l, 1 � l � P , and a histogram of the experimental values found. The 

frequency function, or probability density, will be defined as the limit, supposing it exists, of the 

histogram of an arbitrarily large number of experiments, P $4> divided into bins of arbitrarily 

small value ranges, and normalized by P> to produce the fraction of the total appearing in the 

ranges. Let the corresponding limiting frequency function be denoted s{([)g[> interpreted as 

the fraction (probability) of values of { lying in the range, [ � { � [ + g[= As a consequence 

of the definition, s{ ([) � 0 and, 

Z Z " 

s{ ([) g[ = s{ ([) g[ = 1= (2.39) 
all [ 3" 

The infinite integral is a convenient way of representing an integral over “all [”, as s{ simply 

vanishes for impossible values of [= (It should be noted that this so-called frequentist approach 

has fallen out of favor, with Bayesian assumptions being regarded being ultimately more rigorous 

and fruitful. For present introductory purposes, however, empirical frequency functions appear 

to provide an adequate intuitive basis for proceeding.) 

The “average,” or “mean,” or “expected value” is denoted h{i and defined as, Z 
{32001} h{i � 

all [ 
[s{([)g[ = p1= (2.40) 

The mean is the center of mass of the probability density. Knowledge of the true mean value of 

a random variable is commonly all that we are willing to assume known. If forced to “forecast” 

the numerical value of { under such circumstances, often the best we can do is to employ h{i. 

If the deviation from the true mean is denoted {0 so that { = h{i + {0, such a forecast has the 

virtue that we are assured the average forecast error, h{0i, would be zero if many such forecasts 

are made. The bracket operation is very important throughout this book; it has the property 

that if d is a non-random quantity, hd{i = dh{i and hd{ + |i = d h{i + h|i = 

Quantity h{i is the “first-moment” of the probability density. Higher order moments are 

defined as, Z " 

pq = h{
qi = [qs{([)g[> 

-" 

where q are the non-negative integers. A useful theoretical result is that a knowledge of all the 

moments is usually enough to completely define the probability density itself. (There are trou-

blesome situations with, e.g. non-existent moments, as with the so-called Cauchy distribution, ¡ ¡ ¢¢ 
s{ ([) = (2@�) 1@ 1 +[2 [ � 0> whose mean is infinite.) For many important probability 

densities, including the Gaussian, a knowledge of the first two moments q = 1> 2 is su!cient to 
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define all the others, and hence the full probability density. It is common to define the moments 

for q A  1 about the mean, so that one has, Z " 

� = h({ � h{i)qi = ([ � h[i)q s{([)g[= q 
3" 

�2 is the variance and often written �2 = �
2, where  � is the “standard deviation.” 

2.3.2 Sample Estimates. Bias. 

In observational sciences, one normally must estimate the values defining the probability density 

from the data itself. Thus the first moment, the mean, is often computed as the “sample 

average,” 
P X1 

˜ [l= (2.41) {32002} p1 = h{iP � 
P 
l=1 

The notation p1 is used to distinguish the sample estimate from the true value, p1. On  the  ˜

other hand, if the experiment of computing p̃1 from P samples could be repeated many times, 

the mean of the sample estimates would be the true mean. This conclusion is readily seen by 

considering the expected value of the di�erence from the true mean: * + 
P X1 

hh{iP � h{ii = [l � h{i 
P 
l=1 

P X P1 
= h[li � h{i = h{i � h{i = 0= 
P P 
l=1 

Such an estimate, is said to be “unbiased”: its expected value is the quantity one seeks. 

The interpretation is that for finite P , we do not expect that the sample mean will equal the 

true mean, but that if we could produce sample averages from distinct groups of observations, 

the sample averages would themselves have an average which will fluctuate about the true mean, 

with equal probability of being higher or lower. There are many sample estimates, however, some 

of which we encounter, where the expected value of the sample estimate is not equal to the true 

estimate. Such an estimator is said to be “biassed.” A simple example of a biassed estimator is 

the “sample variance,” defined as 

P X 
2 1 

h{iP )
2 v (2.42) {32003} � 

P 
([l � 

l 

For reasons explained a bit later, (P. 40) one finds that 

 ® P 1 22 2 v = 
� 
� 6= � 

P 
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and thus the expected value is not the true variance. (This particular estimate is “asymptotically 

