
4.1 Background 

The discussion so far has treated models and data that most naturally represent a static world. 

Much data, however, describe systems that are changing in time to some degree. Many familiar 

di�erential equations represent phenomena that are intrinsically time-dependent; a good example 

is  the wave equation,  
1 C2{ (w) C2{(w) 
f2 Cw2 � 

Cu2 = 0= (4.1) {wave1} 

One may well wonder if the methods described in Chapter 2 have any use with data thought to 

be described by (4.1). An approach to answering the question is to recognize that w is simply 

another coordinate, and can be regarded e.g., as the counterpart of one of the space coordinates 

encountered in the previous discussion of two dimensional partial di�erential equations. From 

this point of view, time dependent systems are nothing but versions of the systems already 

developed. (The statement is even more obvious for the simpler equation, 

g2{ (w) 
gw2 = t (w) = (4.2) 

That the coordinate is labelled w is a detail.) 

On the other hand, time often has a somewhat di�erent flavor to it than does a spatial 

coordinate because it has an associated direction. The most obvious example occurs when one 

has data up to and including some particular time w> and one asks for a forecast of some elements 

of  the system at some future time  w0 A w. Even this role of time is not unique: one could imagine 

a completely equivalent spatial forecast problem, in which e.g., one required extrapolation of 
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the map of an ore body beyond some area in which measurements exist. In state estimation, 

time does not introduce truly novel problems. The main issue is really a computational one: 

problems in two or more spatial dimensions, when time-dependent, typically generate system 

dimensions which are too large for conventionally available computer systems. To deal with 

the computational load, one seeks state estimation algorithms that are computationally more 

e!cient than what can be achieved with the methods used so far. Consider as an example, 

CF 
{tracer1} = � 2F> (4.3) 

Cw 
u 

a two dimensional generalization of the Laplace equation (a di�usion equation). Using a one-

sided time di�erence, and the discrete form of the Laplacian in Eq. (1.13), one has 

Flm ((q + 1)�w)� Flm (q�w) 
= (4.4) 

�w 
� {Fl+1>m (q�w)� 2Fl>m (q�w) + Fl31>m (q�w) + Fl>m+1 (q�w)� 2Fl>m (q�w) + Fl>m31 (q�w)} 

If there are Q2 elements defining Flm at each time q�w> then the number of elements over the 

entire time span of W time steps, would be WQ2 and which grows rapidly as the number of time 

steps increases. Typically the relevant observation numbers also grow rapidly through time. On 

the other hand, the operation, 

x =vec (Flm (q�w)) > (4.5) 

renders Eq. (4.4) in the familiar form 

A1x = 0> (4.6) 

and with some boundary conditions, some initial conditions and/or observations, and a big 

enough computer, one could use without change any of the methods of Chapter 2. There  are  

however, many times when W>  Q  become so large, that even the largest available computer is 

inadquate. Methods are sought that can take advantage of special structures built into time 

evolving equations to reduce the computational load. (Note however, that A1 is very sparse.) 

This chapter is in no sense exhaustive; many entire books are devoted to the material and 

its extensions, which are important for understanding and practical use. The intention is to lay 

out the fundamental ideas, which are primarily algorithmic rearrangements of methods already 

described in Chapters 2 and 3 with the hope that they will permit the reader to penetrate the 

wider literature. Several very useful textbooks are available for readers who are not deterred 

by discussions in contexts di�ering from their own applications.101 Most of the methods now 

being used in fields involving large-scale fluid dynamics, such as oceanography and meteorology, 

have been known for years under the general headings of control theory and control engineering. 

The experience in these latter areas is very helpful; the main issues in applications to fluid 
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problems concern the size of the models and data sets encountered: they are typically many 

orders of magnitude larger than anything contemplated by engineers. In meteorology, specialized 

techniques used for forecasting are commonly called “data assimilation.”102 The reader may find 

it helpful to keep in mind, through the details that follow, that almost all methods in actual use 

are, beneath the mathematical disguises, nothing but versions of least-squares fitting of models 

to data, but reorganized, so as to increase the e!ciency of solution, or to minimize storage 

requirements, or to accomodate continuing data streams. 

Several notation systems are in wide use. The one chosen here is taken directly from the 

conrol theory literature; it is simple and adequate.103 


