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4.5	 Duality and Simplification: The Steady-State Filter and Ad-

joint 

For linear models, the Lagrange multiplier method and the filter/smoother algorithms produce 

identical solutions. In both cases, the computation of the uncertainty remains an issue–in the 

former case because it is not part of the solution, and in the latter because it can overwhelm the 

computation. However, if the uncertainty is computed for the sequential estimator solutions, 
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it must also represent the uncertainty derived from the Lagrange multiplier principle. In the 

interests of gaining insight into both methods, and of ultimately finding uncertainty estimates, 

consider again the covariance propagation equations for the Kalman filter: 

P(w> �) =  A(w � 1)P(w � 1)A(w � 1)W + �(w � 1)Q(w � 1)� (w � 1)W > (4.147) {64001} 

P(w) =  P(w> �)� £ ¤
P(w> �)E(w)W E(w)P(w> �)E(w)W + R(w) 31 

E(w)P(w> �) (4.148) {64002} 

where K(w) has been written out. Make the substitutions shown in Table 4.1; the equations for 

evolution of the uncertainty of the Kalman filter are identical to those for the control matrix 

S(w), given in Equation (4.136); hence, the Kalman filter covariance also satisfies a matrix Riccati 

equation. To see that in Eq. (4.136)129 put, 

£ ¤
WS(w> �) � S(w + 1)  � S(w + 1)� � W S(w + 1)� + Q31 31 
� S(w + 1)  (4.149) 

and then, 

S(w) =  AW S(w> �)A + R(w)31> (4.150) 

which correspond to Eq. (4.147, 4.148). Time runs backward in the control formulation and 

forward in the estimation problem, but this di�erence is not fundamental. The significance of 

this result is that simplifications and insights obtained from one problem can be employed on 

the other (some software literally makes the substitutions of Table 4.1 to compute the Kalman 

filter solution from the algorithm for solving the control Riccati equation). {pagericcati} 

This feature–that both problems produce a matrix Riccati equation–is referred to as the 

“duality” of estimation and control. It does not mean that they are the same problem; in 

particular, recall that the control problem is equivalent not to filtering, but to smoothing. 

Covariances usually dominate the Kalman filter (and smoother) calculations and sometimes 

lead to the conclusion that the procedures are impractical. But as with all linear least-square– 

like estimation problems, the state vector uncertainty does not depend upon the actual data 

values, only upon the prior error covariances. Thus, the filter and smoother uncertainties (and 

the filter and smoother gains) can be computed in advance of the actual application to data, and 

stored. The computation can be done e.g., by stepping through the recursion in (4.147)—(4.148) 

starting from w = 0. 

Furthermore, it was pointed out that in Kalman filter problems, the covariances and Kalman 

gain can approach a steady state, in which P(w), P(w> �), K(w) eventually do not depend upon 
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Table 4.1: Correspondences between the variables of the control formulation and that of the 

Kalman filter, which lead to the Riccati equation. Note that time runs backward for 

control cases and forward for the filter. {table1} 

Adjoint/Control Kalman Filter 

A AW 

S(w> �) P(w + 1)  

S(w + 1)  P(w + 1> �) 

R31 �T� W 

� EW 

Q31 R 

time. Physically, the growth in error from the propagation Equation (4.147) is then just balanced 

by the reduction in uncertainty from the incoming data stream (4.148). This simple description 

supposes the data come in at every time step; often the data appear only intermittently, but 

periodically, and the steady-state solution is periodic–errors displaying a characteristic saw-

tooth structure between observation times.130 

If these steady-state values can be found, then the necessity to update the covariances and 

gain matrix disappears, and the computational load is much reduced, potentially by many 

orders of magnitude (see also Chapter 5). The equivalent steady state for the control problem 

is best interpreted in terms of the feedback gain control matrix Kf, which can also become time 

independent, meaning that the value of the control to be applied depends only upon the state 

esteadystate} observed at time w and need not be recomputed at each time step. 

The great importance of steady-state estimation and control has led to a large number of 

methods for obtaining the solution of the various steady-state Riccati equations requiring one ¡ ¢ 
of, S(w) =  S(w � 1), S(w> �) =  S(w � 1> �), P(w) =  P(w � 1), or  P(w> �) =  P(w � 1> �) . 131 The 

steady-state equation is often known as the “algebraic Riccati equation.”132 

A steady-state solution to the Riccati equation corresponds not only to a determination of 

the steady-state filter and smoother covariances but also to the steady-state solution of the 

Lagrange multiplier normal equations–a so-called steady-state control. Generalizations to the 

steady-state problem exist; an important one is the possibility of a periodic steady state.133 
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Before seeking a steady-state solution, one must determine whether one exists. That no such 

solution will exist in general is readily seen by considering a physical system in which certain 

components (elements of the flow) are not readily observed. If these components are initialized 

with partially erroneous values, then if they are unstable, they will grow without bound, and 

there will be no limiting asymptotic value for the uncertainty, which will also have to grow 

without bound. Alternatively, suppose there are elements of the state vector whose values 

cannot be modified by the available control variables. Then no observations of the state vector 

produce information about the control variables; if the control vector uncertainty is described 

by Q, then this uncertainty will accumulate from one time step to another, growing without 

bound with the number of time steps. 