unbiased,” as the bias vanishes as P $4=) 
We are assured that the sample mean is unbiased. But the probability that h{iP = h{i > 

that is that we obtain exactly the true value, is very small. It helps to have a measure of the 

extent to which h{iP is likely to be very far from h{i = To do so, we need the idea of dispersion– 

the expected or average squared value of some quantity about some interesting value, like its 

mean. The most familiar measure of dispersion is the variance, already used above, the expected 

fluctuation of a random variable about its mean: {pagedispersio 

� 2 = h({ � h{i)2i = 

More generally, define the dispersion of any random variable, }> as, 

G2(}) = h}2i= 

Thus, the variance of { is G2({ � h{i). 
We can thus ask for the variance of h{iP about the correct value= A little algebra using the 

bracket notation produces, 

{var1} G2 
³ 
(h{iP � {)2 ́

 
= 
�2 

P 
= (2.43) 

This expression shows the well-known result that as P becomes large, any tendency of the 

sample  mean  to  lie far  from  the true value  will  diminish.  It does not  prove that some particular  

value will not, by accident, be far away, merely that it becomes increasingly unlikely as P grows. 

(In statistics textbooks, the Chebyschev inequality is used to formalize this statement.) 

An estimate which is unbiased and whose expected dispersion about the true value goes to 

zero with P is evidently desirable. In more interesting estimators, a bias is often present. Then 

for a fixed number of samples, P> there would be two distinct sources of deviation (error) from 

the true value: (1) the bias–how far, on average, it is expected to be from the true value, and 

(2) the tendency–from purely random events–for the value to di�er from the true value (the 

random error). In numerous cases, one discovers that tolerating a small bias error can greatly 

reduce the random error–and thus the bias may well be worth accepting for that reason. In 

some cases therefore, a bias is deliberately introduced. 

2.3.3 Functions and Sums of Random Variables 

If the probability density of { is s{({), then the mean of a function of {, j({) is just, Z " 

{32029} hj({)i = j([)s{([)g[ > (2.44) 
3" 
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which follows from the definition of the probability density as the limit of the outcome of a 

number of trials. 

The probability density for j regarded as a new random variable is obtained from 

g{
{32030} sj (J) =  s{([(J)) gJ> (2.45)

gj 

where g{@gj is the ratio of the di�erential intervals occupied by { and j and can be understood 

by reverting to the original definition of probability densities from histograms. 

The Gaussian, or normal, probability density is one that is mathematically handy (but is 

potentially dangerous as a general model of the behavior of natural processes–many geophysical 

and fluid processes are demonstrably non-Gaussian). For a single random variable {, it is defined 

as, � 
1 

s{([) =  s
2��{ 

exp � 
([ � p{)2 

2�2 

¸
{ 

2(sometimes abbreviated as J(p{> �{)). It is readily confirmed that h{i = p{, h({ � h{i)2i = �{. 

One important special case is the transformation of the Gaussian to another Gaussian of 

zero-mean and unit standard deviation, 

} = 
{ � p 

> 
�{ 

which can always be done, and thus, 
� ¸

1 ]2 

s} (]) =  s
2� 
exp � 

2 

A second important special case of a change of variable is j = }2 where } is Gaussian of zero 

mean and unit variance. Then the probability density of j is, 

1 
sj (J) =  

J1@2
s
2� 

exp(�J@2) > (2.46) {32031} 

a special probability density usually denoted as "2 
1 (“chi-square-sub-1”), the result for the square 

of a Gaussian. 

