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4.8 Forward Models 

The focus we have had on the solution of inverse problems has perhaps given the impression 

that there is some fundamental distinction between forward and inverse modeling. The point 

was made at the beginning of this book that inverse methods are important in solving forward 

as well as inverse problems. Almost all the inverse problems discussed here involved the use of 

an objective function, and such objective functions do not normally appear in forward modeling. 

The presence or absence of objective functions thus might be considered a fundamental di�erence 

between the problem types. 

But numerical models do not produce universal, uniformly accurate solutions to the fluid 

equations. Any modeler makes a series of decisions about which aspects of the flow are most 

important for accurate depiction–the energy or vorticity flux, the large-scale velocities, the 

nonlinear cascades, etc.–and which cannot normally be achieved simultaneously with equal 

fidelity. It is rare that these goals are written explicitly, but they could be, and the modeler 

could choose the grid and di�erencing scheme, etc., to minimize a specific objective function. 

The use of such explicit objective functions would prove beneficial because it would quantify the 

purpose of the model. 

One can also consider the solution of ill-posed forward problems. In view of the discussion 

throughout this book, the remedy is straightforward: One must introduce an explicit objective 

function of the now-familiar type, involving state vectors, observations, control, etc., and this 

approach is precisely that recommended. If a Lagrange multiplier method is adopted, then Eqs. 

(2.332, 2.333) show that an over- or under-specified forward model produces a complementary 

under- or overspecified adjoint model, and it is di!cult to sustain a claim that modeling in the 
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forward direction is fundamentally distinct from that in the inverse sense. 

H{dpsoh 

Consider the ordinary di�erential equation 

g2{(w) 
gw2 � n 2{(w) =  0  = (4.183) {69001a} 

Formulated as an initial value problem, it is properly posed with Cauchy conditions {(0) = {0, 

{0(0) = {0 0. The solution is 

{(w) =  D exp(nw) +  E exp(�nw) > (4.184) {69001b} 

with D, E determined by the initial conditions. If we add another condition–for example, 

at the end of the interval of interest, {(wi ) =  {wi –the problem is ill-posed because it is now 

overspecified. To analyze and solve such a problem using the methods of this book, discretize it 

as 

{(w + 1)  � (2 + n 2){(w) +  {(w � 1) = 0 > (4.185) {69001c} 

taking �w = 1, with corresponding redefinition of n2 . A canonical form is, 

£ ¤W 
x(w) =  Ax(w � 1)> x(w) =  {(w)> {(w � 1) > A = 

;
AA? 

AA= 

2 +  n2 1�
< 
AA@ 

AA>

= 

1 0 

A reduced form of equations (4.166-4.170) are easily solved (the only “observations” are 

at the final time) by a backward sweep of the adjoint model (4.101) to obtain µ(1), which  

˜through (??) produces  x(1) in terms of x(wi ) � xg(wi ). A forward sweep of the model, to 

wi , produces the numerical value of x(wi ); the backward sweep of the adjoint model gives the˜

corresponding numerical value of x(1), and a final forward sweep of the model completes the˜

solution. The subproblem forward and backward sweeps are always well-posed. This recipe was 

run for 

˜n 2 = 0=05> �w = 1> x(1) = [0=805> 1=0]W > P(1) = 1032I > ½ ¾ 

{̃(wi ) =  1=427 × 1035> P(wi ) = diag  1034 104 > wi = 50  

with results in Figure 4.17. (The large subelement uncertainty in P(50), corresponding to scalar 

element, {(49), is present because we sought to specify only scalar element {(50), in  x(50).) The 

solution produces a new estimated value x̃ (0) = [0=800> 1=00]W which is exactly the value used 

in Fig. 4.17 to generate the stable forward computation. Notice that the original ill-posedness 

in both overspecification and instability of the initial value problem have been dealt with. The 
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Figure 4.17: (a) Stable solution. {1 (w) (solid curve) to Eq. (4.185) obtained by setting n2 = 0=05> 

x (0) = [0=800> 1=00]W = Dashed line is an unstable solution (dotted) obtained by 

modifying the initial condition to x (0) = [0=80001> 1=00]W = The growing solution 

takes awhile to emerge, but eventually swamps the stable branch. (b) Solution 

obtained by overspecification, in which x̃ (0) = [0=80001> 1=00]W > P (0) = =01I2> £ ¤ ¡ ¢ 
x̃ (50) = 1=4 × 1035> 1 , P (50) = diag [1034> 104] =(c) Lagrange multiplier values 

used to impose the initial and final conditions on the model. Solid curve is �1 (w) > 

and dash-dot is �2 (w) = {unstable1.eps 

Lagrange multipliers (adjoint solution) are also shown in the figure, and imply that the system 

sensitivity is greatest at the initial and final times. For a full GCM, the technical details are 

much more intricate, but the principle is not in doubt. 

This example can be thought of as the solution to a forward problem, albeit ill-posed, or as 

the solution to a more or less conventional inverse one. The distinction between forward and 

inverse problems has nearly vanished. Any forward model that is driven by observed conditions 

is ill-posed in the sense that there can again be no unique solution, only a most probable 

one, smoothest one, etc. As with an inverse solution, forward calculations no more produce 

unique solutions in these circumstances than do inverse ones. All problems involving observed 

parameters, initial or boundary conditions are necessarily ill-posed. 