2.3.4 Multivariable Probability Densities. Correlation 

The idea of a frequency function generalizes easily to two or more random variables, {, |. We  

can, in concept, do an arbitrarily large number of experiments in which we count the occurrences 

of di�ering pair values, ([l> \l), of  {, | and make a histogram normalized by the total number 

of samples, taking the limit as the number of samples goes to infinity, and the bin sizes go to 

zero, to produce a joint probability density s{| ([> \ )= s{| ([> \ ) g[g\ is then the fraction 
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of occurrences such that [ � { � [ + g[> \ � | � \ + g\ . A  simple  example  would  be  

the probability density for the simultaneous measurement of the two components of horizontal 

velocity at a point in a fluid. Again, from the definition, s{| ([> \ ) � 0 and, Z " 

s{| ([> \ ) g\ = s{ ([) > (2.47) Z Z 3"
" " 

s{| ([> \ ) g[g\ = 1= (2.48) 
3" 3" 

An important use of joint probability densities is in what is known as “conditional probabil-

ity.” Suppose that the joint probability density for {, | is known and furthermore, | = \ , that  

is, information is available concerning the actual value of |. What then is the probability density 

for { given that a particular value for | is known to have occurred? This new frequency function 

is usually written as s{|| ([|\ ) and read as “the probability of {, given that | has occurred,” 

or, “the probability of { conditioned on |.” It follows immediately from the definition of the 

probability density that 

{32004} s{|| ([|\ ) =  
s{| ( )[> \ 

(2.49) 
s| (\ ) 

(This equation is readily understood by going back to the original experimental concept, and 

understanding the restriction on {, given  that  | is known to lie within a strip paralleling the [ 

axis). 

Using the joint frequency function, define the average product as, Z Z  
{32005} h{|i = [\ s{| ([> \ )g[ g\ = (2.50) 

all [>\ 

Suppose that upon examining the joint frequency function, one finds that s{| ([> \ ) = s{([)s| (\ ), 

that is it factors into two distinct functions. In that case, {, | are said to be “independent.” 

Many important results follow including, 

h{|i = h{i h|i = 

Non-zero mean values are often primarily a nuisance. One can always define modified vari-

ables, e.g. {0 = {� h{i such that the new variables have zero mean. Alternatively, one computes 

statistics centered on the mean. Should the centered product h({ � h{i)(| � h|i)i be non-zero, 

{, | are said to “co-vary” or to be “correlated.” If h({ � h{i)(| � h|i)i = 0> then the two vari-

ables are “uncorrelated.” If {, | are independent, then h({ � h{i)(| � h|i)i = 0. Independence 

thus implies lack of correlation, but the reverse is not necessarily true. (These are theoretical 

relationships, and if h{i > h|i are determined from observation, as described below, one must 

carefully distinguish estimated behavior from that expected theoretically.) 



� 
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If the two variables are independent, then (2.49) is, 

{32006} s{|| ([|\ ) = s{([) > (2.51) 

that is, the probability of { given | does not depend upon \> and thus 

s{| ([> \ ) = s{ ([) s| (\ ) > 

–and there is then no predictive power for one variable given knowledge of the other. 

Suppose there are two random variables {, | between which there is anticipated to be some 

linear relationship, 

{ = d| + q> (2.52) {32008} 

where q represents any contributions to { that remain unknown despite knowledge of | and d 

is a constant. Then, 

h{i = dh|i + hqi > (2.53) {32009a} 

and (2.52) can be re-written as, 

{ � h{i = d(| � h|i) + (q � hqi)> 

or 

{0 = d|0 + q >0 where {0 = { � h{i> etc. (2.54) {32009b} 

From this last equation, 

d = 
h{0|0i h{0|0i 
h|02i (h|02ih{02i)

= 
1@2 

h{02i1@2 

h|02i1@2 
= � 

h{02i1@2 

h|02i1@2 
> (2.55) {32010} 

where it was supposed that h|0q0i = 0, thus defining q0. The  quantity  

� 
h|02i1@2h{02i1@2 

(2.56) {32011} 

is the “correlation coe!cient” and is easily shown22 to have the property |�| � 1. If  � should 

vanish, then so does d. If  d vanishes, then knowledge of |0 carries no information about the value 

of {0. If  � = ±1, then it follows from the definitions that q = 0  and knowledge of d permits 

perfect prediction of {0 from knowledge of |0= (Because probabilities are being used, rigorous 

usage would state “perfect prediction almost always,” but this distinction will be ignored.) 

A measure of how well the prediction of {0 from |0 will work can be obtained in terms of the 

variance of {0. We  have,  

 ® 
h{02i = d2h|02i + q 02 = � 2h{02i + hq 02i 



34 CHAPTER 2 BASIC MACHINERY 

or, 

(1 � � 2)h{ 
02i = hq 02i= (2.57) {32012} 

That is, (1 � �2)h{ 
02i is the fraction of the variance in {0 that is unpredictable from knowledge of 

|0 and is the “unpredictable power.” Conversely, �2h{02i is the “predictable” power in {0 given 

knowledge of |0= The limits as � $ 0> 1 are readily apparent. 

Thus we interpret the statement that two variables {0 , |0 “are correlated” or “co-vary” to 

mean that knowledge of one permits at least a partial prediction of the other, the expected 

success of the prediction depending upon the size of �. If  � is not zero, the variables cannot 

be independent, and the conditional probability s{|| ([|\ ) 6= s{ ([) = This result represents an 

implementation of the statement that if two variables are not independent, then knowledge of 

one permits some skill in the prediction of the other. If two variables do not co-vary, but are 

known not to be independent, a linear model like (2.52) would not be useful–a non-linear model 

would be required. Such non-linear methods are possible, and are touched on briefly later. The 

idea that correlation or covariance between various physical quantities carries useful predictive 

skill between them is an essential ingredient of many of the methods taken up in this book. D E 
In most cases, quantities like �> { 

0 2 > are determined from the available measurements, e.g. 

of the form, 

{32013} d|l + ql = {l > (2.58) 

and are not known exactly. They are thus sample values, are not equal to the true values, and 

must be interpreted carefully in terms of their inevitable biases and variances. This large subject 

{1} of regression analysis is left to the references.23 

2.3.5 Change of Variables 

Suppose we have 2�random variables {> | with joint probability density s{| ([>\ ) = They are 

known as functions of two new variables { = { (�1> �2) > |  = | �1>�2 and and inverse mapping 
¡ ¢ 

�1 = �1 ({> |) > �2 = �2 ({> |). What is the probability density for these new variables? The 

general rule for changes of variable in probability densities follows from area conservation in 

mapping from the {, | space to the �1, �2 space, that is, 

{32016} s�
1
�
2 
(�1>�2) =  s{| ([(�1>�2)> \ (�1>�2)) 

C([>\ ) 
C(�1>�2) 

(2.59) 

where C([>\ )@C(�1>�2) is the Jacobian of the transformation between the two variable sets. As 

in any such transformation, one must be alert for zeros or infinities in the Jacobian, indicative 

of multiple valuedness in the transformation. Texts on multivariable calculus discuss such issues 

in great detail. 



s{>| ( ) =  
1 

exp 

µ
� 
([ � p{)2 

2�2 � 
(\ � p| )2 

2�2
[> \ 
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Example 

Suppose {1> {2 are independent Gaussian random variables of zero mean and variance �2= 

Then Ã ! 

sx (X) =  
2��2 exp 
1 � 

2�2

¡ ¢ 
[1 
2 + [2 

2 = 

Define new random variables 

u = {2
¡

21 + {2
¢1@2 
> !  = tan31 ({2@{1) > (2.60) {polar1} 

whose mapping in the inverse direction is 

{1 = u cos !> |1 = u sin !> (2.61) {polar2} 

that is the mappings between polar and cartesian coordinates. The Jacobian of the transformation 

is Md = u= Thus 

su>! (U> �) =  
U 2 ¡ ¢ 
2� �2 exp �U2@�2 > 0 u>� 

The probability density for u alone is obtained by integrating 

� � �� ! � (2.62) {polar3} 

Z 

3� 
�su (U) =  

� 

su>!g! = 
�

U 
2 exp U2@ 2� 2 > 

£ ¡ ¢¤ 
(2.63) {rayleigh1} 

known as a Rayleigh distribution. By inspection then, 

1 
s! (�) =  

2� 
> 

which is the uniform distribution, independent of �= (These results are very important in signal 

processing.) 

To generalize to q�dimensions, let there be Q �variables, {l> 1 � l � Q> with known joint 

probablility density s{1==={Q = Let there be Q �new variables, �l> that are known functions of 

the {l, and an inverse mapping between them. Then the joint probability density for the new 

variables is just,  

s�1===�Q 
(�1>===> �Q ) =  s{1==={Q (�1 ([1>===> [Q ) ===> �Q ([1> ====> [Q )) 

C([1> ===>[Q ) 
C(�1> ===> �Q ) 

(2.64) {trans1} 

Suppose that {, | are independent Gaussian variables J(p{> �{), J(p| > �| ). Then their 

joint probability density is just the product of the two individual densities, 

2��{�| { | 

¶ 

= (2.65) {32014} 
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Let two new random variables, �1, �2, be defined as a linear combination of {> |, 

�1 = d11({� p{) +  d12(| � p| ) +  p�1 

�2 = d21({� p{) +  d22(| � p| ) +  p�2 
> (2.66) {32015} 

or in vector form, 

� = A(x � m{) +  m� > 

where x = [{> |]W , m{ = [p{>p| ]
W , m| = [p�1 

>p ]W , and the numerical values satisfy the�2 

corresponding functional relations, 

�1 = d11([ � p{) +  d12(\ � p| ) +  p >�1 

etc. Suppose that the relationship (2.66) is invertible, that is, we can solve for, 

{ = e11(�1 � p�1 
) +  e12(�2 � p�2 

) +  p{ 

| = e21(�1 � p�1 
) +  e22(�2 � p�2 

) +  p| > 

or, 

x = B(� � m� ) +  m{= (2.67) 

Then the Jacobian of the transformation is, 

C([>\ )
{32018} 

C(�1>�2)
= e11e22 � e12e21 = det(B) (2.68) 

(det(B) is the determinant). Eq. (2.66) produces, 

h�1i = p�1 

h�2i = p (2.69)�2 

2 2 2 2h(�1 � h�1i)
2i = d2 

12�| > h(�2 � h�2i)
2i = d2 

22�| >11�{ + d2 
21�{ + d2 

2 2h(�1 � h�1i)(�2 � h�2i)i = d11d21�{ + d12d22�| 6= 0  

In the special case, 

{32020} A =


;
AA?
 cos ! sin !


<
AA@ 

AA>

>
 B =


<
AA@ 

AA> 

sin !� 
> (2.70) 

;
AA? 

AA

cos ! 

A
A=
 =
sin ! cos ! sin ! cos !� 
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the transformation (2.70) is a simple coordinate rotation through angle !, and the Jacobian is 

1. The new second-order moments are, 

2 
{ + sin  2 ! �2{32021a} h(�1 � h�1i)

2i = ��1 
= cos  2 ! �2 

| > (2.71) 

2 
{ + cos  2 ! �2{32021b} h(�2 � h�2i)

2i = ��2 
= sin  2 ! �2 

| > (2.72) 

2{32021c} h(�1 � h�1i)(�2 � h�2i)i � = (� 2 � | � �{) cos  ! sin ! =  (2.73)�1�2 

The new probability density is 

1 
s�1�2 

(�1>�2) =  (2.74) 
22���1 

��2 

q
1 ��� ";

?

<
@ 

> 

# 
)2 2�� (�1 � p�1 

)(�2 � p�2 
) (�2 � p�2 

)2 

2 

(�1 � p�1 
2 

1 
+exp =� 

2
q
1 2�� 

�
� ��

1 
��

2 
��1 �2� 

¡
2 2 

¢1@2 
�{ + �| 

A probability density derived through 

2 2 
{) sin  ! cos !@ is the correlation coe!cient of where �� = (� @��1 
� = � ��2| � �1�2 

the new variables. linear transformation from two a 

independent variables which are Gaussian will be said to be “jointly Gaussian” and (2.74) is a 

canonical form. Because a coordinate rotation is invertible, it is important to note that if we had {pagegauss} 

two random variables �1> �2 which were jointly Gaussian with � 6= 1, then we could find a pure 

rotation (2.70), which produces two other variables {, | which are uncorrelated, and therefore 

independent. Notice that (2.73) shows that two such uncorrelated variables {, | will necessarily 

have di�erent variances, otherwise �1, �2 would have zero correlation, too, by Eq. (2=73) = 

As an important by-product, it is concluded that two jointly Gaussian random variables that 

are uncorrelated, are also independent. This property is one of the reasons Gaussians are so 

nice to work with; but it is not generally true of uncorrelated variables. 

Vector Random Processes 

Simultaneous discussion of two random processes, {, | can regarded as discussion of a vector 

random process [{> |]W , and suggests a generalization to Q dimensions. Let us label Q random 

processes as {l and define them as the elements of a vector x = [{1> {2> = = = > {Q ]
W . Then the 

mean is a vector: hxi = m{, and the covariance is a matrix: 

C{{ = G2(x � hxi) =  h(x � hxi)(x � hxi)W i > (2.75) {32023} 

which is necessarily symmetric and positive semi-definite. The cross-covariance of two vector 

processes x, y is, 

C{| = h(x � hxi)(y � hyi)W i> (2.76) {32024} 
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and C{| = CW 
|{. 

It proves convenient to introduce two further moment matrices in addition to the covariance 

matrices. The “second moment” matrices will be defined as, 

R{{ � G2(x) =  hxx W i> R{| = hxy W i> 

that is, not taken about the means. Note R{| = RW x be an “estimate” of the |{, etc. Let ˜

true value, x. Then the dispersion of x̃ about the true value will be called the “uncertainty” 

(sometimes it is called the “error covariance”) and is 

P G2(˜ x x)(˜x x) =  h(˜ x x)W i = � � � � 

P is similar to C> but di�ers in being taken about the true value, rather than about the mean 

value; the distinction can be very important. 

If there are Q variables, �l, 1 � l � Q , they will be said to have an “Q -dimensional jointly 

normal probability density” if it is of the form, 

h i 
1 exp �� (� � m) 

{32025} s�
1
>===>�Q 

(�1> = = = >�Q ) =  
� 2 (� � m)W C31 

= (2.77)
(2�)Q@2

p
det(C�� ) 

One finds h�i = m, h(� � m)(� m)W i = C�� . Eq. 2.74 is a special case for Q = 2, and  so  the  � 

earlier forms are consistent with this general definition.


Positive definite symmetric matrices can be factored as,


W@2 1@2 
{32026} C�� = C�� C > (2.78)�� 

1@2
called the “Cholesky decomposition,” where C�� is an upper triangular matrix (all zeros below 

{pagechol} the main diagonal) and non-singular.24 . It follows that the transformation (a rotation and 

stretching), 

{32027} x = C3W@2(� � m) > (2.79)�� 

produces new variables x of zero mean, and diagonal covariance, that is, a probability density 

¡ ¡
1 1 

¢ 
exp � 2 ([1

2 + · · ·+ [2 exp 2 [
2 exp 2 [

2 
1

{32028} s{1>===>{Q ([1> ===[Q ) =  
(2�)Q@2 

Q ) = 
� 1 

¢ 
· · ·  

� Q > (2.80)
(2�)1@2 (2�)1@2 

which factors into Q-independent, normal variates of zero mean and unit variance (C{{ = R{{ = 

I). Such a process is often called Gaussian “white noise,” and has the property h{l{m i = 0> l  = 
25m=

6
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2.3.6 Sums of Random Variables 

It is often helpful to be able to compute the probability density of sums of independent random 

variables. The procedure for doing so is based upon (2.44). Let { be a random variable and 

consider the expected value of the function hl{w: Z " 

{32032} hhl{wi = 
3" 
s{ ([) hl[ wg[ � !{(w) > (2.81) 

which is the Fourier transform of s{([); !{(w) is usually termed the “characteristic function” of 

{. Now consider the sum of two independent random variables {, | with probability densities 

s{, s| , respectively, and define a new random variable } = { + |. What is the probability density 

of }? One starts by first determining the characteristic function, !} (w) for } and then using  the  

Fourier inversion theorem to obtain s{(]). To  obtain  !} , 

!} (w) =  hhl}wi = hhl({+|)wi = hhl{wihhl|wi 

where the last step depends upon the independence assumption. This last equation shows 

!} (w) =  !{(w)!| (w) = (2.82) {32033} 

That is, the characteristic function for a sum of two independent variables is the product of 

the characteristic functions. The “convolution theorem”26 asserts that the Fourier transform 

(forward or inverse) of a product of two functions is the convolution of the Fourier transforms 

of the two functions. That is, Z " 

s} (]) =  
3" 
s{ (u) s| (] � u) gu= (2.83) {conv} 

We will not explore this relation in any detail, leaving the reader to pursue the subject in the 

references.27 But it follows immediately that the multiplication of the characteristic functions of 

a sum of independent Gaussian variables produces a new variable, which is also Gaussian, with 

a mean equal to the sum of the means and a variance which is the sum of the variances (“sums 

of Gaussians are Gaussian”). It also follows immediately from Eq. 2.82) that if a variable � is 

defined as, 

� = {2 
2 + · · ·+ {2 

1 + {2 
� > (2.84) {32034} 

where each {l is Gaussian of zero mean and unit variance, that the probability density for � is, 

��@231 

� 2 

s� (�) =  
2�@2

¡ 
� 
¢ exp(��@2) > (2.85) {32035} 
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known as "2 
y –“chi-square sub- �.” The chi-square probability density is central to the discussion P 

˜2n, measured as  ̃ n = k˜of the expected sizes of vectors, such as ˜ nW ˜ nk2 = l ql if the elements of 

ñ can be assumed to be independent and Gaussian. Eq. (2.46) is the special case � = 1. 

Degrees-of-Freedom 

The number of independent variables described by a probability density is usually called 

the “number of degrees-of-freedom.” Thus the densities in (2.77) and (2.80) have Q -degrees 

of freedom and (2.85) has � of them. If a sample average (2.41) is formed, it is said to have 

Q -degrees of freedom if each of the {m is independent. But what if the {m have a covariance C{{ 

which is non-diagonal? This question of how to interpret averages of correlated variables will be 

explicitly discussed on P. 135. 

Consider the special case of the sample variance Eq. (2.42)–which we claimed was biassed. 

The reason is that even if the sample values, {l> are independent, the presence of the sample 

average in the sample variance means that there are only Q � 1 independent terms in the sum. 

That this is so is most readily seen by examining the two-term case. Two samples produce a 

sample mean, h{i2 = ({1 + {2)@2. The two-term sample variance is, 

1 
h i 

2 v = ({1 � h{i2)
2 + ({2 h{i2)

2 >2 � 

but knowledge of {1 and of the sample average, permits perfect prediction of {2 = 2 h{i2 � {1. 

The second term in the sample variance as written is not independent of the first term, and thus 

there is just one independent piece of information in the two-term sample variance. To show 

 ®


it in general, assume without loss of generality that h{i = 0> so that �2 = {2 = The sample 

variance about the sample mean (which will not vanish) of independent samples is given by Eq. 

{page39} (2.42) and so, 
4343 * + 

P P P
 1 1
 1X 
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Consider a vector random variable, with element {l where the subscript l denotes a position 

in time or space. Then {l, {m are two di�erent random variables–for example, the temperature 

at two di�erent positions in a moving fluid, or the temperature at two di�erent times at the 

same position. If the physics governing these two di�erent random variables are independent 

of the parameter l (i.e., independent of time or space), then {l is said to be “stationary”– 

meaning that all the underlying statistics are independent of l=28 Specifically, h{li = h{m i � h{i, 

G2({l) =  G2({m ) =  G2 ({), etc. Furthermore, {l, {m have a covariance 

F{{(l> m) =  h({l � h{li)({m � h{m i)i > (2.86) {32036} 

that is, independent of l, m, and might as well be written F{{(|l � m|), depending only upon 

the di�erence |l � m|. The distance, |l � m|> is often called the “lag.” F{{(|l � m|) is called the 

“autocovariance” of x or just the covariance, because we now regard {l, {m as intrinsically the 

same process.29 If F{{ does not vanish, then by the discussion above, knowledge of the numerical 

value of {l implies some predictive skill for {m and vice-versa–a result of great importance when 

we examine map-making and objective analysis. For stationary processes, all elements having 

the same |l � m| are identical; it is seen that all diagonals of such a matrix {F{{ (l> m)}, are  

constant, for example, C�� in Eq. (2=77)= Matrices with constant diagonals are thus defined by 

the vector F{{(|l � m|)> and are said to have a “Toeplitz form.” 


